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Abstract. In this work we focus on the problem of finding the heaviest-k
and lightest-k hitters in a sliding window data stream. The most recent
research endeavours [6] have yielded an ǫ-approximate algorithm with
update operations in constant time with high probability and O(1/ǫ) query
time for the heaviest hitters case. We propose a novel algorithm which for
the first time, to our knowledge, provides exact, not approximate, results
while at the same time achieves O(1) time with high probability complexity
on both update and query operations. Furthermore, our algorithm is able
to provide both the heaviest-k and the lightest-k hitters at the same time
without any overhead. In this work, we describe the algorithm and the
accompanying data structure that supports it and perform quantitative
experiments with synthetic data to verify our theoretical predictions.
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Window, On-line Algorithms

1 Introduction

The problem of finding the heaviest hitters, in its simplest form, is the problem
of finding which category of items in a long succession of them is the most frequent
one. This problem has been studied extensively in the last decade. The main
reason for this is that a number of applications, some of them quite pervasive, need
to solve it to provide enhanced services. The first application, and the one that
mainly motivated this work, is network traffic monitoring (and shaping) on Internet
routers. Being able to tell at any moment in time which set of packets is the most
frequent passing through a router helps in both being able to tell what may be
causing problems and subsequently resolving these problem in a “fair” manner
towards those not contributing to the problem. Another application is financial
data streams, where it is useful, for example, to know which stocks are showing
the most mobility. Other applications include sensor networks, behaviour analysis
on websites and trend tracking of hot topics.

The problem was first posed by Moore in 1980 and together with Boyer they
presented the solution (in [3]) for finding the majority hitter in the basic version
of the problem, i.e., non-window-based data streams. The basic heaviest hitters



problem consists of a data stream where at each moment in time one item, which
belongs to some itemset, arrives for processing. The goal is to be able to provide
a list of the itemsets whose item counts are above a given θ threshold. Given
the unbounded number of itemsets and length of the data stream, this cannot be
achieved without unbounded memory. As a result, all of the proposed solutions
for this problem have provided approximate results. This problem was studied and
approximate solutions were proposed much later and concurrently by [4, 7].

Since, a significant body of work has been performed on both the basic problem
and on its numerous variations. A good presentation of this work can be found
in [8, 9]. The variant of the basic problem addressed in this work stems from the
observation that only a section of the whole history of the data stream may be
interesting. Usually, the most recent items are considered to be more important. This
is one of the most common and arguably one of the most useful of these variations:
finding the heaviest (and lightest) hitters in a sliding-window data stream.

In the sliding window model at each moment in time a constant number of items
participate in a window over the data stream. This window always contains the most
recent Q items. This scenario resembles the operation of a queue with an upper
limit on its capacity. As items arrive to be processed they are inserted at the end of
the queue and as items are processed they are removed from the front of the queue.

All the algorithms proposed for both the basic problem and the sliding window
variation have in common the requirement that they be able to operate on-line. This
entails being able to do only one pass over the data, i.e., each arriving item may
be examined only once by the algorithm. This is usually called an update operation
and the complexity of this operation must be constant time. Furthermore, querying
for the heaviest hitters must also be as fast as possible, ideally proportional to
the number k of the heaviest or lightest hitters that we request to be found.

The novelty of our algorithm is twofold, featuring for the first time, to our
knowledge, the ability:

1. To provide exact results in the query operation and at the same time maintain
constant time update and query operations.

2. To provide not only the heaviest but also the lightest hitters in the sliding
window with the same performance and no overhead.

In the following sections we will describe the HL-HITTERS abstract data type
which allows us to solve this problem. Moving on to the implementation, we describe
the building blocks which we use to construct the data structure and some of their
characteristics. We then describe the data structure itself and the algorithms which
implement the HL-HITTERS operations. Subsequently, we present an experimental
evaluation of the proposed solution and discuss its results. Finally, we propose
some interesting possible extensions to this work.

2 Abstract Data Type

In order to provide an accurate description of our algorithm and the accompanying
data structure we describe here its interface. The abstract data type which we define



supports the operations shown in Table 1. All the operations in our implementation
have constant time complexity.

Operation Input Output Description

Initialize ∅ ∅ Initializes the ADT
Append ItemSet ∅ Records a new item into the counts
Expire ItemSet ∅ Removes an item from the counts
QueryHeaviest k: Integer Array[k] Returns the heaviest-k ItemSets
QueryLightest k: Integer Array[k] Returns the lightest-k ItemSets

Table 1. The HL-HITTERS Abstract Data Type

2.1 Building Blocks

To implement the data structure we use common basic building blocks. More
specifically, we use exactly one array of fixed size, one doubly linked list and one hash
table. With each of these data structures we only use the constant time operations.
Thus, for example, we never iterate over the nodes of the linked list to reach a sought
entry, rather we keep references to the node itself. We will proceed by describing
exactly which operations will be used on each data structure and its time complexity.

Array The array must be of size Q, the same as the size of the window, and its
size remains constant during the execution of the algorithm. We only perform the
operations Get and Set on the array, which execute in constant time. The elements
of the array are never iterated over.

In the implementation for our experiments we used the standard vector provided
by the C++ STL std::vector class.

Doubly-linked list The linked list starts out empty and as the algorithm executes
nodes are added and removed. We only use the Head and Tail fields of the doubly-
linked list to access the respective nodes in constant time. As far as the inserts
and deletes are concerned, they are always executed with respect to a reference
node and as such are constant time as well. To be more specific, InsertBefore

and InsertAfter require two arguments: the new node to insert and a reference
node before or after which to insert the new node. Similarly, Delete requires a
direct reference to the node to delete. Furthermore, the maximum number of nodes
is known a priori to be Q, and thus we can eliminate the overhead of dynamic
memory allocation for the nodes by using a preallocated node pool.

In the implementation for our experiments we used the standard doubly-linked
list provided by the C++ STL std::list class.



Hash-table In the HL-HITTERS data structure the id of each itemset with at
least one item in the window, is stored in a dynamic dictionary. A hash-table
is used to implement the dynamic dictionary. Hashing is commonly assumed to
require O(1) amortized time for the operations Get, Set and Delete or at least
for one of these operations. However, there are at least two examples of hashing
schemes which achieve worst case O(1) time with high probability (whp): the early
work of [5] and the recent algorithm of [2]. Consequently, we can assume that an
efficient, O(1) hashing scheme can be used in the HL-HITTERS data structure.

There is an additional reason why we can assume O(1) time for our hashing
scheme. Given that our original motivation were router queues, we can assume that
the maximum size of a window does not typically exceed 1000 items (packets in this
case). The most common values are a few hundred items. This fact admits us the lux-
ury to run the hashing data structure with a very low load factor. For example, even
a hash table with 1 million entries would not be a significant cost for a modern router.

Consider the following naive approach with chained hashing using a uniform
hashing function with n hash table entries, m ≪ n = cm packets, and k, the
constant upper bound on the number of collisions. The probability ρ of experiencing
more than k collisions in any of the n table entries is
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For n = 106, m = 103 and k = 10 the first inequality gives that ρ ≤ 2.38× 10−35.

Consider now a router which serves 109 packets per second (a bit unrealistic today
but lets allow for future enhancements) and operates continuously for 20 years. This
router can serve not more than Z = 109×60×60×24×366×20 ≤ 6.34×1017 packets
during its lifetime. Even if we consider the case where every one of these Z packets
is unique, i.e., the router never receives two packets from the same flow and thus
maximizes the potential for collisions to appear, the probability of a "bad" collision
event occurring during its lifetime is ρ∗Z ≤ 2.38×10−35×6.34×1017 = 1.51×10−17.
This probability is thus practically negligible. Consequently, even the naive ap-
proach seems to meet the requirements for a router. In addition to this naive
implementation there are many, very efficient, hashing schemes which will perform
much better. The question of which of the published hashing schemes offers the
optimal trade-off between space redundancy and worst case bounds could be an
interesting problem to investigate. However, for our purposes, any lightweight
hashing scheme will be sufficient if sufficient memory is provided. Moreover, for
our main motivation application, special hardware-based memory is available in
many routers which can achieve de-amortized O(1) performance [10].

Based on the above arguments, we plausibly assume that we can employ an
efficient O(1) whp hashing scheme for our data structure in a modern network
router. Additionally, we believe that the arguments used for the router case can
apply to other applications of window-based heaviest and lightest hitter problems.
In the implementation used for the experiments of this work, we used chained
hashing provided by the C++ boost::unordered_map class[1].





Layout of the Data Structure Itemsets that have no items in the window, i.e., a
count of zero, will not have any entries in any of the data structures. Conversely, each
itemset which has at least one item in the window, i.e., a count ≥ 1, will have one en-
try in the ItemSets HashTable. Additionally, for each itemset, there will exist one
node of type CountNode in the Counts DoublyLinkedList, with a Count field
corresponding to its exact count of items in the window. Finally, for each group of
itemsets which have the same item count there will be one entry in the Ranges Ar-

ray, in the position of the array which is equal to the itemset group’s count.

2.3 Algorithms

We now present the operations which are supported by the data structure using
pseudo-code and describe their operation and computational complexity in detail.

Algorithm 1 The Initialize operation on HL-HITTERS

1: procedure Initialize

2: ItemSets ← new HashTable

3: Counts ← new DoublyLinkedList

4: Ranges ← new Array

5: end procedure

Initialization The Initialize operation is shown in Algorithm 1. While its
functionality is simply to initialize the ItemSets hash table, the Counts doubly linked
list and the Ranges array, it is useful nevertheless to illustrate that initialization is
straightforward and that only memory allocations are performed.

Append In Algorithm 2 we present the Append operation. It receives the itemset
of the item which is to be appended as a parameter. The itemset is looked up in
the ItemSets hash table. If it is found, then the itemset is already being counted,
i.e., has other items in the window, and therefore its count must be increased by
one. If not, then it is a new itemset, i.e., it has no other items in the window, and
thus must be recorded with a count of one.

For the case of being already counted, only the Counts and the Ranges structures
will be modified. The idea is to move the count node corresponding to the itemset
to the position in the Counts linked list where it will be the first linked list node
with the new count. In order to do this, the count node of the itemset is looked
up via the Get operation on the hash table and a reference to it is stored in cn.
Before removing the cn node from the list, the position in the linked list where
it will be moved to is recorded in cn′, with help from the Ranges Last field. This
will point to the immediately next linked list node after the last node with the
old count. Subsequently, the count node cn is removed from the linked list and
the corresponding Ranges count range entry is updated with the Remove operation.



Algorithm 2 The Append operation on HL-HITTERS

1: procedure Append(itemset: ItemSet)
2: cn ← cn′ ← null

3: if itemset ∈ ItemSets then

4: cn ← ItemSets.Get(key:itemset)
5: cn′ ← Ranges.Get(index:cn.Count).Last.Next
6: Ranges.Remove(node:cn)
7: Counts.Remove(node:cn)
8: cn.Count ← cn.Count + 1
9: Counts.InsertBefore(beforenode:cn′, node:cn)

10: Ranges.Insert(node:cn)
11: else

12: cn ← new CountNode(ItemSet:itemset, Count:1)
13: Counts.InsertBefore(beforenode:Counts.Head, node:cn)
14: Ranges.Insert(node:cn)
15: ItemSets.Set(key:itemset, value:cn)
16: end if

17: end procedure

Finally, the cn node is inserted in the linked list before the cn′ node and the new
Ranges count node entry is updated to include it.

For the case of not being already counted, all of the structures will be modified.
A new count node will be created to hold the count for the new itemset. Since
allocating a new object on the heap may not be O(1), we can take advantage of
the fact that the maximum number of itemsets is Q, as explained in Section 2.1,
and as such we can just take out a preallocated count node out of a preallocated
pool in O(1). This node is then inserted in the position of the Counts linked list
indicated by the First field in the first count range entry of the Ranges array and
then it is recoded in the same count range entry. Finally, the itemset hash table is
updated by creating an entry that maps the new itemset to the count node which
was created previously using the Set operation.

Expire In Algorithm 3 we present the Expire operation. It receives the itemset
of the item which is to be removed as a parameter. The itemset is looked up in
the ItemSets hash table via the Get operation and the reference to the count node
in the Counts linked list representing it is stored in cn.

Since the count of the itemset will be decremented by one, we need to move
the cn count node to the position in the Counts linked list where it will be the
first linked list node with the new (old minus one) count. Similarly to the Append

operation, before removing the cn node from the list, the position in the linked list
where it will be moved to is recorded in cn′, with help from the Ranges First field.
This will point to the immediately previous linked list node after the first node
with the old count. Subsequently, the count node cn is removed from the linked
list and the corresponding Ranges count range entry is updated with the Remove



Algorithm 3 The Expire operation on HL-HITTERS

1: procedure Expire(itemset: ItemSet)
2: cn′′ ← null

3: cn ← ItemSets.Get(key:itemset)
4: cn′ ← Ranges.Get(index:cn.Count).First.Previous
5: Ranges.Remove(node:cn)
6: Counts.Remove(node:cn)
7: cn.Count ← cn.Count - 1
8: if cn.Count ≥ 1 then

9: if cn′ 6= null and cn′.Count = cn.Count then

10: cn′′ ← Ranges.Get(index:cn′.Count).First
11: Counts.InsertBefore(beforenode:cn′′, node:cn)
12: else

13: Counts.InsertAfter(afternode:cn′, node:cn)
14: end if

15: Ranges.Insert(node:cn)
16: else

17: delete cn
18: ItemSets.Delete(key:itemset)
19: end if

20: end procedure

operation. The count node Count field is decremented by one. If the count has
not reached zero a check is made to see whether the position to be moved is valid:

– The reference in cn′ must be not null, which would indicate that the previous
count range was the first in the linked list, and

– the count of the cn′ referenced node must be the same as the new count of the
moving node, i.e., the target count node must belong to the correct count range.

If this check succeeds, the new corresponding Ranges count range entry is fetched
with the Get operation. Its First field is set as the new cn′′ insertion position.
Afterwards the moving node is inserted there. If the check fails, then there is no
CountRange entry in the Ranges array corresponding to the new count and the
count node is inserted right where the original cn′ reference pointed to.

In both cases, the moving count node will be inserted in the Ranges entry with
the new count using the Insert operation.

If the new count after decrementing by one is zero, the count node is deleted. If
a preallocated pool was used it is returned to the pool in O(1). Finally, the itemset
hash table is updated by deleting the entry that maps the itemset to the count
node which was previously deleted.

Query In Algorithm 4 we present the QueryHeaviest and the QueryLightest

operations simultaneously. The basic algorithm is the same; only the start of the
iteration and its direction is different. In the algorithm, the left side of the ◭|◮



Algorithm 4 The Query Heaviest ◭|◮ Lightest operation on HL-HITTERS

1: function QueryHeaviest(k: Integer)
2: results ← new Array[k]
3: cn ← Counts.Tail ◭|◮ Counts.Head
4: i ← 1
5: while i≤kand cn 6=null do

6: results[i] ← cn.ItemSet
7: cn ← cn.Previous ◭|◮ cn.Next
8: i ← i+1
9: end while

10: return results
11: end function

symbol corresponds to the QueryHeaviest operation while the right side to the
QueryLightest operation.

The algorithm receives the threshold k as a parameter. Initially, a new results
array of size k is created to hold the results. In some cases, there may be less than
k itemsets available, therefore a number of positions at the end of the array will
have null entries.

The count node reference cn is set to point to the last (for QueryHeaviest)
or the first (for QueryLightest) node in the Counts linked list via its Head or
Tail fields. Afterwards, an iteration is performed up to k times. In each step, the
current itemset stored in the node referenced by cn is stored in the current (the
i-th) index of the array. Finally, the result is returned.

The whole operation makes up to k iterations, at each one adding a different
itemset to the result. This makes this operation have a time complexity of O(k) and
as such is constant time as well. The operation of the query algorithm can easily be
extended without changing the computational complexity to also return the actual
count of each itemset along with each itemset. In addition it is possible instead
of specifying a k parameter to return all the itemsets with the highest/lowest
count. To implement this, retrieve the Tail/Head count node of Counts, get the
highest/lowest count, access the Ranges entry corresponding to that count and get
the range of count nodes between the First and Last fields with the max/min count.
This algorithm’s computational complexity will depend on the number of itemsets
which will be the max/min count. As it is possible to have Q itemsets each with a
count of one, this algorithm will have a worst case complexity of O(Q). However, in
practice in many applications this will seldom be the case. Another extension would
be to return the heaviest-θ/lightest-θ hitters, where θ is relative, expressed as a
proportion of the window size (e.g. θ= 10%). However, here the QueryHeaviest

and the QueryLightest operations will have different complexities. Since there
is an upper bound on the number of itemsets which can have a frequency more
than or equal to θ equal to 1/θ, one can just execute QueryHeaviest with k = 1/θ
and the complexity will be as originally O(k). However, no such bound exists for
the QueryLightest case, and therefore its worst case complexity will be O(Q).



Finally, if one is willing to accept an O(Q) worst case complexity it is possible to
create cumulative versions of both the original and the relative version of the query
operations, where the k or θ parameters denote the cumulative count or proportion
of the window. This would return the first itemset whose counts together add up
to the specified threshold.

2.4 Space Complexity

The space complexity of the HL-HITTERS data structure can be fully derived and
is exclusively dependent on the maximum window size Q. The ItemSets hash table
contains a maximum of Q entries, the Ranges array has a constant size of Q entries
and the Counts doubly linked list contains a maximum of Q count nodes. It follows
that the space complexity of the whole HL-HITTERS data structure is O(Q).

3 Experimental Evaluation

It is clear from the previous analysis that the computational complexity of the
algorithms presented is overall constant time whp. However, this does not guarantee
an acceptable level of performance if in practice the constant time required is too
high. We have created a router-like scenario, and have performed experiments to
gauge the actual performance of the proposed algorithms. We have to note that, to
our knowledge, there exists no other algorithm for calculating the heaviest-k hitters
exactly, which also provides close to constant time performance. Therefore, we have
implemented a naive but efficient as far as possible algorithm to find the heaviest-k
hitter. This algorithm, each time the heaviest hitter is requested, creates a hash-table,
and records within it the counts for each itemset. As it does this, it keeps track of the
running heaviest hitter. However, it is clear that this algorithm has an O(Q) time
complexity. As each item arrives for processing, it is recorded in the counts and imme-
diately afterwards the heaviest hitter is queried. This represents the worst case sce-
nario, where the query operation is performed at each time step. Furthermore, in the
experiments performed, we restricted ourselves to finding the top heaviest hitter only,
i.e.,k = 1, in order not to significantly disadvantage the direct counting algorithm.

3.1 Experiment Setup

The implementation has been performed using C++, with standard C++ versions
of the building blocks, as described in section 2.1. We used the G++ compiler with
all the optimizations enabled (−O3) for our specific architecture. The experiments
were executed on an Intel Quad Core Q9300 processor with 4GB of main memory,
using one dedicated core for the execution of the experiments. The operating system
used was Arch Linux, with the 2.6.36 version kernel. For each result point 10
identical sequential executions of the experiment were performed to remove any bias.





4 Discussion

Our work on the problem of the heaviest-k and lightest-k hitters in a sliding-
window data stream has resulted in a relatively simple data structure and an
efficient set of algorithms for its operations. These in tandem allow us to achieve
constant time updates and queries, something which, to our knowledge, has been
achieved for the first time. Moreover, and for some applications more importantly,
the performance of this scheme has been verified to be high enough to be used in
practical applications. Lastly, the fact that we haven’t presented a highly optimized
and hardware assisted implementation allows us to predict much better performance
in practical application where these additional enhancements would be pursued.
As we have described, the performance of this algorithms is dependent only on
the available memory, and especially the memory for the hash-table.

An interesting idea beyond these results would be to extend this mechanism to
incorporate the size of the packets as well, not only their number. This would allow
us to make decisions based on the quantity of data that an itemset is responsible
for, rather than how many items it is generating.
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