
HW/SW Co-Verification of a RISC CPU using Bounded Model Checking

Daniel Große Ulrich Kühne Rolf Drechsler

Institute of Computer Science
University of Bremen

28359 Bremen, Germany
{grosse, ulrichk, drechsle}@informatik.uni-bremen.de

Abstract

Today, the underlying hardware of embedded systems
is often verified successfully. In this context formal veri-
fication techniques allow to prove the correctness. But in
embedded system design the integration of software com-
ponents becomes more and more important. In this paper
we present an integrated approach for formal verification
of hardware and software. The approach is demonstrated
on a RISC CPU. The verification is based on bounded
model checking. Besides correctness proofs of the under-
lying hardware the hardware/software interface and pro-
grams using this interface can be formally verified.

1. Introduction

In the last few years embedded system design has be-
come a very important research area and the application do-
mains range from telecommunication devices to automotive
components. These systems not only consist of hardware
components, i.e. a large portion is realized by firmware and
programs. Since these systems are used more and more in
safety critical applications, the aspect of verification is very
important to ensure the correct functional behavior of the
system.

In the meantime hardware verification has been inten-
sively studied and is well understood, even though the tools
sometimes suffer from limit of resources. But assertion-
based verification and formal approaches have ensured high
quality also for large hardware systems. This standard is not
achieved so far, if software components are included. E.g. a
recent study by Collett International Research Inc. has
shown that errors caused by firmware and hardware/soft-
ware interfaces account for up to 13 percent of failures with
an increasing trend. To reduce this type of errors in em-
bedded systems integrated hardware/software verification is
needed.

A successful technique for verification of hardware
is Bounded Model Checking(BMC) [3]. BMC checks
whether a circuit satisfies a temporal property or not. There-
fore, BMC reduces the problem to a Boolean satisfiability
problem and searches for counter-examples in executions
whose length is bounded byk time steps.

In this paper we show that the concepts of BMC can also
be applied in the context of hardware/software integration.
For a RISC CPU it is demonstrated that a complete verifi-
cation can be performed that includes the underlying hard-
ware, the single assembler commands and even programs
based on sequences of commands.

To provide some more details on the proof processes in
the following we briefly review some of the notation and
formalism. We make use of BMC as described in [10], i.e. a
property only argues over a finite time interval and during
the proof there is no restriction to reachable states. The gen-
eral structure of the resulting BMC instance for a property
p over the finite interval[0, c] is given by:

c−1∧
i=0

Tδ(si, si+1) ∧ ¬ p

whereTδ(si, si+1) denotes the transition relation between
cyclesi andi + 1. Typically the propertyp consists of two
parts: anassume partwhich should imply theproof part,
i.e. if all assumptions hold, all commitments in the proof
part have to hold as well.

Example 1. A simple example formulated in PSL [1] is
shown in Figure 1. The propertytest says that whenever
signalx becomes1, two clock cycles later signaly has to
be2.

The integrated verification approach that supports hard-
ware and software is based on the unrolling process of
BMC. This also enables to consider sequences of instruc-
tions of the RISC CPU. The steps for this verification are
explained in the following.

proper ty t e s t
always

/ / assume p a r t
(x = 1)
−>
/ / p rove p a r t
next [2] (y = 2) ;

Figure 1. Property test

The verification of the underlyinghardwareis done by
classical application of BMC. At this stage all hardware
units are formally verified by describing their behavior with
temporal properties. This guarantees the functional correct-
ness of each hardware block. Basically applying BMC for
this task corresponds to block-level verification.

The interfaceis viewed as a specification that exits be-
tween hardware and software. By calling instructions of the
interface an interaction with the underlying hardware is re-
alized. At the interface the functionality of the hardware is
available but the concrete hardware realization is abstracted.
In contrast to block-level verification the interface verifi-
cation with BMC formulates for each interface instruction
the exact response of all hardware blocks involved. Besides
these blocks it is also assured that no side effects occur.

Based on instructions available through the interface a
programis a structural sequence of instructions. By a com-
bination of BMC and inductive proofs [4, 8] a concrete pro-
gram can be formally verified. Arguing over the behavior
of a program is possible by constraining the considered se-
quence of instructions as assumptions in a BMC property.
Thus, the property checker “executes” the program and can
check the intended behavior of the proof part. Inductive
reasoning is used to verify properties which describe func-
tionality where the upper time bound varies, e.g. this is the
case if loops are used.

2. Case Study: RISC CPU

This section provides the basics of the RISC CPU and
details on the SystemC model. Then the verification process
for hardware and software is described.

2.1. Specification

In Figure 2 the main components of the RISC CPU are
shown. The CPU has been designed as a Harvard architec-
ture. The data width of the program memory and the data
memory is16 bit and the sizes are4 KByte and128 KByte,
respectively. The length of an instruction is16 Bit. In the
following we only briefly describe the five different classes
of instructions of the RISC CPU:

• 6 load/store instructions (movement of data between
register bank and data memory or I/O device, load of
a constant into high- and low byte of register, respec-
tively)

• 8 arithmetic instructions (addition/subtraction with
and without carry, left/right rotation and shift)

• 8 logic instructions (bit by bit negation, bit by bit
exor, conjunction/disjunction of two operands, mask-
ing, inverting, clearing and setting of single bits of an
operand)

• 5 jump instructions (unconditional jump, conditional
jump, jump on set/cleared carry or zero flag)

• 5 other instructions (stack instructions push and pop,
program halt, subroutine call, return from subroutine)

For more details on the CPU we refer the reader to [2].

2.2. SystemC Model

The RISC CPU has been modeled in the system descrip-
tion language SystemC [9, 7]. As a C++ class library Sys-
temC enables modeling of systems at different levels of
abstraction starting at the functional level and ending at a
cycle-accurate model. The well-known concept of hierar-
chical descriptions of systems is transferred to SystemC by
describing a module as a C++ class. Furthermore, fast sim-
ulation is possible at an early stage of the design process
and hardware/software co-design can be carried out in the
same environment. Note that a SystemC description can be
compiled with a standard C++ compiler to produce an exe-
cutable specification.

For details on the SystemC model of the RISC CPU we
refer the reader to [6]. To simulate RISC CPU programs a
compiler has been written which generates object code out
of the assembler language of the RISC CPU. This object
code runs on the SystemC model, i.e. the model of the CPU
executes an assembler program. During the simulation trac-
ing of signals and states of the CPU is possible.

2.3. Formal Verification

For property checking of the SystemC model the tool
presented in [5] is used. It is based on SAT solving tech-
niques and for debugging a waveform is generated in case
of a counter-example. In the following the complete veri-
fication of the hardware, interface and assembler programs
for the RISC CPU is discussed. All experiments have been
carried out on a Athlon XP 2800 with 1 GByte of main
memory.

M
U
X

0

1

M
U
X

0

1

enable
write

PC reset
load enable

data

data

ALU

ALU select

=0

=0

write enable

write
enable

enable
write

H L

program counter

control unit

clock

clock

clock

memory
program

C

register bank

address

instruction

read
address A
read
address B
write
address
write

read
data A
read
data B

clock

status register

data memory

clock

address

write
data

C

read
data

Figure 2. Structure of the RISC CPU

Table 1. Runtime of block-level verification
Block Number of Total run time

properties in CPU seconds
register bank 4 1.03
program counter 3 0.08
control unit 11 0.23
data memory 2 0.49
program memory 2 0.48
ALU 17 4.41

2.3.1. Hardware

Properties for each block of the RISC CPU have been for-
mulated. E.g. for the control unit it has been verified which
control lines are set according to the opcode of the instruc-
tion input. Overall the correctness of each block could be
verified. Table 1 summarizes the results1.

The first column gives the name of the considered block.
Next, the number of properties specified for a block are de-
noted. The last column provides the overall run time needed
to prove all properties of a block. As can be seen the func-
tional correctness of the hardware could be formally verified
very fast with39 properties.

2.3.2. Interface

Based on the hardware verification of the RISC CPU, in the
next step the interface is verified. Thus, for each instruction

1For the verification in the synthesized model of the RISC CPU the
sizes of the memories have been reduced.

of the RISC CPU a property has been specified which ex-
presses the effects on all involved hardware blocks. As an
example we discuss the verification of the ADD instruction.

Example 2. Figure 3 gives details on the ADD instruction.
Besides the assembler notation also the instruction format
of the ADD instruction is shown. The specified property for
the ADD instruction is shown in Figure 4. First of all the
opcode and the three addresses of the registers are assigned
to meaningful variables (lines 1-6). The assume part of the
ADD property is defined from line 11 to 12 and states that
there is no reset (line 11), the current instruction is addition
(line 11) and the registersR[0] and R[1] are not addressed
(since this register are special purpose registers). Under
these assumptions we want to prove that in the next cycle
the registerR[i] (=reg . reg[prev(Ri_A)]) contains the sum
of register R[j] and register R[k] (line 16), the carry
(stat .C) in the status register is updated properly (line 16)
and the zero bit (stat .Z) is set iff the result of the sum is zero
(line 17). Furthermore we prove that theADD instruction
has no side effects, i.e. the contents of all registers which
are different fromR[i] are not modified.

Analogously to the ADD instruction the complete in-
struction set of the RISC CPU has been verified. Table 2
summarizes the results. The first column gives the cate-
gory of the instruction. In the second column the number of
properties for each category is provided. The last column
shows the total run time needed to prove all properties of a
category. As can be seen the complete instruction set of the
RISC CPU can be verified in less than 5 CPU minutes.

1 OPCODE : = i n s t r [1 5 : 1 1] ;
2 Ri_A : = i n s t r [1 0 : 8] ;
3 Rj_A : = i n s t r [5 : 3] ;
4 Rk_A : = i n s t r [2 : 0] ;
5 Rj : = reg . reg [Rj_A] ;
6 Rk : = reg . reg [Rk_A] ;
7
8 proper ty ADD
9 always

10 / / assume p a r t
11 (r e s e t = 0 && OPCODE = " 00111 " &&
12 Ri_A > 1 && Rj_A > 1 && Rk_A > 1)
13 −>
14 / / p rove p a r t
15 next (
16 (reg . reg [prev (Ri_A)] + (6 5 5 3 6 ∗ s t a t . C) = prev (Rj) + prev (Rk))
17 && ((reg . reg [prev (Ri_A)] = 0) <−> (s t a t . Z = 1))
18
19 / / no s i d e e f f e c t s
20 && ((prev (Ri_A) ! = 2) −> reg . reg [2] = prev (reg . reg [2]))
21 && ((prev (Ri_A) ! = 3) −> reg . reg [3] = prev (reg . reg [3]))
22 && ((prev (Ri_A) ! = 4) −> reg . reg [4] = prev (reg . reg [4]))
23 && ((prev (Ri_A) ! = 5) −> reg . reg [5] = prev (reg . reg [5]))
24 && ((prev (Ri_A) ! = 6) −> reg . reg [6] = prev (reg . reg [6]))
25 && ((prev (Ri_A) ! = 7) −> reg . reg [7] = prev (reg . reg [7]))) ;

Figure 4. Specified property for the ADD instruction of the RISC CPU

Assembler notation: ADD R[i] , R[j] , R[k]

Task: addition of R[j] and R[k] ,
the result is stored inR[i]

Instruction format:

15 . . . 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 bin(i) - - bin(j) bin(k)

Figure 3. ADD instruction

Table 2. Runtime of interface verification
Instruction Number of Total run time
category properties in CPU seconds
load/store instruction 6 15.16
arithmetic instructions 8 186.30
logic instructions 8 32.71
jump instructions 5 6.68
other instructions 5 7.14

2.3.3. Program

Finally, we describe the approach to verify assembler pro-
grams for the RISC CPU. As explained, the considered pro-

1 /∗ c o u n t s from 1 0 downto 0 ∗ /
2 LDL R[7] , 1 0
3 LDH R [7] , 0
4 loop :
5 SUB R [7] , R [7] , R [1]
6 JNZ l oop

Figure 5. Assembler program

grams of the RISC CPU can be verified by constraining
the instructions of the program as assumptions in the proof.
These assumptions are automatically generated by the com-
piler of the RISC CPU. The verification of a program is
illustrated in the following simple example:

Example 3. Consider the assembler program shown in Fig-
ure 5. The program loads the integer10 into register R[7]
and decrements registerR[7] in a loop until it contains
value 0. For this program the propertycount has been
formulated (see Figure 6). At first it is assumed that the
CPU memory contains the instructions of the given exam-
ple (lines 4 – 7)2. Furthermore the program counter points
to the corresponding memory position (line 8), no memory

2This part of the assumptions has been generated automatically by the
compiler.

1 proper ty coun t
2 always
3 / / assume p a r t
4 (rom .mem[0] = 1 818 6 && /∗ LDL R [7] , 1 0 ∗ /
5 rom .mem[1] = 2 022 4 && /∗ LDH R [7] , 0 ∗ /
6 rom .mem[2] = 1 413 7 && /∗ SUB R [7] , R [7] , R [1] ∗ /
7 rom .mem[3] = 2 457 8 && /∗ JNZ 2 ∗ /
8 pc . pc = 0 &&
9 next_a [0 . . 2 1] (prog_mem_we = 0) &&

10 next_a [0 . . 2 1] (r e s e t = 0))
11 −>
12 / / p rove p a r t
13 next [2 1] (reg . reg [7] = 0) ;

Figure 6. Property count

write operation is allowed (line 9) and there is no reset for
the considered22 cycles (line 10). Under these assump-
tions we prove that the registerR[7] is zero after21 cycles.
The time-point21 results from the fact that the first two cy-
cles (zero and one) are used by the load instructions and
the following20 cycles are required to loop10 times. The
complete proof has been carried out in less than 25 CPU
seconds.

3. Conclusions and Future Work

In this paper we presented an approach to hardware/
software co-verification based on bounded model checking.
As a first example the method has been demonstrated for
a RISC CPU. We succeeded to completely formally verify
the hardware, the interface and simple programs.

Current studies on more difficult algorithms are very
promising and it is focus of future work to consider more
complex embedded systems based on our approach.

References

[1] Accellera Property Specification Language Reference
Manual, version 1.1. http://www.pslsugar.org, 2005.

[2] B. Becker, R. Drechsler, and P. Molitor.Technische
Informatik — Eine Einführung. Pearson Education
Deutschland, 2005.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. InTools and Algo-
rithms for the Construction and Analysis of Systems,
volume 1579 ofLNCS, pages 193–207. Springer Ver-
lag, 1999.

[4] P. Bjesse and K. Claessen. SAT-based verification
without state space traversal. InFormal Methods in
Computer-Aided Design, pages 372–389, 2000.

[5] D. Große and R. Drechsler.CheckSyC: An efficient
property checker for RTL SystemC designs. InIEEE
International Symposium on Circuits and Systems,
pages 4167–4170, 2005.

[6] D. Große, U. Kühne, C. Genz, F. Schmiedle,
B. Becker, R. Drechsler, and P. Molitor. Modellierung
eines Mikroprozessors in SystemC. InGI/ITG/GMM-
Workshop, Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und
Systemen, 2005.

[7] T. Grötker, S. Liao, G. Martin, and S. Swan.System
Design with SystemC. Kluwer Academic Publishers,
2002.

[8] M. Sheeran, S. Singh, and G. Stålmarck. Checking
safety properties using induction and a SAT-solver. In
FMCAD ’00: Proceedings of the Third International
Conference on Formal Methods in Computer-Aided
Design, pages 108–125, 2000.

[9] Synopsys Inc., CoWare Inc., and Frontier Design Inc.,
http://www.systemc.org.Functional Specification for
SystemC 2.0.

[10] K. Winkelmann, H.-J. Trylus, D. Stoffel, and G. Fey.
A cost-efficient block verification for a UMTS up-link
chip-rate coprocessor. InDesign, Automation and Test
in Europe, volume 1, pages 162–167, 2004.

