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Abstract—In the design process of digital systems, functional
verification is a major issue. Generally, formal methods like
bounded model checking (BMC) offer the highest quality of the
verification results, especially when used in combination with
techniques that check if a set of properties forms a complete
specification of a design. However, in contrast to simulation-
based methods, like random testing, formal verification requires
a detailed knowledge of the design implementation. Formalizing a
specification as a set of properties is a tedious and time consuming
process. In this paper, we show the application of techniques to
aid the verification engineer in writing properties in a quality-
driven BMC flow, that have been introduced in [1]. The first
method can be used to remove redundant assumptions from prop-
erties and to separate different scenarios. The second technique,
here called inverse property checking, takes an expected behavior
of a design and automatically generates valid properties that can
be checked for conformance with a specification. Both techniques
can serve to reduce the number of iterations to obtain full
coverage, when integrated with the verification flow. The benefits
of the techniques are demonstrated with a memory management
unit.

I. INTRODUCTION

With an increasing design size, automation and tool sup-
port of the hardware verification process is indispensable.
Concerning the verification methodology, there are mainly
two different paradigms – simulation-based verification and
formal verification. Simulation-based approaches rely on a
test bench that should capture all relevant scenarios. The
simulation results are compared to a golden reference model.
In formal verification the functional behavior is described by
properties which are checked on the design using symbolic
techniques [2]. Although simulation-based verification is still
widely used in industry, formal verification generally offers
the highest quality.

While for simulation based methods, various coverage met-
rics – like code coverage or branching coverage – are used
to measure the quality of simulation, these metrics cannot
be directly ported to formal verification. However, there are
several techniques to ensure that a set of properties covers the
whole functionality of a design [3], [4], [5], thus guaranteeing
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that the written properties form a complete specification. Al-
though this improves the formal verifcation flow and provides
a well-defined stopping criterion, the manual effort for formal
verification is still high. While the setup for random simulation
is quite easy as it treats the design under verification (DUV)
as a black box, more sophisticated techniques like directed
tests require some insight into the implementation. Finally, for
writing a high-quality property set that formally captures the
specification, deep knowledge of the DUV internals is neces-
sary. Therefore, the time needed to get the formal verification
up and running is significantly higher. In contrast, once the
property suite is complete, the task of verification is fulfilled,
while simulation-based methods may never come to meet the
coverage requirements in a reasonable time [6].

As a conclusion, it is inevitable for the verification engineer
to achieve a good design understanding in order to match
the specification with the implementation. This may take a
significant amount of time and a meticulous inspection of the
specification and the RTL code. Making it even worse, in many
cases the specification will be incomplete or outdated. The
same applies for source code documentation. Thus, to achieve
a shorter ramp-up time for formal verification, it is necessary
to provide support for the verification engineer to guide the
verification process.

In order to decrease the overhead of formal methods, tech-
niques to aid the verification engineer in design understanding
and to ease the formalization of the specification have been
introduced in [1]. The first method automatically analyzes
a given property, identifying too strong constraints on the
environment or the internal state of the DUV. Using this
technique, the number of iterations to achieve full coverage
can be reduced. Furthermore, the technique provides a true
gain in design understanding by revealing which parts of the
assumptions are sufficient to prove a property. Based on this
approach, the second technique automatically generates prop-
erties, given an expected behavior as a temporal expression.
With this inverse property checking, the user can interactively
query the design to find out how the abstract concepts of the
specification are implemented. The generated properties can
then be inspected and verified with the specification.

In this paper, the integration of these techniques with
a formal coverage analysis are demonstrated in an experi-



mental case study. Together with a coverage analysis, the
formalization of a specification can be approached from both
ends: making the written properties as concise as possible by
analyzing them and revealing new uncovered behavior and
integrating this behavior in the property suite using inverse
property checking.

The paper is structured as follows. In the next section we
will provide the basics on the used verification and coverage
techniques. The techniques mentioned above are briefly re-
viewed in Sections III and IV, followed by the case study
in Section VI. The work is concluded in Section VII. A
discussion of the presented techniques and of related work
can be found in [1].

II. PRELIMINARIES

A. Verification Setting

Bounded Model Checking (BMC) has been introduced
in [7]. In contrast to the original BMC, we use an all
states verification, meaning that the properties are proven for
arbitrary starting states [8], [9].

Formally, for a design with its transition relation Tδ , a BMC
instance for a property p over the finite time interval [0, c] is
given by

c−1∧
i=0

Tδ(si, si+1) ∧ ¬ p , (1)

where p may depend on the inputs, states and outputs of the
circuit in the time interval [0, c]. This verification problem
can be formulated as a Boolean satisfiability (SAT) problem
by unrolling the circuit for c time frames and generating
logic for the property. A satisfying assignment corresponds
to a case where the property fails – a counter-example.
Allowing arbitrary starting states may lead to false negatives,
i.e. counter-examples that start from an unreachable state. In
such a case these states are excluded by additional assumptions
in the property or assuming proven invariants. But, for BMC
as used here, it is not necessary to determine the diameter of
the underlying sequential circuit. Thus, if the SAT instance is
unsatisfiable, the property holds.

For the formulation of the properties, we use a subset of
PSL (property specification language [10]). A property has
the form of an implication A → C. Here, the antecedent A
contains a conjunction of assumptions on the state and inputs
of the design, like e.g. environment constraints or a specific
configuration setting. The consequent C then describes the
intended behavior. The used operators are the typical HDL
operators like logic, arithmetic and relational operators. The
timing is expressed using the operators next and prev.

B. Coverage Analysis

To achieve a high quality verification result, the properties
must cover the entire behavior of the DUV. As non-trivial
verification scenarios have to be considered and properties
may get quite complex, this achievement is not obvious to the
verification engineer. Instead, a formal check can be carried
out to prove that the functionality of the DUV is fully covered

by the properties, as described in [5]. There, it is checked for
each output of a hardware module whether a set of properties
uniquely determines the value of the output for each possible
scenario of states and inputs. If the check fails, an uncovered
scenario in form of a counter-example is presented to the user.
Full coverage in terms of this approach means that a signal
is determined by a set of properties for all possible state and
input scenarios.

Alternative approaches for analyzing coverage for formal
property verification can be found in [3], [4].

III. PROPERTY ANALYSIS

The most common cause for the coverage check to fail
are too strong assumptions in the properties. For this reason,
it is desirable to have an automatic support for the user in
writing properties as concise as possible, saving time for
further iterations on the way to full coverage.

The idea of the property analysis approach is to iteratively
find subsets of essential subexpressions of the antecedent. A
subset is essential if removing the contained subexpressions
invalidates the property. In this way, all possible combinations
of subexpressions can be constructed that are sufficient to
guarantee the validity of the property. The overall flow of the
property analysis is depicted in Algorithm 1. The steps are
described in the following.

Given a property in the form A → C, in order to analyze
the antecedent, it is decomposed into its subexpressions. For
each subexpression, a free Boolean variable di (disable) is
introduced to control the disabling of the expression in the
antecedent. In this way, an antecedent A = A1∧A2∧· · ·∧An

is transformed to

A′ =
n∧
i=1

(di ∨Ai). (2)

In the next step, all combinations of disabled subexpressions
are extracted that falsify the overall property. This is done
iteratively by solving the SAT instances Qk for k ranging from
1 to n, the number of subexpressions:

Qk =
n∧
i=1

(di ∨Ai) ∧ (
∑

di = k) ∧ ¬C (3)

The design is unrolled within the involved time interval
(omitted in Equation (3)). The found assignments to the di
variables are stored in a BDD E (Binary Decision Diagram
[11]) and a blocking clause is added to the instance in order
to conduct the solver to the next solution. If an assignment
a : (d1, d2, . . . , dn) 7→ {0, 1}n is found, only the cube con-
sisting of the positive literals a(di) = 1 is stored, representing
all supersets of the subset of disabled subexpressions. As
disabling the identified subset already falsifies the property,
disabling more subexpressions will falsify it as well. Thus, we
do not need to search for these supersets any more. By starting
with k = 1 and incrementing it, we are able to block the most
general supersets first and thereby reduce the number of solver



Algorithm 1: propertyAnalysis
Input: circuit M , property P = (A→ C)

A′ = reformulated antecedent1

for (k = 1 . . . n) do2

repeat3

find assignment for Qk4

store cube of di in BDD E5

block assignment6

until UNSAT ;7

compute BDD S = ¬E8

compute set cover of S ′9

a

b

c

o

(a)

d1 d2 d3 k

1 0 0 1
0 1 1 2
- - - 3

(b)

property P =
always (

a == 1 &&
b == 1 &&
c == 1 &&

) −> (
o == 1

) ;

(c)

d1

d3

d2

0 1

d1

d3

0 1

(d)

Fig. 1. Example for Algorithm 1

calls. The corresponding blocking clause for assignment a is∨
a(di)=1

(¬di).

If for a given k no more solutions can be found, k is
incremented until it reaches the number of subexpressions n.
At the end, E contains all subsets of assumptions that falsify
the property. By calculating the BDD S = ¬E , we obtain
a collection of all subsets of assumptions that preserve the
validity of the property. Note that negation on BDDs is a
constant time operation when using complement edges.

The resulting sufficient antecedents can then be computed
as a set cover of the subsets in S. This is done by iteratively
removing cubes from the BDD until the zero function is
obtained. By preferring the paths with the least number of
low edges, antecedents with a small number of activated
subexpressions are picked first. These are usually the most
interesting results for the user.

Example 1: Consider the circuit shown in Figure 1(a),
implementing the function o = a∧ (b∨ c). The naive property
in Figure 1(c) states that o is 1 whenever all inputs are 1.
Starting the analysis, for Q1 = (d1 ∨ a = 1) ∧ (d2 ∨ b =
1) ∧ (d3 ∨ c = 1) ∧ (

∑
di = 1) ∧ ¬(o = 1), we

find the single solution (d1,¬d2,¬d3), as shown in the first
row of the table in Figure 1(b). This means that disabling

Algorithm 2: inversePropertyCheck
Input: circuit M , expected behavior e

compute maximum delay dmax1

compute witness a of length dmax + 12

compute set IS of influencing signals3

build initial property P = (
∧

(s,t)∈IS(st = a(s, t)) )→ e4

apply propertyAnalysis on P5

A1 = (a = 1) invalidates the property. The only solution for
Q2 is (¬d1, d2, d3). There is no more solution for k = 3 that
does not include the already found subsets. The resulting BDD
S = ¬E is shown in Figure 1(d) on the left (low edges are
represented by dashed lines). From this, we pick and remove
the cubes corresponding to the paths to the terminal 1-node.
The sufficient antecedents to satisfy the consequent (c = 1) are
then (a = 1)&&(b = 1) and (a = 1)&&(c = 1), correspond-
ing to the paths (¬d1,¬d2) and (¬d1,¬d3), respectively. (The
BDD on the right of Figure 1(d) represents the intermediate
result after removing the first solution (a = 1)&&(b = 1).) �

Note that the sufficient antecedents can also be constructed
by computing all minimal unsatisfiable subformulas [12] of
the inital property. This relation is further discussed in [1].

In summary, the property analysis removes unnecessary
assumptions of a concrete verification scenario on the one
hand. On the other hand different scenarios can be identified
and separated.

IV. INVERSE PROPERTY CHECKING

For a given property, the above analysis can be used to
extract all the essential assumptions within the antecedent.
Instead, based on the analysis, the user can start with a given
expected behavior or proof goal for which legal antecedents
are constructed automatically. The resulting properties hold by
construction and can then be inspected by the user to find out
if they comply with the specification. This approach is denoted
as inverse property checking. It reverses the normal process of
finding a formal description for a given functionality, where
the verification engineer tries to extract the correct setting from
the specification and the RTL implementation. Here a valid
description of the implementation is extracted automatically,
that can then be compared to the specification.

The idea is to find a witness for a given proof goal. A
witness in this case is a complete assignment to the signals of
the DUV, which also satisfies the given consequent expression.
The witness is then generalized using the property analysis. In
this way, it is revealed which of the assignments in the witness
are sufficient for a given proof goal. A sketch of the inverse
property checking is shown in Algorithm 2.

The expected behavior for inverse property checking is
specified as a PSL expression e. In order to construct a
witness for the expected behavior, a BMC instance is build
by unrolling the circuit and adding the constraints for e.
Therefore, for the circuit the maximum delay dmax between
any of the inputs or state signals and the signals involved in e
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Fig. 2. Simpe logic unit

is calculated by a depth-first search on the circuit. The circuit
is then unrolled in the interval [0, dmax].

If the instance is unsatisfiable, the expected behavior e
can never be observed in the design. Otherwise, we obtain
a witness a : S × T → B∗, that maps a signal of the design
and a time point from T = {0, . . . , dmax} to a bitvector value.
To reduce the number of potential antecedent subexpressions,
a subset IS ⊆ S × T containing the influencing signals is
calculated by a path analysis of the witness and the circuit.
The initial property is then given by the formula( ∧

(s,t)∈IS

(st = a(s, t))
)
→ e, (4)

where st denotes the value of signal s at time point t. This
property holds trivially, since all signals are assigned to the
value they have in the witness for e. Furthermore, all signals
that influence the value of the signals in e, are included in
IS. Each assignment to a signal in Formula (4) forms an
antecedent subexpression. In order to obtain sufficient subsets
of the assignments in a to satisfy the expected behavior e, the
property analysis is applied to formula (4).

Example 2: Consider the circuit in Figure 2. It implements
a simple logic unit, where the ctrl input selects among the
operations AND and OR of the values of input in in two
successive cycles. The result is stored in register R1 and it
is shown at output out one cycle later. If rst is high, both
registers are reset to zero. Using inverse property checking,
we want to obtain a property for the target behavior e given
by next[2](out) = in∨next(in), which describes the selected
OR operation. The maximum delay dmax at output out is 2.
In the first step a witness of length 3 is computed for e (see
Figure 3). By a structural analysis of the circuit, the potential
18 assignments from the witness (6 signals in 3 cycles) are
already reduced to the set of influencing signals

IS = {(out, 2), (R1, 2), (R0, 1), (in, 0),
(in, 1), (rst, 0), (rst, 1), (ctrl, 1)},

which is then used to construct the initial property accord-
ing to Formula (4). After applying the property analysis on

Fig. 3. Witness trace

property P = always (
next a [ 0 . . 1 ] ( ! r s t ) &&
next ( c t r l )

) −> (
next [ 2 ] ( o u t ) == ( i n | next ( i n ) )

) ;

Fig. 4. Generated property for Example 2

the constructed initial property, further assignments could be
discarded, resulting (among others) in the property shown
in Figure 4. It states that when there is no reset within the
first two cycles and ctrl is high in the second cycle, then
the computation will be performed as expected. This can be
considered a correct operation and thus, a formal specification
of the OR operation could be obtained automatically �

V. INTEGRATION WITH COVERAGE ANALYSIS

For the above technology, the algorithm starts with a single
witness for the expected behavior. The quality of the result
depends on the assignment that is found by the underlying SAT
solver. Thus, it is desirable to focus the search on interesting
scenarios. As it turns out, the coverage analysis described in
Section II-B provides exactly what is needed here.

With the approach from [5], it is checked for a design,
if a set of properties covers the functionality of an output
signal. If the coverage check fails, an uncovered scenario is
presented in form of a counter-example which is basically an
assignment to all the signals in the design. Now, it is common
that the coverage check fails because of too strong assumptions
or missing corner cases. Thus, it is also likely that one or
more of the given properties matches the correct behavior for
the uncovered scenario. This can be checked by simulating
the involved properties with the assignment of the counter-
example. If the consequent of a property holds for the scenario,
it is indeed a witness and can be processed by the inverse
property checking described above.

If none of the yet specified properties matches the scenario,
a simple consequent expression can be derived from the
concrete assignment to the target signal, that is currently
checked for coverage. The generated properties will then show
possible explanations of this assignment. In this way, the
approach automatically presents valid modifications of the
properties in order to include the yet uncovered behavior
in the specification. By iteratively following this procedure
full coverage is achieved much faster using the presented
techniques.



mem_req
mem_rw
mem_addr
mem_data_o

mem_ack
mem_data_i

re
raddr
rack

rdata

we
waddr
wack

wdata

reset

MU
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TABLE I
MEMORY UNIT INTERFACE DESCRIPTION

CPU side
I reset reset
I re read enable
I raddr read address
O rack read acknowledge
O rdata data from mem
I we write enable
I waddr write address
I wdata data to mem
O wack write acknowledge

Memory side
O mem_req request
O mem_rw read or write
O mem_addr address
I mem_ack acknowledge
O mem_data_o data to mem
I mem_data_i data from mem

Registers
S state FSM state

VI. CASE STUDY

In this section it is demonstrated how the presented tech-
niques can be used to assist the user in finding a formal
specification of a hardware module. The design at hand is
a memory unit (MU), that connects a CPU to a single port
memory, thereby providing a dual port interface to the CPU
(see Figure 5). It is implemented using a single write buffer,
allowing for simultaneous read and write operations. The
interface description of the MU is shown in Table I. The
synthesized circuit consists of about 2, 000 gates.

The verification is started by examining the read operation
of the MU. The initial simple read property is shown in
Figure 6. It states that when the MU is in IDLE state, there
is no reset, write enable is low and read enable is high, then
a read access is performed on the memory side. The property
holds for the implementation.

Now the property analysis is applied on property READ,
revealing that in fact the expressions A1, A2 and A4 are
sufficient to prove the property. It can be concluded that even

property READ = always (
(A1) s t a t e == IDLE &&
(A2) ! r e s e t &&
(A3) ! we &&
(A4) r e

) −> (
mem req && ! mem rw && mem addr == r a d d r

) ;

Fig. 6. Initial read property for MU

property P0 = always (
s t a t e == READ WR PEND &&
! r e s e t &&
! mem ack

) −> (
mem req && ! mem rw && mem addr == r a d d r

) ;

Fig. 7. Alternative read property

in case of a simultaneous read and write from the CPU, the
read access will be performed on the memory side. This seems
to be a reasonable behavior, as the write access can be stored
in the internal write buffer at the same time. Note that this
automatic strengthening of the properties can also point the
verification engineer directly to a design bug that the original
property would have missed, e.g. if the analysis states that
a signal can be ignored that should definitely influence the
behavior according to the specification.

Although the property READ could be strengthened auto-
matically, it is certainly not a complete specification of the
design. Nevertheless, the coverage check can be applied in
order to obtain uncovered behavior that is either to be included
in the specification or indicates a bug in the implementation.
The coverage check for the signal mem_req returns an
uncovered scenario that matches the proof goal of the property
READ. The generated alternative property is shown in Figure 7.
It can be interpreted as follows: during a read access with a
pending write the read is kept active as long as the memory
did not acknowledge it. So far this can be considered a correct
behavior, and the property can be included in the property
suite.

For further inspection of the design, inverse property check-
ing is used to examine the write functionality. The expected
behavior for a write access is presented as a PSL expres-
sion (mem_req && mem_rw). The automatically generated
properties are shown in Figure 8. Property P1 describes the
behavior for a read access with pending write, where the read
has been acknowledged by the memory. Thus, the MU can
proceed to post the write access to the memory. P2 states
that in absence of reset, whenever write enable is high and
read enable is low, and after the last transaction has been
acknowledged by the memory, the write access will be posted
immediately, regardless of the internal FSM state. The last
property P3 shows a slightly more complex scenario involving



property P1 = always (
s t a t e == READ WR PEND &&
mem ack &&
! r e s e t

) −> (
mem req && mem rw

) ;

property P2 = always (
mem ack &&
! r e s e t &&
! r e && we

) −> (
mem req && mem rw

) ;

property P3 = always (
s t a t e == IDLE &&
next a [ 0 . . 1 ] ( ! r e s e t ) &&
r e && we &&
next ( mem ack )

) −> (
next ( mem req && mem rw )

) ;

Fig. 8. Generated write properties

timing: starting from state IDLE with read and write enabled
simultaneously, the write access will be processed in the next
cycle, if the read access is acknowledged by the memory one
cycle after it has been issued.

All properties hold by construction. Note that the knowledge
on the design’s behavior is obtained without the source code
and without inspecting a wave trace. As for the examples
above, the generated properties give a very concise description
of the functionality, each involving only few signals. In this
way, the signal mem_req could be covered after adding two
more properties describing the buffering of a write access and
the idle behavior of the MU.

Summarizing the above case study, the presented techniques
can be used to give a better feedback to the verification engi-
neer. The property analysis strengthens the written properties
automatically. Using the coverage analysis, yet unspecified
behavior is revealed that can then be integrated in the specifi-
cation using inverse property checking.

VII. CONCLUSIONS

In this paper we have presented techniques to support the
creation of a high quality property set in formal verifica-
tion. Starting with simple properties with strong assumptions,
these properties can be strengthened automatically using the
property analysis. Furthermore, the analysis gives detailed
information on which parts of the antecedent are sufficient to
prove the property. Complementary to this technique, inverse
property checking can be used to discover and understand
uncovered behavior in the design under verification. Integrated
with an existing coverage check, these techniques can reduce
the number of iterations and the effort for design understand-
ing on the way to obtain full coverage. As a case study, the
techniques have been applied to a memory unit.
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