Towards Unifying Localization and Explanation
for Automated Debugging

Gorschwin Fey

André Siilflow

Rolf Drechsler

Institute of Computer Science, University of Bremen
28359 Bremen, Germany
E-mail: {fey,suelflow,drechsle} @informatik.uni-bremen.de

Abstract—Today, there exist powerful algorithms for auto-
mated debugging. Some of the debugging algorithms focus on
fault localization while others try to explain the faulty behavior
by providing, e.g., correct traces that are similar to a failure trace.
SAT-based debugging locates faults, but does not explain the
faulty behavior, e.g., some temporal properties of fault candidates
are not fully explored.

In this work, we study the resolution of SAT-based debugging
with respect to its capability to locate faults and to explain faults.
A strategy is presented that increases the diagnostic resolution of
SAT-based debugging by combining fault localization and fault
explanation in one algorithm. The experimental results confirm
the strength of the approach and give directions for further
research.

I. INTRODUCTION

Debugging is one of the bottlenecks in today’s design flows.
Verification tools and validation approaches detect misbehav-
ior based upon a given specification. Such misbehavior is
returned in terms of a counterexample showing a deviation
from the specification. Once a counterexample is available,
the following correction of this misbehavior is often done
manually. As this requires expert knowledge and typically
consumes a significant portion of the whole design time,
automation is required.

Different automation techniques have been proposed to
support the debugging step. We group these approaches in
those based on explanation and those based on localization.

The explanation based approaches assist the designer in
understanding why a certain execution trace of the design
leads to unexpected behavior. An example is the work in [1]
that compares a counterexample to similar failing and passing
execution traces. The work in [2], [3] as well as [4] tries to
reduce a counterexample to those parts necessary to excite a
bug.

Localization based approaches are tightly linked to model
based diagnosis that uses a formal model of the system and
tries to correct this model. Already very early approaches
were based on algorithms reasoning on the model [5], [6].
A correction on the model corresponds to a modification in
the real system. By this, a potential location of the bug — a
fault candidate — is found. In particular for diagnosing failing
hardware efficient algorithms have been developed that help to
diagnose failures (e.g. [7]) based on efficient formal reasoning
engines. With the advance of very efficient solvers for Boolean

This work was supported in part by the European Union (Project DIA-
MOND, FP7-2009-IST-4-248613) and in part by the Deutsche Forschungsge-
meinschaft (grant no. FE 797/6-1)

Satisfiability (SAT) powerful approaches for SAT-based debug-
ging of large circuits on gate level have been proposed [8].
These have been extended to handle register transfer level
descriptions in Hardware Description Languages (HDL) [9],
[10] and to debug in the context of model checking [11]. With
the availability of solvers for Satisfiability Modulo Theories
(SMT) that allow for more compact representations of SAT
problems together with structural and semantic knowledge, the
efficiency can be further increased [12], [13].

The accuracy of the SAT-based debugging approach can
be improved in different ways. First, instead of considering a
single counterexample, using multiple counterexamples helps
to reduce the number of fault candidates, i.e., to localize
the bug more accurately. This has been considered in the
basic approach already [8]. The selection of counterexamples
that improve the accuracy can be automated by using a
heuristic [14] or a given specification [15], [16]. In particular
for sequential circuits the resolution in the time domain can
be further improved by differentiating at what time frames a
correction at a certain fault candidate (e.g., a module or a gate)
is required and in which other time frames no modification is
required [17]. A similar analysis is performed in [18] to select
signals to be stored in a trace buffer for post-silicon debugging.

In this paper, we particularly focus on sequential circuits
and on bringing together localization and explanation. We
consider the SAT- (and SMT-)based debugging approach in
detail. We show what resolution is achieved by considering the
standard approach [8] and how the resolution can be improved
similarly to [17]. Different debugging strategies formalize
these approaches and their relations are discussed. In particular
we show how the standard strategy and a high resolution
strategy can be combined to achieve a detailed diagnostic
resolution while still being able to apply efficient debugging
algorithms. The results obtained from diagnosing multiple
counterexamples may be used to align counterexamples and
to rank fault candidates. This provides helpful explanations of
erroneous behavior to support the designer.

This paper is structured as follows: Preliminaries including
the standard SAT-based debugging approach are revisited
in Section II. Section III discusses the resolution achieved
and required by a debugging approach. Moreover, different
debugging strategies are defined that embed the previous SAT-
based approaches. These strategies are evaluated on bench-
mark circuits in Section IV. Section V presents conclusions.

]

Fig. 1. Example circuit
i] jl 1[jz E j3
. M1 xMi2 xMi3
— L
M1 Xmi‘,z Xmm
t=1 =2 =3
Fig. 2. Unrolling of the circuit
ab
il of i} 0} i} o
m! J m! m!
g i1 M2 M3 [
1
m/ m} m} 5
i o} i3 o} i [
o] ‘Xmiz.l J L ‘Xmiz.z J L ‘Xmizﬁ J
1
m? mg m: 5
t=1 =2 =3
Fig. 3. Debugging instance

II. PRELIMINARIES

A circuit C is composed of modules, a module is denoted
by m. A module corresponds to a unique location in the HDL
source code which may be a module defined in the HDL or
a statement in the HDL. Each module may be instantiated
multiple times. An instance ¢ of a module m is denoted by
m;. The set inst(m) contains all instances of m. An example
circuit is shown in Figure 1 where module m has two instances
m,; and m;. We consider sequential circuits over time. An
instance m; at time frame ¢ is denoted by m,;:. Such an
unrolling (as known from formal verification) or an iterative
logic array (as known from testing) is shown in Figure 2.

Counterexamples that produce incorrect output values are
considered together with expected correct output values for
debugging. Counterexamples provide an initial state, values
for primary inputs over time, and the expected output values
over time. Based on this unrolling a problem instance is
created to calculate fault candidates in SAT-based debugging.
Multiple counterexamples may be considered during debug-
ging. Considering an instance m; with respect to counterex-
ample ¢ at time frame ¢ is denoted by mj,. The set of
all counterexamples is denoted by cex. Figure 3 shows the
structure of a debugging instance for the example circuit for
two counterexamples. Constraining the inputs and the initial
state to the counterexample and the outputs to the expected
output value yields a contradiction (as the circuit produces
erroneous output). Therefore abnormal predicates are added
to the SAT instance. Let the output of an instance my, be
the signal vector f. These output values are replaced by new
outputs f’ depending on the abnormal predicate ab(mg,) as
follows: ab(m¢,) — f = f’. In other words, if the abnormal
predicate for mft is one (i.e., active) arbitrary values may be
injected into the circuit at my, to rectify the counterexample.
The addition of abnormal predicates is performed for all

| —

R ' _-D ":‘/\/’:i\%B
XV—"/\\A\ \\\\,' - \\‘i>A =B
t=1 =2 =3
B — manifested in state
D — branching point

LI

A — masked bug
C — manifested at output

Fig. 4. Schematic debugging problem

instances of all modules. In the standard SAT-based debugging
approach [8] all abnormal predicates belonging to instances of
a single module are shared as indicated in Figure 3. Each
satisfying solution to this SAT instance provides a set of
activated abnormal predicates. The set of modules belonging
to these abnormal predicates form a fault candidate. The
number of these modules defines the cardinality of a fault
candidate. Typically, fault candidates of minimal cardinality
are of interest to rectify all counterexamples with the smallest
modification of the source code. This is discussed in more
detail in the next section.

In hierarchical debugging [9] each module itself may be
composed of submodules. This can be embedded here, but is
not focus of the current work.

In the following we interchangeably use Boolean conditions
in sums or in Boolean expressions for brevity. If a Boolean
condition is true, this is counted as 1. If a Boolean condition
is false, this is counted as 0.

Instead of using SAT solvers, we apply an SMT solver [19]
for debugging [12], [13]. While SAT solvers require a problem
formulation in terms of a Boolean expression in conjunctive
normal form, SMT solvers handle more compact constraints
defined, e.g., in bit-vector logic or array theory. This allows
for a more compact representation of circuits given in HDL
source code, e.g., operators like a bit-vector multiplication can
directly be translated into an appropriate operator for the SMT
solver. The SMT solver exploits such semantic and structural
knowledge to improve the efficiency over SAT solvers.

III. DEBUGGING RESOLUTION

In this section debugging approaches are compared with
respect to their capability to locate faults and to explain faults.
Section III-A motivates this work on an example. Strategies
to efficiently extract temporal and spatial information are
presented in Section III-B. Section II-C discusses further
improvements.

A. Motivation

Consider the schematic illustration of a debugging problem
shown in Figure 4. The Figure shows a circuit unrolled over
three time frames. Cross references between gates in the
netlist representation and HDL source code are assumed to
be available. Now, assume a buggy statement generates the
gates denoted by X in the first time frame and these gates
are considered as a module. Upon sensitizing this module, a
faulty value propagates through the circuit as indicated by the
dotted lines. The faulty value may be masked as indicated by
‘A’, may manifest in the state of the circuit as indicated by
‘B’, or may be observed at primary outputs as indicated by
‘C’. All modules along a path between the buggy statement
and the location where erroneous output is observed may be

considered fault candidates. In the figure, the path splits up
into multiple branches at the point indicated by ‘D’. Behind
that point, multiple locations have to be modified to cancel
the effect of the bug. This effect has been exploited by early
simulation-based approaches for design diagnosis already [7]
and allows to use a simple path tracing procedure considering
multiple counterexamples for debugging errors originating
from a single location'.

In the context of SAT-based debugging, the standard proce-
dure assigns the same abnormal predicate to each occurrence
of a module [8] in each time frame as indicated in Figure 3.
Moreover, the same abnormal predicate is reused for all coun-
terexamples in case multiple counterexamples are considered.
As a consequence in the example shown in Figure 4, only a
single abnormal predicate has to be activated to correct the
erroneous behavior. By finding a correction where a minimal
number of abnormal predicates is set to one, a minimal
number of modules has to be changed to correct the erroneous
behavior. But no further resolution in the time domain and in
the instantiation hierarchy is available. The feedback which
time frame has to be considered to correct the erroneous
behavior with respect to a certain counterexample is missing.
The designer has to figure out these aspects manually.

The approach of [17] improves the resolution in the timing
domain - the formulation there is based on Maximum Satisfi-
ability (MaxSAT), i.e., a solver that searches for the maximal
subset of clauses being satisfiable. The formulation based on
MaxSAT shows, that temporal information helps to explain
the faulty behavior. Also using a standard SAT solver for this
purpose based on a similar formulation is possible. In this case
a fine grain control on the modules that are considered for
correction is possible while this control is left to the MaxSAT
solver in the other case. Essentially, the SAT solver provides a
detailed resolution on the modifications with respect to time by
using separate abnormal predicates in every time frame. Time
frames where the modification of a fault candidate corrects
erroneous outputs are explicitly determined. This reduces the
manual effort spent on understanding the bug. The work in
[18] also considers time intervals for the analysis where the
goal is to decide which signals should be stored in a trace
buffer for post-silicon debugging.

Finally, each instance of a module may be handled sep-
arately or all instances are handled by a single abnormal
predicate. Similar to a more accurate resolution in the time
domain, separately handling instances of modules also helps
to understand a bug trace more easily.

B. Debugging Strategies

Using separate abnormal predicates ab(m‘;’t) for each in-
stance ¢ of a module in each time frame ¢ with respect
to each counterexample c yields the most detailed resolu-
tion for debugging. This association of abnormal predicates
is assumed in the following for the underlying debugging
instance. By applying different types of constraints to these
abnormal predicates all of the above debugging approaches can
be embedded and compared with respect to their diagnostic
resolution. We introduce different debugging strategies based

n fact, the procedure in [7] considered diagnosis on the transistor level,
but can be lifted to debugging HDLs by grouping gates into modules [10].

I

t—l t=2 t=3

1Y ~a

x — Bug location — Fault candidate

Fig. 5.

on this observation in the following called FINE, MODULES,
and EXPLAIN.

FINE - To utilize all information available, all abnormal
predicates are considered separately. In the problem instance
this is formulated by assigning new abnormal predicates for
each time frame and each instance. Then, the aim is to
minimize the following sum, i.e., the total number of abnormal
predicates activated for each instance in each time frame with
respect to each counterexample:

=Y Y Y Yami) W

meC jcinst(m) t€[1,k] cecex

Example for different strategies

In a satisfying solution for the debugging instance a number of
cr abnormal predicates has the value one. These correspond
to a tuple {i1,...,%.,} of module instances at certain time
frames. All these tuples are collected in the set F'Cr.

FINE yields the least number of modifications on the
temporal model required to rectify all counterexamples. But
this does not necessarily mean, that the strategy returns the
least number of modules to be modified for correcting the
counterexamples which can be seen as follows.

Example 1. Assume a single bug in a design, e.g., an operator
replaced by some other operator. Now, consider Figure 5
where the location of the bug is indicated by x. The bug is
excited in all time frames, but propagates to the primary output
in time frame t = 3 in all cases. Consequently, a correction at
the primary output in the third time frame would be sufficient.
But as the three occurrences of the bug are handled by
independent abnormal predicates, modifying the bug location
would be counted as three modifications. Therefore the actual
bug location is not even within the set FCr when applying
strategy FINE.

Therefore this strategy is not suitable, if all erroneous output
is assumed to depend on the same bug(s), i.e., certain locations
in the source code. On the other hand, if the source of the
failure does not depend on the location, e.g., in case of
independent faults due to particle strikes, the strategy may
provide a useful explanation of the observed behavior.

MODULES - As motivated above, one debugging goal is to
modify as few modules as possible. In terms of the problem
instance this is formulated by minimizing the following sum:

= Y mec @bar(m), where (2)
abyr(m) < \/zelnSf Vte[l k] Veecex ab(mi)

Minimizing cps yields the smallest number of modules that
have to be modified to correct all counterexamples. Similarly,
to the above strategy we collect all cps-tuples of modules in
the set F'C'y;. In case of ¢p; = 1 the modification of a single
module is sufficient. This strategy is identical to the standard
SAT-based debugging approach [8].

The strategy MODULES ensures that changing the behavior
of all instances of a module fixes all counterexamples. Exactly
linst(m)] - k - |cex| instances of m are allowed to be modified
simultaneously. But MODULES returns no temporal informa-
tion on the minimal number of modifications for particular
time frames required to fix the faulty behavior.

EXPIAIN — In the second place we want to understand
where and when the modifications of the modules provided
by MODULES are required to better explain the bug. This
demands a more accurate post-process for all tuples contained
in FC M-

In general, the value cjs (as retrieved by MODULEYS) is
less-or-equal to the number of modifications determined by
EXPLAIN. That is, even for a single counterexample multiple
instances of a module may have to be activated at different
time frames. At the same time fault candidates of minimal
cardinality with respect to a single tuple {my,...,m¢,, } €
FC)y are in focus of the analysis.

To retrieve the explanation we minimize the following sum
separately for each tuple {m;,...,m,, } € FCyp:

> dYoood D> abmi,) 3

me{mi,...,me,, } icinst(m) t€[1,k] c€C€X

Cgp =

The cg-tuples of instances at certain time frames are collected
in the set F'Cg.

Strategy EXPLAIN is performed separately for each tuple
of modules in F'C); to prevent pruning of search space.
This is required according to following lemmas that consider
different approaches to handle the tuples and modules con-
tained in F'Cjs by two derived strategies EXPLAIN T and
EXPLAIN_M, respectively.

Lemma 1. Strategy EXPLAIN_T considers all tuples in FCyy
at the same time. EXPLAIN_T may not return at least one
solution for each tuple in FC)y;.

Proof: Let FC)y contain the tuples {A} and {B} and
assume the first fault candidate { A} requires exactly one mod-
ification (cg = 1), whereas fault candidate { B} requires more
than one modification. Consequently, the minimal cardinality
with respect to {B} is ¢y > 1. But EXPLAIN_T returns all
fault candidates of (minimal) cardinality cg = 1 only and thus
prunes fault candidates for {B}. [|

Lemma 2. Strategy EXPLAIN_M considers all modules in
any tuple in F'Cyy at the same time. EXPLAIN_M may return
a tuple of cg instances not corresponding to a tuple of cys
modules in F'C\yy since cg > cyy.

Proof: Let FCy contain the tuple {A} and {B}. As-
sume the debugging problem consists of a circuit having two
instances of the modules A and B, respectively, a single time
frame is considered, and a single counterexample is used.
EXPIAIN M considers the four instances of A and B as
possible fault locations: Ay, By, As, and Bs. Fault candidates
returned by EXPLAIN_M have a minimal cardinality of two.
Therefore, {A;, A3} and {B, Ba}, but also {4y, Bz} and
{As, B1} may be returned as fault candidates. However,
changing the behavior of two modules simultaneously is in
contradiction to the minimal number of modules cp; to be
modified as retrieved by strategy MODULES.]

TABLE I
COMPARISON OF STRATEGIES

FINE MODULES EXPLAIN
Abnormal predicates | per instance per | per module first per module
time frame then per instance
Fault candidates | instances modules instances of cer-
tain modules
Time frames | independent all related by
instances

Another option to prevent pruning while considering all
modules in tuples of F'C)j; simultaneously is the usage of
additional constraints in the SAT instance. The additional
constraints force the activation of a single module only.
That is, the activation of the correction logic at a single
instance of each module in the tuple {m1,...,m.,, } € FCy
implies the deactivation of instances of all other modules
m’ € (C\ {m1,...,me,, }). If fault candidates of cardinality
cy > 1 (ie., more than one module must be modified) are
contained in F'C);, the set of fault candidates must be encoded
into the SAT instance.

Table I summarizes the characteristics of the three debug-
ging strategies.

C. Further improvements

The explanation may be further improved for all strategies
by considering erroneous output values at particular time
frames separately in a post-process. That is, fault candidates
may be independent with respect to each erroneous output
and to each counterexample. An additional separate analysis
reveals the (in)dependency. This information is essential in
case of fault candidates of cardinality larger than one, where
the instances explain different erroneous behavior.

In principle, strategy EXPLAIN and strategy FINE minimize
the number of active abnormal predicates separately with
respect to each counterexample. Using a single SAT instance
for all counterexamples requires the activation of at least one
ab(m$,) in each debugging instance of a counterexample
to fix the faulty behavior. The search space is large and
fault candidates of cardinality |cex| or larger are retrieved.
Consequently, when running the SAT solver in practice, each
counterexample may be handled in a separate SAT instance to
reduce the search space.

For each counterexample, the time frame where a module
has to be modified may be different. For example an erroneous
value written to a memory may be read at an arbitrary
time frame afterwards. Potential fault candidates are (1) the
memory element itself while the erroneous value is stored
and before it is read and (2) the real bug site producing the
erroneous value before it is written. This information can be
used to “align counterexamples” which further improves the
explanatory capabilities of EXPLAIN.

Strategy EXPLAIN also provides a mechanism to rank fault
candidates. Again consider an erroneous value stored in a
memory. One potential correction in the SAT instance would
be the correction of all copies of the memory in all time frames
where the memory is read. Alternatively, the real bug site
where the erroneous value is written to the memory needs
only to be corrected once. The number of excitations of the
bug, where the faulty value is propagated to a primary output

TABLE I

RESULTS
MODULES EXPLAIN FINE
benchmark IClI || IFCppI | e | ITHL || IFCEl cg | ITFl | %pruned | freq. || IFCpl cp | ITFl | %pruned | freq.
bl12 1,171 18 | 1.00 7 18 | 2.00 6 14.29 | 2.00 9| 1.00 2 71.43 | 1.00
bl4 10,481 140 | 1.00 5 149 | 1.05 5 0.00 | 1.12 141 | 1.00 5 0.00 | 1.07
cordic_p2r 3,528 44 | 1.00 10 48 | 1.00 3 66.67 | 1.09 48 | 1.00 3 66.67 | 1.09
i2c 1,539 7 | 1.00 5 7 | 1.00 2 60.00 | 1.00 7 | 1.00 2 60.00 | 1.00
rsencoder 6,057 67 | 1.00 10 67 | 1.00 2 80.00 | 1.00 67 | 1.00 2 80.00 | 1.00
usb 7,187 47 | 1.00 3 47 | 1.00 3 0.00 | 1.00 47 | 1.00 3 0.00 | 1.00
25 T T T T 25 T T T
MODULES —— MODULES
4 EXPLAIN 2 EXPLAIN
2 27 FINE 2 2¢ FINE
< S - _ _ - — —
e o
S 15} S 15t
(=) =}
S S
~— 10 [~— 10 B
3 : =
< 5 <
= 5t 4 = 5t
H* 4 3
0 < 0 4

0 1 2 3 4 5 6 7 8
instances

(a) Cardinality
Fig. 6.

gives a minimal number of instances at different time frames,
where a correction is required (e.g., multiple erroneous writes
to the memory are also possible).

An alternative combination of strategy MODULES and
strategy EXPLAIN in one algorithm may further speed up the
classification. In this case constraints to determine cp; are
added to the debugging instance, a solution minimizing cps
is calculated, and afterwards the value of cj; is fixed to this
minimum. This ensures that only valid solutions with respect
to strategy MODULES are considered. Next, constraints to
determine cp are added and solutions with increasing cardi-
nality for cg are calculated. This approach uses only a single
debugging instance, but handles all counterexamples at the
same time instead of independently.

IV. EXPERIMENTAL RESULTS

This section provides experimental results to the debugging
strategies introduced above. Designs from the ITC’99 bench-
mark suite and from OpenCores (http://www.opencores.org)
are used for the experiments. Single bugs like operator re-
placements are randomly injected at the module level. Coun-
terexamples are found by sequential equivalence checking of
primary outputs for up to ten times frames. Modules on the
word level are considered, i.e., a module may be a single gate,
but also a multiplier. All experiments have been conducted on
an AMD Athlon X2 processor (3 MHz, 4GB RAM) using the
verification environment WoLFram [20] and the SMT solver
Boolector [21].

The first series of experiments in Section IV-A focuses
on the accuracy of the different debugging strategies. Sec-
tion IV-B discusses the quality with respect to multiple coun-
terexamples.

0 1 2 3 4 5 6 7 8
time frame

(b) Distribution of fault candidates

Details for benchmark b12

A. Explanation

Table II presents experimental results for the different
strategies with respect to a single counterexample. The first
two columns give the name of the benchmark and the number
of modules, respectively. The accuracy is measured by the
number of fault candidates (IFC)y,l, |FCgl, |[FCFl), the cardi-
nality (cps, cg, cF), and the number of time frames with active
abnormal predicates (ITF1). Column %pruned compares the
reduction of time frames to the number of time frames returned
by strategy MODULES. Finally, Column freq. highlights the
frequency of fault candidates in a time frame, i.e., a value of
two means that modules have to be activated in two different
time frames on average.

Focusing on the cardinality of fault candidates, MODULES
returns fault candidates of cardinality cj; = 1, i.e., fault
candidates that are allowed to be activated at all time frames
to fix the counterexample. An analysis by EXPLAIN shows
that often the modification of a module at one specific time
frame is sufficient to fix the counterexample. Only a few fault
candidates returned by MODULES require modifications at
multiple time frames (see, e.g., bl2 and b14). This confirms
the observation of [17].

Strategy FINE is less accurate in comparison to EXPLAIN
and often FINE does not return all equivalent fault candidates.
For example, FINE misses 50% of the fault candidates for
benchmark bl12, i.e., modules that have to be modified in
multiple time frames are pruned.

Figure 6 shows details for benchmark b12 for a counterex-
ample of seven time frames. Fault candidates returned by
MODULES are activated at all seven time frames. EXPLAIN
differentiates the fault candidates in F'C'y; and shows cg = 1
or cg = 3 for all tuples in FC);. The combination of

—_
=]

SESrESy]

fault candidates
O = N WA UL O 0 \O

L)

2 3 4 5 6 & 9 10

0 1

time frame
Fig. 7. Multiple counterexamples

Figure 6(a) and Figure 6(b) explains that fault candidates
between time frame two and time frame five have cardinality
three, whereas fault candidates in time frame six to seven
have cardinality one only. FINE misses all fault candidates
of cardinality three that have to be activated in time frame
two to five.

B. Multiple Counterexamples

Multiple counterexamples further explain the erroneous be-
havior of a design. Figure 7 presents details for an analysis of
benchmark b14 by strategy EXPLAIN for multiple counterex-
amples. The number of fault candidates in F'C'g that activate
an instance in a particular time frame is shown separately for
each counterexample. Using three counterexamples, the set of
modules is reduced compared to the results in Table II.

Often the activation of a single instance is sufficient to fix
the counterexamples, i.e., cg = 1 in most cases. Moreover, the
counterexamples require an activation of fault candidates in
different time frames. Thus, different behavior for sensitizing
and observing the bug is produced by each counterexample.

However, the distribution of fault candidates with respect
to the counterexamples is similar. The similar signature leads
to the conclusion that the bug is the same, but with respect
to the time there is an offset between the counterexamples.
These results can be used to align counterexamples, i.e., to
match equivalent fault candidates that are moved by an offset
of ¢’ time frames.

Non-alignable fault candidates distinguish the counterex-
amples and are more likely not to be the “real” candidate
fault site. This helps a designer to focus the manual analysis
of a counterexample to specific time frames and to specific
fault candidates. Additionally, the information can be used to
automatically rank fault candidates in F'Cg.

In summary, the strategy EXPLAIN in one algorithm in-
creases the accuracy of SAT-based debugging significantly by
providing information on the excitation of fault candidates.
Thus, a designer knows where (which instance) and when
(which time frame) a fault candidate has to be modified which
speeds up debugging.

V. CONCLUSIONS AND DISCUSSION

This work discussed strategies to debug sequential cir-
cuits. Temporal information and spatial information have been

shown to be valuable to debug a design. Moreover, the
analysis of multiple counterexamples provides information
on similarities and differences of counterexamples. Passing
this knowledge to the designer improves the explanatory
capabilities of automatic debugging.

In focus of future work is the automation of the analysis
to provide better explanations to a designer. For example, the
alignment of counterexamples may be automated to highlight
similarities and differences of counterexamples. Moreover, the
alignment can be used to automatically rank fault candidates.

REFERENCES

[11 A. Groce and W. Visser, “What went wrong: Explaining counterex-
amples,” in Model Checking of Software: SPIN Workshop, ser. Lecture
Notes in Computer Science, no. 2648, 2003, pp. 121-135.

[2] A.Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183-200, 2002.

[3] A. Groce, “Error explanation with distance metrics,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. LNCS,
vol. 2988, 2004, pp. 108-122.

[4] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. LNCS, vol. 2988, 2004, pp. 31-45.

[5] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, pp. 57-95, 1987.

[6] J. de Kleer and B. Williams, “Diagnosing multiple faults,” Artificial
Intelligence, vol. 32, pp. 97-130, 1987.

[71 A. Kuehlmann, D. I. Cheng, A. Srinivasan, and D. P. LaPotin, “Error
diagnosis for transistor-level verification,” in Design Automation Conf.,
1994, pp. 218-224.

[8] A. Smith, A. Veneris, M. F. Ali, and A.Viglas, “Fault diagnosis and logic
debugging using boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, 2005.

[91 M. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” in Int’l Conf. on CAD,
2005, pp. 871-876.

[10] G. Fey and R. Drechsler, “Efficient hierarchical system debugging for
property checking,” in IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems, 2005, pp. 41-46.

G. Fey, S. Staber, R. Bloem, and R. Drechsler, “Automatic fault
localization for property checking,” IEEE Trans. on CAD, vol. 27, no. 6,
pp- 1138-1149, 2008.

A. Siilflow, G. Fey, and R. Drechsler, “Experimental studies on SMT-
based debugging,” in IEEE Workshop on RTL and High Level Testing
(WRTLT), 2008, pp. 93-98.

S. Mirzaeian, F. Zheng, and K.-T. Cheng, “RTL error diagnosis using a
word-level SAT-solver,” in Int’l Test Conf., 2008, pp. 1-8.

G. Fey and R. Drechsler, “Finding good counter-examples to aid design
verification,” in ACM & IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2003, pp. 51-52.
A. Siilflow, G. Fey, C. Braunstein, U. Kiihne, and R. Drechsler, “In-
creasing the accuracy of SAT-based debugging,” in Design, Automation
and Test in Europe, 2009, pp. 1326-1332.

A. Siilflow, G. Fey, and R. Drechsler, “Using QBF to increase accuracy
of SAT-based debugging,” in [EEE International Symposium on Circuits
and Systems, 2010, pp. 641-644.

Y. Chen, S. Safarpour, J. M. Silva, and A. Veneris, “Automated design
debugging with maximum satisfiability,” /IEEE Trans. on CAD, vol. 29,
no. 11, pp. 18041817, 2010.

Y.-S. Yang, N. Nicolici, and A. Veneris, “Automated data analysis
solutions to silicon debug,” in Design, Automation and Test in Europe,
2009, pp. 982-987.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): Fast decision procedures,” in Computer Aided Verification,
ser. LNCS, vol. 3114, 2004, pp. 175-188.

A. Siilflow, U. Kiihne, G. Fey, D. GroBe, and R. Drechsler, “WoLFram
— a word level framework for formal verification,” in International
Symposium on Rapid System Prototyping (RSP), 2009, pp. 11-17.

R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for
bit-vectors and arrays,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. LNCS, vol. 4963. Springer, 2009, pp.

174-177.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

	Introduction
	Preliminaries
	Debugging Resolution
	Motivation
	Debugging Strategies
	Further improvements

	Experimental Results
	Explanation
	Multiple Counterexamples

	Conclusions and Discussion
	References

