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Abstract

We use a timed extension of Petri nets, the so called
Timed-Arc Petri Nets, for the specification and analysis of
the MPEG–2 Video Encoder. We have computed bounds
for the necessary time to encode each type of frame, also
we present an improvement on the encoding process which
takes advantage of the potential parallelism degree of the
MPEG–2 video encoding algorithm, so reaching a 90% of
reduction on the time requirements, with respect to the orig-
inal MPEG–2 encoder.

Keywords: Formal Methods, Timed-Arc Petri Net, Per-
formance Evaluation, MPEG–2 Video Encoder.

1 Introduction

Formal Models are used to describe and to analyze the
behaviour of computer systems. Among these models, we
have Process Algebras, Event Structures, Markov Chains,
Petri Nets and some others. Software designers work gladly
with process algebras, since they have a syntax very similar
to a programming language, but they are not able, in gen-
eral, to capture real concurrency, and even formal verifica-
tion is a bit harder than in other formalisms like Petri Nets.
A survey of the different approaches to introduce time in
Petri nets is presented in [3]. We can identify a first group of
models, which assign time delays to transitions, either using
a fixed and deterministic value [11, 12] or choosing it from a
probability distribution.Finally, we have also some models
that introduce time on tokens [6, 13]. In such a case to-
kens become classified into two different classes: available
and unavailable ones. Available tokens are those that can be
immediately used for firing a transition, while unavailable
cannot. We have to wait for a certain period of time for these
tokens to become available, although it is also possible for
a token to remain unavailable forever (such tokens are said
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to be dead ). More recently, Cerone and Maggiolo-Schettini
[4] have defined a very general model (statically timed Petri
nets), where timing constraints are intervals statically as-
sociated with places, transitions and arcs. Thus, models
with timing constraints attached only to places, transitions
or arcs can be obtained by considering particular subclasses
of this general framework.

Timed-Arc Petri nets [1, 5, 7, 13] are a timed extension
of Petri nets in which tokens have associated a non-negative
real value indicating the elapsed time from its creation (its
age), and arcs from places to transitions are also labelled
by time intervals, which establish restrictions on the age of
the tokens that can be used to fire the adjacent transitions.
As a consequence of these restrictions some tokens may be-
come dead, because they will be never available, since they
are too old to fire any transitions in the future. The inter-
pretation and use of Timed-Arcs Petri nets can be obtained
from a collection of processes interacting with one another
according to a rendez-vous mechanism. Each process may
execute either local actions or synchronization ones. Lo-
cal actions are those that the process may execute without
cooperation from another process, and thus in the Petri net
model of the whole system they would appear as transitions
with a single precondition place, while synchronization ac-
tions would have several precondition places, which corre-
spond to the states at which each involved process is ready
to execute the action. Then, each time interval establishes
some timing restrictions related to a particular process (for
instance the time that a local processing may require). In
consequence, the firing of a synchronization action can be
done in a time window, which depends on the age of the
tokens on its precondition places.

Therefore, Timed-Arc Petri nets are a very appropriate
model for the description of concurrent systems with time
restrictions, such as manufacturing systems, real-time sys-
tems, process control, workflow systems, etc. In this paper
we use this concrete model of specification to analyze the
concurrent behaviour of the MPEG-2 video encoder, taking
into account the time required to complete each task in the
encoding process. From this analysis we will conclude that



the performance of this process can be improved by exploit-
ing the intrinsic parallelism in it.

The MPEG standards were designed with these two re-
quirements:

� The need for a high compression, which is achieved
by exploiting both spatial and temporal redundancies
within an image sequence.

� The need for random access capability, which is ob-
tained by considering a special kind of pictures (I pic-
tures), which are encoded with no reference to other
frames, only exploiting the spatial correlation in a
frame.

In the literature we can found several publications on
performance improving of MPEG standards. Most of these
works focus their improvements on parallelizing the distri-
bution of data among the processors by either distributing
different partitions of the same frame (spatial parallelism)
or different GoPs (Groups of Pictures/Frames) to the vari-
ous processors (temporal parallelism) [2, 9], but it is usual
to consider the codification of each frame as a sequential
process.

On the other hand, Formal Methods are able to analyze
the potential improvement obtained when parallelizing al-
gorithms. In [10] and [14] the MPEG–2 video encoder
was modelled and analyzed by the authors by means of
the Markovian process algebra ROSA and and by timed-
arc Petri nets, respectively. There, we presented the per-
formance improvements on this algorithm when having two
processors.

In this paper we present an improvement for the encoder
by considering the parallelization within the encoding pro-
cess of each type of image, so we have modelled this encod-
ing algorithm with TAPNs, and we have concluded from
the analysis of the model that a better performance could
be obtained in the encoding process by introducing some
minor changes on the encoder. Specifically, we have com-
puted some bounds for the time required to encode each
type of image of a video sequence, and we have concluded
that some improvements can be introduced in the encoding
process of the B-images mainly, and that a full parallel ver-
sion of this algorithm could reduce the time requirements in
a magnitude order (reduction of about a 90%).

The paper is structured as follows. In Section 2 we
present the Timed-Arc Petri Nets and their semantics. In
Section 3 we describe how the MPEG–2 encoder works,
and we show in Section 4 a MTAPN that models this algo-
rithm and its analysis. The concluding part of the paper is
presented in Section 5.

2 Timed-Arc Petri Nets

We deal with timed-arc Petri nets, which have their to-
kens annotated with an age (a real value indicating the

elapsed time from its creation) and arcs connecting places
with transitions have associated a time interval, which lim-
its the age of the tokens that must be consumed to fire the
adjacent transition.

However, a transition is not forced to be fired when all
its preconditions contain tokens with an adequate age, and
the same is true even if the age of any of these tokens is
about to expire. More in general, in the model we consider1

there is not any kind of urgency, what we can interpret in the
sense that the model is reactive, as transitions will be only
fired when the environment requires it. But then, it can be
the case that the external context may lose the ability to fire
a transition if some needed tokens become too old. Even
more, it is possible that some tokens become dead, which
means definitely useless because their increasing age will
not allow in the future the firing of any of their postcondi-
tion transitions.

Definition 1 (Timed-arc Petri nets)
We define a timed-arc Petri net (TAPN) as a tuple2 ��������
	�����������������

, where
�

is a finite set of places,
	

is a
finite set of transitions (

����	 ��� ), � is the flow relation
(
� �!���#"$	%�'&(�)	*"+�

)), and times is a function that
associates a closed time interval to each arc

� ,-�/./�
in
�

, i.e.

���������10'�32 4658719;:!<>=? "1��<>=? &A@CB(DE�

When
���������F� ,-�/./� ��G HJI � HLK�M we write NLO � ,-�/./� to denote H O ,

for P �RQ �TS .
As usual for any HVU �W&X	 , we define the set of pre-

conditions of H by Y H#� @[Z U � &\	+2]�)Z;� H � U �^D ,
and analogously, we define the set of postconditions of H
by H Y � @[Z U �_&`	+2]� H �/Z
� U �^D .

As we previously mentioned, tokens are annotated with
real values, so markings are defined by means of multi-
sets on

< =? . More exactly, a marking a is a function:
a 0��b9;:dce��<>=? � where

ce��<>=? � denotes the set of fi-
nite multisets of non-negative real numbers. As usual, each
place is annotated with a certain number of tokens, but each
one of them has associated a non-negative real number (its
age). We will denote the set of markings of � by f � � � ,
and using classical set notation, we will denote the number
of tokens on a place

,
by
2 a � ,;�g2 .

As initial markings we only allow markings a such that
for all

, U � , and any HVhji we have a � ,;�]� H � �ki (i.e.,
the initial age of any token is 0). Then, we define marked
timed-arc Petri nets (MTAPN) as pairs

� � � a � , where � is
a timed-arc Petri net, and a is an initial marking on it. As
usual, from this initial marking we will obtain new mark-
ings, as the net evolves, either by firing transitions, or by
time elapsing. In consequence, given a non-zero marking,
even if we do not fire any transitions at all, starting from this

1Other proposals of Timed-arc Petri nets [7] enforce the firing of tran-
sitions with an earliest and maximal firing rule.

2We consider only arcs with weight 1 to simplify some definitions, but
the extension to general arcs with greater weights is straightforward.



marking we get an infinite reachability set of markings, due
to the token aging. These reachable markings will reflect
the state of the net at each instant of its evolution.

A timed-arc Petri net with an arbitrary marking can be
graphically represented by extending the usual representa-
tion of P/T nets with the corresponding time information. In
particular we will use the age of each token to represent it.
Therefore, MTAPNs have initially a finite collection of zero
values labelling each marked place.������
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Figure 1. Timed-arc Petri net modelling the
Producer-Consumer problem
Fig. 1 shows a MTAPN modelling a producer/consumer

system, where we represent by transition
. I the action cor-

responding to the manufacturing process of the producer,
which takes between 5 and 9 units of time, and by

. K the
action of including the generated object into the buffer. No-
tice that the initial tokens on

,/.
represent the capacity of

the buffer (3), and the arc connecting this place with
. K is

labelled by the interval 0 i ��B h , because these tokens
can be consumed at any instant in the future. Tokens on,21

represent the objects on the buffer which have not been
yet consumed. Transition

.43
models the action of taking out

an object from the buffer, which can occur at any instant.
Finally, transition

.65
models the processing that makes the

consumer for the objects extracted from the buffer, and this
action takes between 4 and 6 units of time.

Let us observe that if the enabling time for the firing of
one of these transitions (

. I or
.%5

) expires, the system even-
tually becomes deadlocked, because we obtain a dead token
either on

, I or on
,75

.
Let us now see how we can fire transitions, and how we

model the time elapsing.

Definition 2 (Firing rule)
Let �b� �����/	�� ���g����������� be a TAPN, a a marking on it,
and
. U 	 .

(i) We say that
.

is enabled at the marking a if and only
if: 8 , U Y .:9 H-;1U < =? such that a � ,;�]� H-; � hji:<
H-;�U ���������F� ,-�/./� , i.e., on each precondition of

.
we

have some token whose age belongs to
���������F� ,-�/./�

.

(ii) If
.

is enabled at a , it can be fired, and by its firing we
reach a marking a>= , defined as follows:

a = � ,;� � a � ,;�>9@?
A6� ,-�/./�CBD? = �).���,;��� 8 , U �

where both the subtraction and the addition operators
work on multisets, and:

�FEHGJI K/L%M6N%O PQ RTSVUXW�Y if K[Z]\6M^L UXW Z`_ba,c
d^e�I K/L%M6N
and UXW Zgf>I KhNi

otherwise

� ? = �).���,;� �kj � if
,:lU . Y@ i D otherwise

Thus, from each precondition place of
.

we remove a
token fulfilling (i), and we add a new token (0 aged) on
each postcondition place of

.
.

As usual, we denote these evolutions by a G .4m an= , but
it is noteworthy that these evolutions are in general
non-deterministic, because when we fire a transition.
, some of its precondition places could hold several

tokens with different ages that could be used to fire it.
Besides, we see that the firing of transitions does not
consume any time. Therefore, in order to model the
time elapsing we need the function age, defined below.
By applying it we age all the tokens of the net by the
same time:

(iii) The function oqp � 0 f � � � " < =? 9L: f ��rA� is
defined by:

oqp � � a � H �]� ,;�]�)Z
� �kj a � ,;�]�)Z 9 H � � s(Zgt H
i u �bv
�xwVy � �g�

The marking obtained from a after H units of time
without firing any transitions will be that given byoqp � � a � H � .

Although we have defined the evolution by firing sin-
gle transitions, this can be easily extended to the firing of
steps or bags of transitions; those transitions that could be
fired together in a single step could be also fired in se-
quence in any order, since no aging is produced by the fir-
ing of transitions. In this way we obtain step transitions
that we denote by a G z m a>= . Finally, by alternating step
transitions and time elapsing we can define a timed step se-
mantics, where timed step sequences are those sequences{ � a ? G z I m6|�} a I�~q~q~ a@� A IEG z � m6|�� a@� , where a$O are
markings, z O multisets of transitions and H O U < =? , in such
a way that a$O G z O = I m a�=O = I and a$O = I%� oqp � � a�=O = I � H O = I � .
Note that we allow H O ��i in order to capture the execution
in time zero of two causally related steps.

Then, given a MTAPN
� � � a ? � , we define G a ? m as the

set of reachable markings on � starting from a ? , and we
say that � is bounded if for every

, U � there exists � U��
such that for all a U1G a ? m we have

2 a � ,;�g2X� � .
A token on a place

,
at a marking a is said to be dead if

it can never be used to fire any transitions, i.e., it will remain
on its place forever, just growing up as time elapses. Thus,
we say that a marking is dead when either it has no tokens
or all its tokens are dead.



In a previous paper [13] we have shown that TAPNs have
a greater expressiveness than PNs, even although TAPNs
are not Turing complete, because they cannot correctly sim-
ulate a 2-counter machine. In that paper we proved that
reachability is undecidable for TAPNs. Other properties
that we have studied in a more recent paper [5] are cover-
ability, boundedness and detection of dead tokens, which
are all decidable for TAPNs. Decidability of coverabil-
ity has been also proved in [1] for an extended version of
TAPNs, in which all arcs can be annotated with bags of in-
tervals in � "1� � &R@CB(DE� .
3 MPEG–2 Digital Video Coding Standard

The ISO/IEC 13818–2 standard [8], commonly known as
MPEG–2, is a standard intended for a wide range of applica-
tions, including Video–on–Demand (VoD), High Definition
TV (HDTV) and video communications using broadband
networks.

The MPEG digital video coding techniques are statistical
in nature. Video sequences usually contain statistical redun-
dancies in both temporal and spatial directions. The basic
statistical property upon which MPEG compression tech-
niques rely is inter–pixel region correlation. The contents of
a particular pixel region can be predicted from nearby pixel
regions within the same frame (intra–frame coding) or from
pixel regions of a nearby frame (inter–frame coding).

Perhaps the ideal method for reducing temporal redun-
dancy is one that tracks every pixel from frame to frame.
However, this extensive search is computationally expen-
sive. Under the MPEG standards, this search is per-
formed by tracking the information within Q � " Q � pix-
els regions, called macroblocks. Given two contiguous
frames, �������	� �)./� and �������	� �).�9 Q � , for each macroblock
in �������	� �)./� , the coder determines the best matching mac-
roblock in �������	� �).^9 Q � and calculates the translation
of the picture macroblock between frames, obtaining the
motion vector. Using the corresponding macroblock from
�������	� �). 9 Q � , the temporal redundancy reduction proces-
sor generates a representation for �������	� �)./� that contains
only the motion vector and the prediction error (changes
between the two frames), see Fig. 2.

MvMv

MhMh

Search area

Motion
Vectors

Frame (t-1) Frame (t)

e(x,y,t)=I(x,y,t) - I(x+Mh,y+Mv,t-1)

Prediction
 error

Macroblock

I(x,y,t)

I(x+Mh,y+Mv,t-1)

Best match
macroblock

Figure 2. Motion vector and prediction error

This technique is called motion compensated prediction.
In order to reduce spatial redundancy a coding method,

DCT (Discrete Cosine Transform), is used. A major ob-
jective of this transform domain coding is to make small
enough as many transform coefficients as possible, so that
they are insignificant and need not to be coded for transmis-
sion. Low DCT coefficients are related to low spatial fre-
quencies within image blocks and high DCT coefficients to
high frequencies. This property is used to remove subjec-
tive redundancies contained in the image data, taking into
account the human visual systems criteria. Since the human
viewer is more sensitive to reconstruction error related to
low spatial frequencies than to high ones, a frequency adap-
tive weighting (quantization) of the coefficients, according
to the human visual perception is often employed to im-
prove the visual quality of the decoded images.

The combination of the two techniques described above,
temporal motion compensated prediction and transform do-
main coding, are the key elements of the MPEG coding.

The MPEG–2 has to achieve the requirement of random
access and high compression, thus this standard specifies
three types of compressed video frames/pictures: I pictures,
P pictures and B pictures. I pictures (intracoded pictures)
are coded with no reference to other frames, exploiting only
spatial correlation in a frame. They allow fast random ac-
cess but offer moderate compression. P pictures (predic-
tive coded pictures) are coded by using motion compensated
prediction of a previous I or P picture. The compression for
P pictures is higher than for I pictures. Finally, B pictures
(bidirectionally–predictive coded pictures) are obtained by
motion compensation from both past and future reference
frames (I or P pictures), and provide the highest degree of
compression.

A group of consecutive I, P and B pictures form a struc-
ture called Group of Pictures (GoP). A video sequence may
be seen, then, as a sequence of GoPs. The pictures may
be arranged in a sequence with a high degree of flexibility
depending on the applications requirements. Thus, a video
sequence coded using only I pictures allows the highest de-
gree of random access, but achieves the lowest compres-
sion. A sequence code with I and P pictures (e.g. IPP-
PIPPP. . . ) achieves moderate compression and certain de-
gree of random access. Finally, a sequence that incorporates
the three kinds of pictures (e.g. IBBPBBP. . . ) may achieve
high compression and reasonable random access, but also
increases the coding delay significantly.

In order to understand how the MPEG–2 encoder works
we will consider a GoP consisting of the frames IBBP3. De-
spite B pictures appear before P pictures, the coding order is
IPBB because B pictures require both past and future frames
of the original video sequence as references, see Fig. 3.

3Although the most common GoP is formed of the sequence
IBBPBBPBBPBBPBBP, the GoP configuration here considered has all
types of images and the study of the biggest one is quite long but sim-
ilar in essence to the one here presented, then we have chosen the GoP
IBBP.
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Figure 3. Encoding order for an IBBP GoP

First, for every kind of frame, an elementary compres-
sion technique which makes use of specific physiological
characteristics of human eye may be used: the human eye
is more sensitive to changes in brightness than to changes
in chromaticity. Therefore the MPEG–2 coding schema
first divide images into YUV components (one luminance
and two chrominance components). Then the chrominance
components are subsampled relative to the luminance com-
ponent with a ratio specific to particular applications (e.g.
4:1:1)

The first frame in a GoP (I picture) is encoded in intra
mode without references to any past or future frames. At
the encoder the DCT is applied to each macroblock and
then is uniformly quantized (Q). After quantization, it is
coded using a variable length code (VLC) and sent to the
output buffer. At the same time the reconstruction (IQ) of
all non–zero DCT coefficients belonging to one macroblock
and subsequent inverse DCT (IDCT) give us a compressed
I picture which is stored temporarily in the Frames Store
(FS), see Fig. 4.
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Figure 4. Block diagram for I pictures

If the input is coded either as P or B pictures, then the
encoder does not code the picture macroblocks directly. In-
stead, it codes the prediction errors and the motion vectors.

With P pictures, for each macroblock in the current pic-
ture, the motion estimation gives us the coordinates of the
macroblock in the I picture that best matches its character-
istics and thus, the motion vector may be calculated. The
motion compensated prediction error is obtained by sub-
tracting each pixel in a macroblock with its motion shifted
counterpart in the previous frame. The prediction error and
the motion vectors are coded (VLC) and sent to the output
buffer. As in the previous case, a compressed P picture is
stored in the Frames Store, see Fig. 5.

With B pictures, the motion estimation process is per-
formed twice: for a past picture (I picture in this case), and

for a future picture (P picture). Prediction error and both
motion vectors for each macroblock are coded (VLC) and
sent to the output buffer. It is not necessary to store in FS
the compressed B picture since it will never be taken as ref-
erence, see Fig. 6.
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Figure 5. Block diagram for P pictures
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4 Timed-Arc Petri Net modelling the
MPEG–2 encoding process of IBBP

The MATPN modelling the encoder is constructed by
components. We first show the net of Fig. 7 which cap-
tures the encoding process described in the block diagram
shown in Fig. 4, i.e., the Discrete Cosine Transforma-
tion/Quantization, DCT/Q, and both the Variable Length
Coding Process, VLC (then it will be sent to the output
buffer with no significative temporal cost), and the Quanti-
zation/Discrete Cosine Transformation Inverses, IQ/IDCT
of one I-frame (finally, it will be copied into the Frames
Store in order to be taken as reference for the encoding pro-
cess of next P and B frames until next I one).

In the same way, nets in Figs. 8 and 9 capture the encod-
ing process described in block diagrams of Figs. 5 and 6
respectively, which correspond with the encoding processes
of P and B frames.

The Timed-Arc Petri Net of Fig. 11 models the whole
MPEG–2 encoding algorithm4; The left-hand side of this
Fig. 11 describes the first part of the encoding algorithm,
which corresponds to the generation of both I and P encoded
pictures (but remember that even if P pictures are gener-
ated before the B pictures, they will appear the last in the

4For simplicity, we omit in all these pictures the label of the arcs when
they are labelled by vxwzy/{}| .



final video sequence). Once the places I-B1, I-B2, P-B1, P-
B2 are marked the second part of the net becomes activated
(right-hand side), which models the B1 and B2 picture en-
coding process. Iout (Pout resp.) represents the output of
an encoded I-picture (P-picture), while places B1out and
B2out represent the output of B1 and B2 pictures.

0

DCT_Q I

IQ_IDCTI VLC I

FS I

I

OUT I

<595,595>

<298,358><673,673>

<0,0> <0,0>

IoutI−B2I−B1I−P

Figure 7. Partial TAPN modelling the encoding
of frame I

VLC P

POUT

ESTP

COMPP

<32,32>

ERROR

DCT_Q

P

<521,521>

<0,0>

IQ_IDCT

<515,515>

Pout

<0,0>

FSP

P−B1 P−B2
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0 0

<0,0>

MV−P

Perror I−P P

<1180,1181>

Figure 8. Partial TAPN modelling the encoding
of frame P
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ESTB2
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ERROR B2

VLC B2

OUTB2

B2out

0 00 0

<2399,2400> <2418,2422>

<0,0>

<48,48>

<189,454>

<0,0> <0,0>

<189,454>

<521,521><521,521>

<0,0>

<48,48>

MV−B1 MV−B2

Figure 9. Partial TAPN modelling the encoding
of both B-frames

The time intervals that label the arcs connecting places
with transitions have been obtained from several real mea-
surements, by coding the “Composed” Video sequence.
This experiment has been repeated

� " Q[i times, and the
results being reported below are therefore the minimum
and the maximum of all these trials5. During these tri-
als, no other operations were taken place in our exper-
imental setup. The “Composed” Video sequence (for-
mat PAL CCIR601, 720x576 pixels) is a representative
video sequence which has several different motion levels,
and we have encoded it by using a completely software-
based MPEG–2 video encoder derived from that devel-
oped in Berkeley, which is freely available in ftp://mm-
ftp.cs.berkley.edu/pub/multimedia/mpeg/encode, other ver-
sions could be obtained from the MPEG Home Page,
http://www.mpeg.org.

In order to get the real values for the different elements of
the encoder we have included some patches into the source
code, which correspond with the beginning and the end of
the elementary actions that we have taken as transitions of

5These values were obtained in a single processor Pentium II - 350MHz
platform with 64MB RAM.



the MTAPN which captures the algorithm. The real values
thus obtained for I and P pictures being in the output buffer
(
����� .

and
� ��� .

resp.) are shown in Tab. 1, as well as the
times for encoding the complete GoP (both � ��� . places).

Picture Min Average Max
I 893 ms 918 ms 953 ms
P 3688 ms 3709 ms 3738 ms

GoP 11567 ms 11821 ms 12085 ms

Table 1. Measured real values

We may compute time the required to reach every place
of a TAPN, by constructing a state reachability graph ([13]).
With that process we obtain a time interval for every place
(Fig. 10 captures how the TAPN partially evolves when
time elapses).
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Figure 10. Partial TAPN evolution modelling
I-frame coding while time elapsing

In our case, for the TAPN modelling the MPEG–2 en-
coder we have obtained the results shown in Tab. 2.

Comparing these results with those shown in Tab. 1 we
can see that there are strong differences on the required
time for completing the encoding process of a GoP. For in-
stance, to complete the first GoP the measured values areG Q Q�� ��� �
	 � Q S i���� �
	 M while in the TAPN we have obtainedG � ��� S �
	 � �� � S �
	 M . These strong differences are due to
the important fact that the encoder only uses a single pro-
cessor, whereas our TAPN model captures all the intrinsic
parallelism of the encoding process, so that with the anal-
ysis of the TAPN we are obtaining the required times pro-
vided that we have as many processors as needed to take
advantage of this parallelism (for a single GoP two proces-
sors would be enough).

Let us now consider the encoding process of � GoPs,
according to the TAPN the whole encoding would takeG � ��� S B Q S � � � � � 9 Q � �
	 � �� � S B Q S � � � � � 9 Q � �
	 M ,
and thus, the average time for encoding each GoP would
converge to Q S � � �
	 . This can be interpreted as the time
needed to encode a GoP for an infinite video sequence pro-
vided that the number of processors is big enough.

There have been studied the processors requirements by
analyzing the MTAPN of Fig. 11 and the results so pro-
vided are given in the map of Fig. 12, which shows the
number of processors required as function of the encoding
time (it can be observed that at the beginning is required a

single processor until � �  � �
	 when the place � ?%	 A����
is reached, from this time to �  i i �
	 two processors are
needed until place

����� .
is reached then one of the procs. is

released ~q~q~ from � � ��� S �
	 on, when the couple of procs.
which are encoding the first pair of B images are released,
the procs. requirement map repeats the sequence with a pe-
riod of � Q S � � �
	 ) according to the TAPN of Fig. 11, i.e.
by exploiting all the possible parallelism of the encoding
process.
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Figure 12. Graph relating the number of re-
quired processors and the encoding time
(ms)

From that figure we conclude that the best performance
with the GoP distribution IBBP, could be obtained with
“only” 10 processors.

5 Conclusions and Future Work
We have presented an application of Formal Methods,

specifically Timed-Arc Petri Nets, to the performance analy
sis of a real algorithm for video compressing, the MPEG-2.

The main conclusion from this analysis is that the per-
formance of the encoding algorithm for a single GoP can be
improved by exploiting the potential parallelism which can
support the encoding process of any GoP, thus with some
minor changes in the code (mainly by encoding both B-
images in parallel) the performance can be improved in a
factor near to 50% by using two processors.

Moreover, with an encoder allowing all the possible par-
allelism, according to Fig. 11, this improving factor could
be increased about to 90%; specifically we have obtained an
average time of Q S � � �
	 ( Q S i���� �
	 measured in Tab. 1 for
the original, sequential, version of MPEG–2) for encoding
each single GoP of an infinite video sequence, provided that
we have as many processors as required, 10 in this case.

The authors’ current work is mainly focused on:
� Implementing the proposed improvements on a real

set-up made up of eleven processors Pentium-IV.

� Analyzing some other GoP configurations in order to
get the appropriate balance among compression factor,
random access capability, processors requirements and
time performance.



Picture Min 1st GoP Average 1st GoP Max 1st GoP Min Nth GoP Average Nth GoP Max Nth GoP
I 893 ms 918 ms 953 ms 893 + 1268 * (N-1) ms 918 + 1268 * (N-1) ms 953 + 1268 * (N-1) ms
P 3379 ms 3386 ms 3391 ms 3379 + 1268 * (N-1) ms 3386 + 1268 * (N-1) ms 3391 + 1268 * (N-1) ms

GoP 6672 ms 6828 ms 6962 ms 6672 + 1268 * (N-1) ms 6828 + 1268 * (N-1) ms 6962 + 1268 * (N-1) ms

Table 2. Values obtained from the TAPN
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Figure 11. TAPN which models the MPEG–2 encoding process of a GoP
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