
A Multimodal Database Framework for Multimedia Meeting Annotations

Hassina Bounif, Oleksandr Drutskyy, Fabrice Jouanot, Stefano Spaccapietra
Swiss Federal Institute of Technology, Database Laboratory

FirstName.LastName@epfl.ch

Abstract

The main objective of this paper is to present a flex-
ible annotation management framework for a multimedia
database system, applied to meeting recordings. Presented
research and development activities are carried out within
the scope of the IM2 project in which annotations play an
important role in describing raw data from various points
of view and in enhancing the query process. We focus on
a database system capable of managing annotations (e.g.
text transcriptions, dialog acts, speaker space position, etc.)
and keeping links with raw data (audio, video, digital docu-
ments). This database provides a schema evolution mecha-
nism and a meta-description layer ensuring flexible and in-
cremental annotation definitions. To enhance this database
system, some research works are currently in progress: a
predictive methodology for schema evolution and a query
technique that deals with fuzzy concepts and ontological
commitments. We describe our on-going prototype devel-
opment, in which we focus on data storage and interactive
data access.

1. Introduction

Complexity of multimedia data requires sophisticated
processing capabilities. Indeed, an audio stream, a video
or a simple picture contain many different information. In
order to provide an intelligent access to these data, it is
required to add some metadata to multimedia documents.
These metadata represent semantic descriptions produced
during an annotation process, with each annotation charac-
terizing some semantic dimension of the media. Also the
users can change the dimension and modality of their in-
terest while accessing the data. In this paper we are inter-
ested in proposing a solution to optimize meeting and anno-
tation storage and to enhance querying and browsing capa-
bilities for multimedia and multimodal applications.

This work is part of the IM2 Swiss national project1 aim-
ing at developing innovative solutions for interactive and

1 Interactive Multimodal Information Management, supported by

multimodal access to multimedia data. Topics addressed
include speech recognition, scene analysis, dialog under-
standing and indexing. A smart meetings application serves
as a test case to demonstrate the results of the project. The
application consists in storing and retrieving data from a se-
ries of project meetings. The data includes multiple audio
and video recordings of each meeting, as well as structured
and unstructured multimedia documents related to the meet-
ings. All these raw data are annotated according to multiple
criteria (e.g., speaker, topic, dialog act) to provide for rich
information retrieval functionality. Supporting data man-
agement functionality addresses three main objectives. The
first one is loading into a database system the multimedia
data, metadata, and annotations coming from smart meeting
rooms (rooms specialized for meeting recordings) and pro-
duced during the annotation process by different research
teams (speech recognition, speech transcription, video anal-
ysis, dialog acts analysis, document analysis, etc.). The sec-
ond objective is the availability of a powerful interface to
query and browse meeting data using semantic information
defined in metadata and annotations. Finally, visualization
of all types of data and query results using a multimodal and
interactive approach is the third objective.

Although nowadays a big number of research efforts in
the domain of multimedia content annotation is based on
the emerging MPEG-7 standard [9], which offers compre-
hensive audiovisual description possibilities and addresses
a broad range of multimedia applications and requirements,
this standard still has a number of limitations. Thus, one of
the principal advantages of MPEG-7 and at the same time
its shortcoming is its primarily orientation towards the phys-
ical, not conceptual model. Indeed, designed as a standard
for description of AV sources, MPEG-7 only provides an
XML Schema representation corresponding to the physi-
cal model, and understanding the semantics of MPEG-7 is
sometimes difficult. Another major inconvenience is a lack
of powerful publicly available software tools to work with
the format, which is obviously partially related to its imma-
turity.

the Swiss National Center of Competence in Research (NCCR),
http://www.im2.ch

In the context described above we are developing an
application framework based on a relational database en-
hanced by a meta-dictionary to deal with annotation seman-
tics, a set of tools to manage annotations and meeting data,
and a user-friendly query interface relying on a multimodal
visual approach. The database contains knowledge of me-
dia files stored on a media file server. Adopting this con-
cept, many heterogeneity problems have to be taken into
account. Meeting recordings come from different meeting
rooms, have different structures and different media for-
mats (different number of cameras and microphones, differ-
ent source channels). Thus it is important to allow enrich-
ing the database with all possibly known meta-information
in order to avoid semantic losses. The main problem to deal
with is annotations. They are the base of rich data retrieval
and at the same time the source of heterogeneity problems.
Annotations are provided by different teams involved in the
project in form of XML and DTD files. We have to deal with
both structural and semantic data conflicts [10, 6]. Under-
standing data in an XML annotation file is required in order
to add information to the database and to link it to the infor-
mation that is already there. For example, if a file describes
utterances, it is necessary to find the right meeting, right
participants, the annotated document (a transcription file),
and perhaps the topics related to these utterances. Struc-
tural conflicts can be partially resolved by using a DTD or
an XML schema related to an annotation file. However to
cope with semantic conflicts we need extra knowledge to
guarantee a good understanding of an annotation descrip-
tion and the correct loading of the annotation data into the
database. Another problem related to metadata and anno-
tations is certainly the evolution of user and project needs,
which implies evolution of the database schema. Metadata
related to meeting recordings and annotations may change
over time, and we have to consider an original schema evo-
lution technique to deal with this problem. The last impor-
tant problem is the querying capabilities of the system, since
they are essential to facilitate user interactions.

In this paper we describe different aspects of our proposi-
tion of multimodal system dedicated to meetings and anno-
tation management. A global architecture of the system, de-
scribed in section 2, has been defined to support all project
requirements for annotation management, i.e. meeting defi-
nition, annotation definition, data querying and multimodal
visualization. We give a summarized overview of the pro-
totype under development used to manage meeting data. In
section 3 we present our ongoing research on annotation
loading and data storage mechanisms. Here we define an in-
telligent translation from XML representation of an annota-
tion to flat relational format. A schema evolution methodol-
ogy based on a predictive mechanism promises good results
on database schema evolution according to existing and fu-
ture requirements. In section 4 we also present some ideas

on a querying approach, which uses semantic expressive-
ness of user profiles and domain ontology. This query tech-
nique is able to resolve ambiguous and fuzzy queries us-
ing extra knowledge. The last section concludes our current
state in research and development, and suggests some direc-
tions for future work.

2. A Multimodal Framework Overview

2.1. Architecture Overview

The global architecture of our multimodal database sys-
tem framework is presented in figure 1. The four main com-
ponents are: the multimodal database, the annotation man-
ager, the query module and the visualization tool.

Visualization
Tool

Annotation
manager

Query
Module

Metadata

Meta Dictionary

Annotations

Domain
Ontology

Multimodal Database

annotations
A1

annotations
A2

User
Profile

User
Profile

Query Q1

Query Q2

User
Profile

User
Profile

Figure 1. The Multimodal System Framework.

2.1.1. The Multimodal Database is composed of three
layers:

• A metadata schema, which is the core of the DB
schema. It defines the static information that a user can
input to describe a meeting without a need for a spe-
cific analysis process.

• An annotation level, which contains the description of
annotations of all types, using a structure optimized for
data-storage.

• A meta-dictionary, used to enhance the semantics of
metadata and annotation descriptions. For example,
semantics of annotations and links between different
types of annotations are clarified.

An annotation generally contains a lot of information
and has a complex data structure. This means that each
annotation has a specific conceptual schema describing its
data organization. This schema has to be transformed into
a pure relational schema in order to be integrated into the
global database schema. The goal of the meta-dictionary
level is to clarify some semantic information, which will
simplify database management and will add some seman-
tics to the relational model. The meta-dictionary (see figure
2) is composed of several components, each one depicting
some specific meta-information on an annotation type.

Dic_Annotations

PK ID

name
description
author_name
creation_date
main_focus
timestamp
table_name

Focus_Annotation

PK ID

FK1 Dic_ID
ref_table
ref_attr
focus
if_attr
if_value

FK2 voc_type_ID

Schema_Annotation

PK ID

FK1 Dic_ID
table_name
link_table

Dic_Kernel

PK ID

name
description
creation_date
timestamp
link_table

Voc_annotations

PK ID

name
decsription
author_name
creation_date
table_name

Figure 2. The meta-Dictionary.

The Dic Annotations table is the main component,
which lists the collection of annotation types defined in the
database. It provides classical information about an anno-
tation, like name, textual description, author, and creation
date (for versioning). Some more important informa-
tion appears as a timestamp flag saying if this annota-
tion is timestamped or not, a table name, which gives
the name of the relational table dedicated to this annota-
tion type, and a main focus, which defines the main data
type annotated by this annotation (e.g., utterances anno-
tate participants, topics annotate meeting). This last in-
formation is useful to define an important link between
an annotation type and other data that could be con-
tained in a table from the core schema or in another annota-
tion type. In the same way the Focus Annotation component
shows which annotation attributes contain links to other ob-
jects, i.e. data from other tables or annotations. It defines
the following expression: ”the attribute ref attr of the ta-
ble ref table contains links to the object focus iff the at-
tribute if attr of the table ref table has the value if value”.
It also says if these links specify an entry in the ontol-
ogy (voc type ID, vocabulary for annotation if defined in
Voc Annotations). The Schema Annotation component de-
fines the relational schema of an annotation type, i.e. the
list of tables involved for its representation, and indi-
cates if a table is just a structural link table or an infor-

mation table. The Dic Kernel defines the core database
schema.

Figure 3 gives an example of defining an anno-
tation on speaker utterances in the database using
the meta-dictionary structure. This is a small snap-
shot of the database schema, which shows the main
meta-dictionary table Dic Annotations, four main ta-
bles of the core schema (Meeting, Person, Participant,
Document), and one annotation table (Utterance). An en-
try is created in Dic Annotations to define this annotation as
following: 〈 ”Speaker Utterance”, ”Utterances which com-
pose a turn of speech for a participant of a meeting”,
”LBD team”, 07/14/2003, ”Participant”, true, ”Utter-
ance” 〉. The Utterance is built from a generic annotation
template composed of three attributes: an Id to iden-
tify each annotation instance as an object, a Data ID
referencing the focal object (i.e. annotated informa-
tion), and a couple (stime,etime) for (start time, end time)
to store the time-stamped data. The Data Id is thus a for-
eign key, which represents an object of the Participant ta-
ble. The attribute text contains the text transcription of
the dialog (specific information for this annotation). Tran-
scription ID represents an object from the table Docu-
ment, i.e. the file that contains the global transcription of
a meeting. It is also defined as an entry in the table fo-
cus Annotations. And for this particular annotation, scar
and ecar store the position of each utterance in the global
transcription file. Thus, the meta-dictionary structure al-
lows modeling a part of the semantics in the utterance
annotation, mainly the objects that are linked to the utter-
ances.

We aim at defining a domain ontology [4] to give a clear
definition of all the concepts used in different domains of
the IM2 project and to enhance the Voc Annotations struc-
ture. At the current stage a set of concepts can already be
formally defined. However, most of them will be introduced
as updates to the ontology as new information and new an-
notations arrive. Ontology at this level consists of the do-
main vocabulary, and a concept is a taxonomic definition
having its name extended by synonyms, roles and links with
other concepts. User profiles, based on this ontology, help
to contextualize the domain. They are used to assure a good
understanding of user needs, and are important at two lev-
els: optimizing the understanding of user annotations, and
query enhancement.

2.1.2. The Annotation Manager This module plays two
important roles in our multimodal system. The first one is
definition of annotations, i.e. the possibility to add, to mod-
ify, to delete an annotation type, and to populate it with an-
notation values. The second role concerns the problematic
of schema evolution in such a dynamic research environ-
ment as multimedia and multimodal data.

Dic_Annotations

PK ID

name
description
author_name
creation_date
main_focus
timestamp
table_name

Meeting

PK ID

name
theme
meeting_date
duration
location
host

Person

PK ID

first_name
last_name
email
affiliation

Participant

PK ID

FK1 meeting_ID
FK2 person_ID

Document

PK ID

FK1 meeting_ID
name
description
url
type
version_date

Utterance

PK ID

FK2 Dic_ID
FK1 Data_ID

text
stime
etime
scar
ecar

FK3 transcription_ID

Figure 3. The representation of utterance an-
notation.

Because provided by people from different research do-
mains, annotations are heterogeneous and it is important
to understand the semantics of an annotation file. The an-
notation manager has some functions to define and under-
stand an annotation. The first one is the addition of a new
annotation using an intelligent translation mechanism that
builds a database annotation schema from an XML anno-
tation file. The structural translation from XML representa-
tion to database model (relational) is based on XSLT filter.
In this approach an XSLT filter has to be written for each
annotation type. We plan to use a CPI-like algorithm [7]
enhanced by extra information represented in a user pro-
file. This information could clarify the mapping between
user annotation XML format and internal database format.
The second important function is a controlled modification
and deletion of annotations to ensure that the database and
links between data keep coherent. For example, an annota-
tion cannot be expunged if it is annotated by another exist-
ing annotation.

The previous problem of annotation deletion and modi-
fication is related to a more general problem, which can be
summarized as a database evolution problem. Objectives of
the annotation manager are to take into account the multi-
modal database evolution in the two following aspects: (1)
a predictive evolution, which allows incremental evolution
of the database conceptual schema by applying rules, (2)
a temporal evolution, which keeps available different ver-
sions of the same annotation in the database. This predic-
tive mechanism keeps the database in a coherent state with-

out a constant need to come back to conceptual stage. This
functionality is based on semantic information describing
current and future information system and on mining tools.

2.1.3. The Query Module In our system we propose an
ontology-driven technique that facilitates the query compo-
sition by guiding the user through the concepts present in
the annotation database. Doing this we plan to take advan-
tage of dynamic user profiles that help to better adapt the
system to user needs and preferences. Thus, for example, if
a user specifies an ambiguous concept (having several pos-
sible interpretations) in his request, the system could help
him automatically select one particular interpretation based
on observations of user’s past interactions (i.e. selecting the
interpretation that corresponds the most to the user’s cur-
rent profile). To facilitate the machine access to our database
system we propose an approach based on web services.

2.1.4. The Visualization Tool The visualization tool is
of particular importance for a multimedia and multimodal
database system. It provides a complete framework to ac-
cess data in a user-friendly manner. Because IM2 is research
oriented, user needs evolve continually providing new data,
new annotations, and new applications to make the most of
them. Our goal is not to build a complex user interface in-
tegrating all functionalities, applications, and visualization
tools required by users. On the contrary, we provide a flex-
ible and open architecture allowing browsing and visualiz-
ing any type of annotations. We also provide the possibility
of adding new specific browsing and visualization plug-ins.

The visualization tool is composed of two important
components closely related to each other. A visualization
engine can play Web contents in different windows to give
a multidimensional view of a meeting (audio, video, pic-
tures, documents, metadata and annotations). This engine
ensures that all windows are synchronized with a source
media. It provides a time server and a client API to manage
time events thus simplifying visualization plug-in develop-
ment. The other main component focuses on interactivity
and browsing capabilities integrated in the visualization en-
gine. Thus the entire window content can provide some user
interactivity. The intelligent query module will also be em-
bedded into this tool to enhance querying capabilities.

2.2. A Prototype Application for Meeting Analysis

In this section we present a working prototype for IM2
meeting management. Although further developments are
still necessary and many features of annotation manage-
ment are not yet implemented, it is an interesting example
of a multimodal system dealing with user requirements. The
working prototype is composed of five important Web mod-
ules with a central component being an Oracle database.

(1) The database schema with its core part and its anno-
tation part is completely depicted in [1]. The core part of
the schema defines all relevant information about a meeting:
persons involved in it, participants (speakers), related doc-
uments (slides, articles, books, etc.) with their authors, top-
ics, schedules (classical one or minutes). Obviously a meet-
ing is associated with a set of audio and video files compos-
ing multimedia sources of a meeting recording. Currently
a collection of annotations is defined in the database: turn
of speech for participants, topic events, utterance text tran-
scription for participants, logical media streams. This last
one allows defining a virtual audio/video stream from sev-
eral streams (audio and video files). It is thus possible to fol-
low a participant filmed by different cameras, to highlight a
specific participant if many people are present on the same
video shot, and, in general, to edit a virtual stream. All these
annotations are specified using the meta-dictionary struc-
ture. Many new annotations are to be added soon, including
but not limited to dialog acts, document analysis, and par-
ticipant spatial localization. All these annotations allow for
complex queries like (a) Which participant talks more than
the others?, (b) In which meeting has this speaker shown
this particular presentation (slide file)?, (c) Show me all
the meeting samples where this speaker has spoken on this
topic?, and more.
(2) The meeting update interface is a classical Web-form in-
terface, which provides all the features to enter basic data
of a meeting and a set of metadata. Users can easily spec-
ify audio and video files of the meeting recording. They can
also add topics of interest, participants, agenda, and min-
utes notes. Such information forms the base for future an-
notation definition and querying.
(3) The annotation update interface is not yet implemented
(remains a manual process). This is an intermediate solution
until the user XML annotation translator is completely for-
malized. Users can upload their XML files and we provide
an XSLT filter to translate their data into a database-ready
format.
(4) The browsing interface is a simple query interface pro-
viding all essential information about a meeting and allow-
ing to playback a meeting also displaying some annotations.
The interface provides some basic query capabilities us-
ing keyword search. This interface is currently utterance-
oriented, but evolves to allow for more general browsing
capabilities. A screenshot of this module is shown in fig-
ure 4.
(5) the querying interface enables a user to construct com-
plex queries in a simple user-friendly way. Without know-
ing the database structure a user can express his require-
ments by simply selecting relevant concepts from the core
database schema and annotations. He can complete his re-
quirements by selecting objects, which are connected with
the selected items. It works as a sort of a browsing system,

Figure 4. Browsing, querying and manage-
ment interface.

where by choosing the information from a starting point it
is possible to select information dependant on it, etc. All
dimensions of information (basic concepts or annotations)
can obviously be constrained. The results of a query can be
obtained either as a downloadable file or visualized on the
screen.

We are currently working on a visualization tool capable
of playing SMIL [13] multimedia presentations (generally,
a collection of video and audio streams representing a meet-
ing recording session) that are synchronized with metadata.
These metadata are usually annotations or results of queries
(with timestamped results). The presentation is organized
in a multi-window environment. Figure 5 shows a screen-
shot of our visualization tool: a meeting is played and it is
possible to display the text transcription of participant ut-
terances (participant windows scroll automatically to high-
light the current utterance) in a separate window.

This visualization tool is based on a time server, which
polls the RealOne SMIL session and sends time events
to different client windows that visualize metadata. Client
windows interact with the time server using an API that of-
fers some simple services like create a new client, delete a
client, play, stop, and seek. The client is based upon a de-
fault template that proposes a standard API to manage time
events. The author of a client window has to focus only on
what he wants to display and the way he wants to display
it. This is a very flexible approach, which is not limited by
the number of client windows, the type of displayed infor-
mation and the manner of displaying the information.

Figure 5. Visualization Tool.

3. Annotation Management For Multimodal
Database

In this part of the paper we present our ongoing research
that aims at enhancing annotation definition and annotation
storage in the multimodal database. It relates to the prob-
lematic of a good database schema design in such a dy-
namic environment as annotation storage for multimodal
applications. The first main problem is loading annotations
into the database. This introduces two related difficulties:
the definition of a relational sub-schema for each new an-
notation from an XML specification, and addition of new
annotation values from XML files. An annotation transla-
tion method allows extending the database schema with in-
formation from XML annotation files. We also focus on an
original schema evolution approach consisting in predicting
database evolution phenomena and anticipating changes on
them.

3.1. Annotation translation

Annotation translation consists of transferring data from
XML documents to relational database [2] using XSLT fil-
ters, PERL programs and SQL*Loader (an Oracle utility for
loading data from flat CSV files into one or more database
tables). The global process is exposed in figure 6.

This transformation is not just a naive data transla-
tion from one format to another. It involves advanced
processing on XML annotation files, based on a sim-
plified version of CPI (Constraint Preserving Inlining)
algorithm [7] to preserve both semantic and structural as-
pects, which are discovered during the transformation
of hierarchical XML model. Our transformation algo-
rithm (see figure 7) regroups three processing steps of the

XSLT
filter

XML
files

CSV
filesXSLT

Processor

Bad
files

SQL*
Loader

Log
files

Discard
files

Control
files

Oracle
DBMS

Figure 6. XML to database annotation trans-
lation.

CPI algorithm (i.e. transforming schema, discovering con-
straints via find constraints procedure, and preserving con-
straints via rewrite constraints procedure) into two steps:
detection-transformation and CSV-files-generation.

Input : XML annotation files
Output : CSV files (each CSV file corresponds to a database table)
Begin
For every XML annotation file
Begin

Invoke XSLT filter for detection of constraints and transformation step
Results are put in CSV-files

End
For every CSV file
Begin

Invoke Perl filters for generating primary keys
Modify the other existing CSV files
Invoke Perl filters for generating foreign keys
Modify the other existing CSV files

End
End

Figure 7. Transformation algorithm.

3.2. Schema Evolution for Multimodal Database

There is a large body of literature on database schema
evolution. The proposed solutions usually rely on two prin-
cipal approaches namely Schema Modification and Schema
Versioning [8] [15].

Schema Modification:
Past states of the schema are not preserved. The old

schema and its corresponding data are replaced by either
one of the new schemata and its new data. The data associ-
ated with the schema are managed in two ways. In the first
one, new data is created (the existing data is not consid-
ered). In the second way, existing data is transformed to be
consistent with the new schema. Both ways may lead to in-
formation losses and incompatibility of applications using
the old schema.

Schema Versioning:

The state of old schema and corresponding data are pre-
served. The entire schema changes are handled by creating
different new versions of the schema. There are two differ-
ent ways of versioning. In parallel versioning, the entire
schema is perceived as a unity on which versions are cre-
ated. In historical versioning, each version is independent
of the others and is stored in a separate memory zone. Old
versions are read-only. Therefore changes are made only on
the current version. Traditionally, in this approach the num-
ber of versions is significant.

Unlike traditional approaches, we take a new look at
the problem of schema evolution. We undertake an innova-
tive research endeavor consisting in three main phases: pre-
modeling, modeling, and evolution. Our approach is mul-
tidisciplinary. It involves such fields like database systems,
ontologies, and data-mining techniques. Below we describe
the details of each phase.

Pre-modeling: The goal of this phase is to define current
and future user requirements. Therefore, for this step, no
database conceptual schema is defined and in general, a
database designer and system users are the main actors. The
output is defined in terms of requirement ontologies. The
pre-modeling phase is divided into two sub-stages. These
are respectively acquisition and predictive stages.

In the Acquisition Stage, the database designer assisted
by user interactions and feedbacks detects and defines the
real requirements. He formulates these requirements and
functionalities by using representation formalism such as
ontologies.

In pre-modeling, the predictive stage is used to predict
future user requirements and future tasks of the system.
It is divided into two sub-stages. These are respectively
implicit/similarity-driven changes and unexpected changes:

• Implicit/Similarity-Driven Changes: Our idea is to find
out future requirements and functionalities of our sys-
tem assuming an analogy of our system with those ad-
dressing the same problem domain. For example, con-
sider the case of a digital music catalogues system.
To express the expected or implicit changes that could
happen to it, we study similar systems of other cata-
logues, e.g. online book catalogue systems.

• Unexpected Changes: Here, we will find out the unex-
pected future requirements. We use data mining tech-
niques on dataset samples gathered in the previous step
(Implicit/Similarity-Driven Changes). For example, in
the case of a digital music catalogue we firstly collect
enough web pages of book catalogues such as ama-
zon.com. Secondly, we extract from these web pages
keyword information to build datasets. Then, we ap-
ply data mining techniques on these dataset samples
to find out these unexpected requirements for our sys-
tem.

Modeling: In this phase, the main actor is the database
designer and the inputs are the predictive module and the
ontologies obtained in the pre-modeling phase. The pre-
dictive module is a set of programs (statistical computing
program, search program, sort program, etc.), which takes
the (current and future) requirements and functionalities
formulated in the pre-modeling and automatically gener-
ates the conceptual database schema(s). These consist of a
generic schema connected to one or more conceptual sub-
schemas. The generic schema models the current require-
ments whereas sub-schemas model different future require-
ments and functionalities. The costs of conceptual schemas
are calculated by the predictive module using statistical pro-
grams. And it is the database designer who analyses and
chooses the conceptual schema among the proposed sub-
schemas.

Evolution: This stage consists of using transforma-
tion mechanisms to evolve the current database schema.
The main actor is still the database designer. We pro-
pose a modified versioning approach as shown in figure
8 rather than using the original one (a complete descrip-
tion in [15]). The reason are that: 1) our database schema
has a pre-possibility for evolution: entities, associations,
and attributes can be added, deleted or modified accord-
ing to the database designer needs; 2) data provided by the
database are in the form of metadata and modified data, in-
stead of having several versions of data as it is the case in
the original versioning approach. The metadata is essen-
tial to keep the historical evolution of data, its constraints,
and its semantics.

Initial
Schema

 Meta-data Modified
 data

 data

 Modified
Schema

Transformation

Figure 8. A modified versioning approach.

4. Multimedia and Multimodal Query Lan-
guage

One of the most important features of a multimedia sys-
tem is querying. In our approach we base ourselves upon
accompanying metadata to provide querying possibilities.
Thus, a user is able to use the meeting descriptive informa-
tion (e.g. meeting place, persons involved in a meeting, etc.)

as well as the annotations (such as participant speech turns,
documents presented, etc.) to formulate his queries to the
system.

In our prototype system described in the section 2.2, we
provide several querying possibilities with the most basic
one being a keyword-based search. Although rather effi-
cient in some cases, this technique proves to be very lim-
ited when it comes to semantic querying. That’s why an
ontology-driven alternative becomes essential for our mul-
timodal annotation system.

4.1. Ontological Query Enhancement

Despite the relative simplicity, a keyword-based ap-
proach suffers from a number of shortcomings. Thus a key-
word in a document does not necessarily mean that the
document is relevant. On the other hand, a relevant doc-
ument may not explicitly contain the given keyword.
Synonyms lower recall rate, homonyms lower preci-
sion rate, and semantic relations such as hyponymy,
meronymy, antonymy are not exploited. Keyword-based
search is especially useful to a user who knows what key-
words are used to index the information and therefore
can easily formulate queries. This approach is problem-
atic, however, when the user does not have a clear goal
in mind, does not know what there is in the database, and
what kind of semantic concepts are involved in the do-
main. To deal with the problems mentioned above, a
number of ontology-enhanced approaches have been pro-
posed (see [5], [11]).

In our approach we propose to use the domain ontology
to help users exploit the semantics of the system. As it was
mentioned in section 2, our ontology evolves over time as
new annotation types are introduced. Since the IM2 project
involves many research teams in various domains, the num-
ber of concepts managed by the system can grow drastically
over the time. It is thus important to use a dynamic user pro-
file mechanism able to extract only that part of the global
ontology that would probably be of the most interest for a
particular user. Since user preferences and points of interest
tend to change, an updating mechanism that tracks user in-
teractions with the system has to dynamically keep the user
profiles up to date.

4.2. Fuzzy Querying Approach

In spite of all the advantages of ontology-enhanced tech-
niques, in certain cases they can be too (undesirably) pre-
cise. That’s why another important feature of the query
subsystem being proposed is a possibility of constructing
fuzzy requests. In [14] a fuzzy framework for manipulating
temporal information in video information systems is pro-
posed. In [3] the authors use the fuzzy sets theory to readjust

the weights for ontological interrelationships. In our multi-
modal system a combination of ontology and fuzzy query-
ing techniques enables a high level of system personaliza-
tion and of coherency between the user request and the re-
ply produced.

We distinguish fuzzy values (e.g. around 5 p.m.), fuzzy
variables (e.g. by specifying a variable ”timestamp” the user
could also mean a variable ”time” and/or ”date”, etc.), as
well as fuzzy concepts (e.g. in the case of our system a con-
cept ”turn” could mean ”speech turn” or ”document presen-
tation turn”). Since it is clear that interpretation of fuzziness
is to a big extent user-dependent, in our system we again
benefit from user profiles to facilitate working with fuzzi-
ness depending on personal preferences of a user. Thus, for
instance, ”around 5 p.m.” could mean ”5 p.m. ± 5 min.” for
one user, and ”5 p.m. ± 15 min.” for another.

Let’s illustrate a possible query scenario by the following
example. A user wishes to obtain a speech transcription and
an audiovisual presentation of a talk presented by a special-
ist in dialog act analysis in about 20 minutes from the begin-
ning of the meeting. Constructing his query the user could
use some visual or algebraic language, or a combination of
both. Let’s point out the main peculiarities of constructing
such a request in our system. Firstly, to find out what con-
cepts correspond to ”speech transcription” and ”audiovisual
presentation”, the user browses the domain ontology and se-
lects the appropriate terms. Secondly, finding out from his
personal profile that the user is interested mostly in dialog
act analysis, the system makes it possible for him to en-
ter simply ”specialist” instead of ”specialist in dialog act
analysis”, automatically disambiguating the entered term.
Thirdly, based on the personal user preferences the system
would personalize the fuzzy time value ”about 20 minutes”,
converting it, for example, into ”20 min with probability
100%, 15 or 25 min with probability 75%, etc.”

4.3. Querying as a Web Service

Taking into account the diversity of users of our system,
it becomes clear that providing a human-computer interface
as the only means of interaction with the database does not
suffice. Indeed, the variety of the research teams involved
in the IM2 project makes it almost impossible to foresee
all potential interaction scenarios between the users and the
database system. Thus it is hardly feasible to make an in-
teractive HCI that could satisfy everybody’s requirements.
Moreover, each research team involved usually has its own
set of (client) software tools capable of querying informa-
tion from external data sources. All this shows a strong need
for providing automatic database access and querying pos-
sibilities for client software.

An obvious solution to this problem could consist, for
example, in simply establishing a connection between the

client application and the annotation database via a JDBC
interface. However this approach suffers from a number of
serious shortcomings, which in general can be character-
ized as follows: instead of concentrating on the (annotation)
content, the client tool developer would rather have to fo-
cus on low-level schema and implementation issues. Obvi-
ously such an approach could hardly be called thoughtful
and user friendly. That’s why in our system we propose an
approach based on web services [12]. In this way, the client
uses a set of web services to query and manipulate the an-
notation database system content. As compared to the clas-
sical ODBC/JDBC-like approach, the proposed technique
benefits from a number of advantages being:

• client software developer does not need to get much
into details of low-level database implementation

• database migration, distribution, etc. become transpar-
ent for client tools (only the web services communi-
cating with the database system would have to adapt to
changes)

• database schema evolution/versioning also becomes
transparent for the clients.

The last issue is of a big importance for us taking into ac-
count our research activities on schema evolution described
in the section 3.

To suite best to user needs in no time, we propose to
establish a set of pre-defined query functions accessible as
web services. At the same time we are working on establish-
ing a web service that will permit working with user-defined
queries expressed in a freer form.

5. Conclusion and Future Work

In this paper we have presented our proposition for a
multimodal system dedicated to annotation management in
a meeting recording environment. Having in mind the re-
quirements of the IM2 project that we are involved in, we
have proposed a solution to the main tasks of annotation
management, i.e. continuously adding and updating anno-
tations, intelligent querying, interactive and multimodal vi-
sualization support. We propose a multimedia database sys-
tem architecture that provides evolvability, flexibility and
scalability. The core of this solution is a database built on
an evolvable schema assisted by a meta-dictionary. The
need to develop an XML translation technique and a pre-
dictive schema evolution approach to update incrementally
the database has been shown. We also demonstrate the rel-
evance of a query mechanism that uses concepts from on-
tologies and fuzzy logic theory. A working prototype is pre-
sented, however still a lot of work is required to produce
a complete system with intelligent modules as depicted in
this paper, and implemented as web services.

References

[1] H. Bounif, O. Drutskyy, F. Jouanot, and S. Spaccapietra. A
flexible database schema for the im2 smart meeting applica-
tion, 2003. Technical Report.

[2] R. Bourret, C. Bornhövd, and A. P. Buchmann. A generic
load/extract utility for data transfer between xml documents
and relational databases. In Workshop on advanced Issues of
EC and web-based Information Systems (WECWIS), 2000.

[3] V. Cross and C. R. Voss. Fuzzy queries and cross-language
ontologies in multilingual document exploitation. In Pro-
ceedings of the Ninth IEEE International Conference on
Fuzzy Systems, pages 641–646. San Antonio Texas, May 7-
10 2000.

[4] N. Guarino. Semantic matching: Formal ontological distinc-
tions for information organization, extraction, and integra-
tion. In . T. Pazienza, editor, International Summer School
(SCIE’97), pages 139–170. Frascati, Italy, Lecture Notes in
Computer Science, Vol. 1299, Springer, 1997.

[5] E. Hyvönen, A. Styrman, and S. Saarela. Ontology-based
image retrieval. In Towards the semantic web and web ser-
vices, Proceedings of XML Finland 2002 Conference, pages
15–27. Helsinki, Finland, 2002.

[6] V. Kashyap and A. Sheth. Semantic and schematic simi-
larities between objects in databases : A context-based ap-
proach. Technical Report TR-CD-95-001, LSDIS Labora-
tory, Department of Computer Science, University of Geor-
gia, USA, 1995.

[7] D. Lee and W. W. Chu. CPI: Constraints-preserving inlin-
ing algorithm for mapping XML DTD to relational schema.
Data Knowledge Engineering, 39(1):3–25, 2001.

[8] B. Lerner and A. Habermann. Beyond schemas evo-
lution to database reorganisation. In In Proceedings of
ECOOP/OOPSLA 90 Conference. Ottawa, Canada, October
1990.

[9] MPEG-7. http://www.mpeg-industry.com.
[10] A. Ouksel and A. Sheth. Semantic interoperability in global

information systems. ACM SIGMOD Record, 28(1):5–12,
March 1999.

[11] C. Tsinaraki, E. Fatourou, and S. Christodoulakis. An
ontology-driven framework for the management of seman-
tic metadata describing audiovisual information. In The 15th
Conference on Advanced Information Systems Engineering.
Velden, Austria, 2003.

[12] W3C. Web services activity. http://www.w3c.org/2002/ws/.
[13] W3C. Synchronized multimedia integration language, 2001.

http://www.real.com.
[14] R. R. Yager. Retrieval from multimedia databases us-

ing fuzzy temporal concepts. In O. Pons, M. A. Vila,
and J. Kacprzyk, editors, Knowledge Management in Fuzzy
Databases, pages 261–274. Springer-Verlag, 2000.

[15] S. Zdonik. Object-oriented type evolution. In A. Press,
editor, In Advances in Database in Database Programming
Language. New York, 1990.

