
Modeling Context-Aware RBAC Models for Business Processes in

Ubiquitous Computing Environments

Sigrid Schefer-Wenzl, Mark Strembeck

Institute for Information Systems and New Media

Vienna University of Economics and Business (WU Vienna), Austria

firstname.lastname@wu.ac.at

Abstract—With ubiquitous computing technologies, business
processes become more mobile and distributed and are exe-
cuted in varying contexts. Context-aware access control mech-
anisms are an important prerequisite to protect sensitive data
and services in secure ubiquitous computing environments. In
an IT-supported workflow, process-related context constraints
are a means to consider context information in access control
decisions. A context constraint specifies that certain conditions
must be fulfilled to permit the execution of a particular task.
However, standard process modeling languages do not support
the notion of context constraints in business processes. In this
paper, we integrate context constraints with process-related
role-based access control (RBAC) models and thereby support
context-dependent task execution.

Keywords-access control; business process modeling; context
constraints; UML;

I. INTRODUCTION

Business processes consist of tasks which are performed

to reach certain corporate goals (see, e.g., [2]). In recent

years, the rising popularity of ubiquitous computing tech-

nologies led to increasingly flexible business environments.

Therefore, ubiquitous technologies also have a strong im-

pact on corresponding business processes, such as inven-

tory management or sales-oriented processes [20]. Many

processes become more mobile, flexible, and distributed

and are executed in different contexts [19]. They may be

executed at varying places, times, and by different people or

devices. To protect sensitive data and services, context-aware

security mechanisms have been identified as a prerequisite

for secure ubiquitous computing (see, e.g., [11], [12]). One

important security aspect is access control which deals with

the elicitation, specification, maintenance, and enforcement

of authorization policies in software-based systems (see, e.g.,

[22]). In this paper, we focus on context-aware access control

in a business process context.

In an IT-supported workflow, process-related context con-

straints are a means to consider context information in

access control decisions (see, e.g., [27]). Typical examples

for context constraints in organizational settings regard the

temporal or spatial context of task execution, user-specific

attributes, or the task execution history of a user (see, e.g.,

[7]). Yet, standard process modeling languages, such as

BPMN [17] or UML Activity diagrams [18], do not provide

native language support to model process-related context

constraints.

One objective of our research is to define process-related

context constraints via native modeling language constructs.

Usually, process models focus on the process-flow per-

spective and are decoupled from access control-relevant

context information. In practice, the lack of native modeling

constructs for context constraints results in a number of

workarounds [19], for example: Corresponding context con-

straints become part of the control flow by including several

decision nodes, such as ”check if location is Vancouver” or

”check if user is registered”. As a result, process models

become larger and more complex to read. Alternatively,

multiple process models for different contextual scenarios

are designed, leading to highly redundant models.

In recent years, role-based access control (RBAC) [8],

[21] has developed into a de facto standard for access

control in both, research and industry. In RBAC, roles

correspond to different job-positions and scopes of duty

within a particular organization or information system [25].

Access permissions are assigned to roles according to the

tasks a role has to accomplish. Human users and other active

entities are assigned to roles. Thereby, each subject acquires

all permissions necessary to fulfill its duties via his/her role

memberships. In addition, RBAC supports the definition of

context constraints on various parts of an RBAC model (see,

e.g., [9], [27]).

In this paper, we integrate the notion of context constraints

into process-related RBAC models [26] and thereby support

context-dependent task execution. We use a generic context

concept where constraints can be defined for any type of

context information that can be tracked in an information

system. To achieve this, we formally embed RBAC context

constraints into a business process context. Based on the

formal approach, we define a corresponding extension for a

standard process modeling language. In particular, we define

a UML extension for the integrated modeling of processes,

RBAC concepts, and context constraints via extended UML2

Activity diagrams. Our approach supports the complete and

correct mapping of process definitions and related context-

aware access control policies to corresponding software

systems. This is essential to assure consistency between

modeling-level specifications and software systems enforc-

ing the respective access control policies. Tool-support for

the enforcement of context-aware RBAC models is inte-

grated into the xoRBAC software component [27].

This paper is structured accordingly. Section II introduces

our formal metamodel for context-aware RBAC models. The

corresponding UML2 extension is defined in Section III.

Next, Section IV discusses related work, before Section V

concludes the paper.

II. CONTEXT-AWARE RBAC MODELS

Each task in a process (e.g., to sign a contract) is typically

associated with certain access permissions (e.g., to read and

write the contract document). Therefore, subjects partici-

pating in a workflow, i.e. human users or software-agents,

must be authorized to perform the tasks needed to complete

the process (see, e.g., [9], [15]). A role is an abstraction

containing the tasks and associated permissions of a certain

subject-type [25]. The left-hand side of Figure 1 illustrates

the essential relations between these elements in process-

related RBAC models (see [26]).

Tasks defined in business processes are always performed

within a certain context. These contextual attributes, e.g.,

time, location, or the executing subject, may influence

access control decisions. Thus, depending on the context,

different authorization rules might apply for executing a

particular task. A context constraint is a modeling-level

concept defining that certain contextual attributes must meet

certain predefined conditions to permit the execution of a

specific task [27]. In particular, context constraints consist

of context conditions that include context attributes and

context functions: A context attribute represents a certain

property of the environment whose actual value might

change dynamically (e.g., time, date, location). For each

context attribute, a context function exists that can obtain

the current value of a specific context attribute (e.g., date()

returns the current date). A context condition is a boolean

expression that restricts the permitted values of a context

attribute (e.g., date > 01/01/2012).

In this paper, we focus on the modeling of context-aware

RBAC models for business processes. For this purpose, we

formally embed context constraints into a business process

modeling context. In Figure 1, the metamodel for process-

related RBAC models (see [26]) is extended with context

constraints. A process-related context constraint is associated

with a task and one or more context conditions. All context

conditions must evaluate to true in order for the context

constraint to be fulfilled. Each context condition consists of

an operator, e.g., an infix operator, such as =,≥, >,<,≤, 6=,

and two or more operands. Hereby, one of the operands

refers to a certain context attribute and the other operands

are either context attributes or constant values (e.g., current-

Location = Vancouver). Moreover, the type and range of

values for each operand and for each operator is determined

Figure 1. Extended metamodel for context-aware RBAC models

via its domain type (e.g., boolean, date, integer). Definition 1

formally specifies the essential elements of the extended

metamodel and their basic interrelations.

Definition 1: (Context-Aware Business Activity RBAC

Model). Let cBRM = (E,Q,D,CX) be a Context-Aware

Business Activity RBAC Model, where E refers to the

pairwise disjoint sets of the metamodel, Q to mappings that

establish relationships, D to binding and mutual exclusion

constraints, and CX to mappings for context constraints.

The sets E of the Context-Aware Business Activity

RBAC Model are:

• An element of S is called Subject. S 6= ∅.

• An element of R is called Role. R 6= ∅.

• An element of PT is called Process Type. PT 6= ∅.

• An element of PI is called Process Instance.

• An element of TT is called Task Type. TT 6= ∅.

• An element of TI is called Task Instance.

• An element of CA is called Context Attribute. CA 6= ∅.

• An element of CV is called Constant Value. CV 6= ∅.

• An element of OD is called Operand. OD 6= ∅.

• An element of DM is called Domain Type. DM 6= ∅.

• An element of OT is called Operator. OT 6= ∅.

• An element of CD is called Context Condition.

• An element of CC is called Context Constraint.

For the mappings of the Business Activity RBAC Model

(Q = rh∪rsa∪es∪er∪tra∪ti, D = sb∪rb∪sme∪dme) see

[26]. Below, we define the additional mappings for context

constraints: CX = dmod ∪ dmot ∪ odcd ∪ otcd ∪ cond ∪
fulfilledCD ∪ linkedCD ∪ fulfilledCC ∪ linkedCC (P
refers to the power set):

1) An operand is either a context attribute or a constant

value: ∀od ∈ OD : od ∈ CA ∨ od ∈ CV .

2) Each operand has a certain domain type which deter-

mines the type and range of values for this operand

(e.g., boolean, date, integer). For example, the context

attribute currentDate has the domain type date. Note

that each operand has exactly one domain type: The

mapping dmod : OD 7→ DM is called operand-

domain type. For dmod(od) = dm, we call od ∈ OD

operand and dm ∈ DM the domain type specified for

an operand.

3) In a context condition, an operator is applied to

the operands. In contrast to operands, operators may

be linked to multiple domain types. Consider, e.g.,

the lower-eqal (≤) operator which may be used to

compare numbers or dates and thus is linked to the do-

mains: integer, real, date, etc. Formally: The mapping

dmot : OT 7→ P(DM) is called operator-domain

types. For dmot(ot) = DMot, we call ot ∈ OT

operator and DMot ⊆ DM the set of domain types

specified for an operator.

4) Context conditions are predicates that consist of

operands and operators. Each context condition con-

tains one operator and the number of operands re-

quired by this operator. In the example condition ”age

> 18”, the context attribute age and the constant value

18 are the operands, whereas > is the operator.

a) The mapping odcd : CD 7→ P(OD) is called

context condition operands. For odcd(cd) =
ODcd, we call cd ∈ CD context condition and

ODcd ⊆ OD is the set of operands included in

this condition.

b) The mapping otcd : CD 7→ OT is called context

condition operator. For otcd(cd) = ot, we call

cd ∈ CD context condition and ot ∈ OT is the

operator included in this condition.

c) The mapping cond : (P(OD) × OT) 7→ CD is

called context condition. For cond(ODcd, ot) =
cd, we call ODcd ⊆ OD the set of operands

included in this condition, ot ∈ OT is called op-

erator, and cd ∈ CD is called context condition.

5) Within each context condition, all operands must have

the same domain type: ∀cdx ∈ CD : ∀odx, ody ∈
odcd(cdx) : dmod(odx) = dmod(ody)

6) Within each context condition, the domain type of the

operands must correspond to the domain type of the

operator. Otherwise, the operator cannot be applied on

the operands: ∀cdx ∈ CD : ∀odx ∈ odcd(cdx), ot ∈
otcd(cdx) : dmod(odx) ∈ dmot(ot)

7) A context condition must contain at least one context

attribute: ∀cdx ∈ CD : ∃odx ∈ odcd(cdx) : odx ∈
CA

8) Context conditions are boolean expressions that

are fulfilled iff the operator applied to the corre-

sponding operands evaluates to true: The mapping

fulfilledCD : CD 7→ BOOLEAN is called con-

text condition fulfillment. For fulfilledCD(cd) =
boolean, we call cd ∈ CD context condition. The

mapping follows a two-valued logic returning exactly

one truth value. Thus, the fulfilledCD mapping re-

turns true iff the operator applied on the corresponding

operands evaluates to true. Otherwise, it returns false.

9) A context constraint is linked to one or more context

conditions: The mapping linkedCD : CC 7→ P(CD)
is called context condition to constraint linkage. For

linkedCD(cc) = CDCC , we call cc ∈ CC context

constraint and CDCC ⊆ CD the set of conditions

linked to this context constraint.

10) A context constraint is fulfilled iff all linked conditions

evaluate to true: The mapping fulfilledCC : CC 7→
BOOLEAN is called context constraint fulfillment.

For fulfilledCC(cc) = boolean, we call cc ∈ CC

context constraint. The mapping follows a two-valued

logic returning exactly one truth value. Thus, the

fulfilledCC mapping returns true iff all conditions

linked to the context constraint are true. Otherwise, it

returns false. fulfilledCC(ccx) = true ⇔ ∀cdx ∈
linkedCD(ccx) : fulfilledCD(cdx) = true.

11) Context constraints are linked to task types: The

mapping linkedCC : TT 7→ P(CC) is called context

constraint to task linkage. For linkedCC(t) = CCT

we call t ∈ TT constrained task and CCT ⊆ CC the

set of context constraints linked to this task.

Definition 2 specifies the process flow model for Context-

Aware Business Activities as a labeled transition system

(see, e.g., [6], [14]).

Definition 2: (Context-Aware Business Activity Pro-

cess Flow Model). A Process Flow Model PFM = (N,A)
where N = TT ∪CF ∪CJ ∪CD ∪CM ∪{start, end} refers

to pairwise disjoint sets and A ⊆ N ×N .

An element of N is called node and an element of A

is called arc. Elements of TT are called task types. An

element of C = CF ∪CJ ∪CD ∪CM is called control node.

An element of CF is called fork, an element of CJ join,

an element of CD decision, and an element of CM merge.

start is called start node and end is called end node. All

nodes n ∈ N are on a path from start to end.

Due to page restriction, we skip the definitions regarding

the execution history, the state of a process instance, and the

reachability graph (see also [26]). These definitions will be

provided in an extended version of this paper.

III. MODELING CONTEXT CONSTRAINTS IN UML

The Unified Modeling Language (UML) [18] is the de

facto standard for the specification of information systems.

Modeling support for context constraints via a standard

notation can help to bridge the communication gap be-

tween software engineers, security experts, experts of the

application domain, and other stakeholders (see, e.g., [13]).

Our modeling approach for context-aware access control

concepts acts as an enabler to document and communicate

how access control in general and context constraints in

particular affect a business process.

Figure 2. UML2 metamodel extension ContextAwareBusinessActivities

UML2 Activity models offer a process modeling language

that allows to model the control and object flows between

different actions. The main element of an Activity diagram

is an Activity. Its behavior is defined by a decomposition

into different Actions. An UML2 Activity thus models a

process while the Actions included in the Activity are used

to model tasks (for details on UML2 Activity models, see

[18]).

In addition, we use the Object Constraint Language (OCL)

[16] to formally define the semantics of the newly introduced

UML elements and to ensure the consistency of the extended

UML models. Corresponding software tools can enforce

OCL invariants on the modeling-level as well as in runtime

models. Thereby, we can ensure the consistency of our

extended UML models with the definitions provided in

Section II. However, note that our general approach does

not depend on the UML and may also be applied to extend

other process modeling languages.

The UML standard provides two options to adapt its meta-

model to a specific area of application [18]: a) defining a

UML profile specification using stereotypes, tag definitions,

and constraints, which do not change the UML metamodel

but extend existing UML meta-classes for special domains;

b) extending the UML metamodel, which allows for the defi-

nition of new elements with customized semantics. However,

UML profiles are not a first-class extension mechanism (see

[18, page 660]). Moreover, the newly defined modeling el-

ements for context constraints require new semantics which

are not available in the UML metamodel. Thus, we introduce

the UML metamodel extension ContextAwareBusinessActiv-

ities for modeling process-related context constraints (see

Figure 2). Our UML extension extends the BusinessActivities

package [26], which provides UML modeling support for

process-related RBAC models.

A BusinessActivity [26] is a special UML Activity (see

Figure 2). A BusinessAction corresponds to a task and com-

prises all permissions to perform the task. Roles and Sub-

jects are linked to BusinessActions directly or transitively.

Furthermore, mutual exclusion and binding constraints can

be defined on BusinessActions (see [26] for further details).

For integrating context constraints into process-related

RBAC models according to the definitions provided in

Section II, we introduce the following new meta classes: The

ContextConstraint meta class is a special UML2 Classifier

(from the Kernel package, see [18] and Figure 2). Each

ContextConstraint is linked to one or more BusinessActions

and one or more ContextConditions indicating that the

constrained BusinessAction can only be performed if all

conditions specified in the ContextConstraint are fulfilled.

In UML, each Classifier may include an arbitrary num-

ber of Operations (see [18]). A ContextConstraint de-

fines one mandatory Operation called fulfilledCC . For each

ContextConstraint, the corresponding fulfilledCC Operation

checks if all linked ContextConditions are fulfilled and

returns either true or false (see Constraint 4 listed at the

end of this Section).

A ContextCondition is also defined as special type of

Classifier. Moreover, each ContextCondition contains one

UML Expression. According to [18], each Expression can

define a set of operands of the type ValueSpecification. An

Expression thereby represents an operator which is applied

to those operands, e.g., ≥ (size, 5). A ContextCondition can

include operands of the types ContextAttribute (e.g., age,

size, date) or ConstantValue (e.g., constant integer numbers

or Strings) (see Constraint 1). At least one of the operands

included in a ContextCondition must be a ContextAttribute

(see Constraint 2).

In addition, each ContextCondition includes one manda-

tory Operation called fulfilledCD and an arbitrary num-

ber of other Operations. For each ContextCondition, the

corresponding fulfilledCD Operation checks if the context

condition is fulfilled and returns either true or false (see

Constraint 5).

A Domain is a subtype of the UML2 DataType meta

class (see [18]). Operands are linked to a certain domain.

Similarly, the operator defined in the Expression of a

ContextCondition is linked to one or more domains (see

Figure 2). Within the same ContextCondition, the domain

of the operands needs to correspond to the domain of the

operator (see Constraint 3). Otherwise, a ContextCondition

can not be evaluated.

Figure 3 shows presentation options to visualize the re-

lations between BusinessActions and ContextConstraints as

well as between ContextConstraints and ContextConditions.

Note that these relations are formally defined through our

UML metamodel extension and therefore exist independent

of their actual graphical representation. An example process

modeled with our UML extension will be provided in an

extended version of this paper.

Action1 B

CC: Constraint1

Constraint1 CC

CD: Condition1,
 Condition2

a) b)

Figure 3. Visualizing (a) context-constrained BusinessActions and (b)
ContextConstraints

Constraint 1: The operands specified in a ContextCondi-

tion are either ContextAttributes or ConstantValues:
context ContextCondition inv:

self.expression.operand.oclAsType(OperandType)->forAll(o |

o.oclIsKindOf(ContextAttribute) or

o.oclIsKindOf(ConstantValue))

Constraint 2: Each ContextCondition contains at least

one ContextAttribute:
context ContextCondition inv:

self.expression.operand.oclAsType(OperandType)->exists(o |

o.oclIsKindOf(ContextAttribute))

Constraint 3: Within the same ContextCondition, all

operands must have the same domain. Moreover, the

operands’ domain has to correspond to one of the operator’s

domains:
context ContextCondition inv:

self.expression.operand->forAll(od1, od2 |

od1.oclAsType(OperandType).domain.name =

od2.oclAsType(OperandType).domain.name and

self.expression.domain->exists(d |

d.name = od1.oclAsType(OperandType).domain.name))

Moreover, the following two constraints must be satisfied

which cannot be expressed in OCL (see [18]):

Constraint 4: The fulfilledCC Operations must evaluate

to true to fulfill the corresponding ContextConstraint.

Constraint 5: The fulfilledCD Operations must evaluate

to true to fulfill the corresponding ContextCondition.

IV. RELATED WORK

Several approaches formally integrate different types of

context constraints into RBAC. The RBAC model was

extended to consider temporal aspects in access control

decision (see, e.g. [3]) or the users’ location (see, e.g. [4],

[5]). In [9], the integration of contextual information with

team-based access control (TMAC) is discussed. Hereby,

users obtain permissions according to their membership in

roles and teams. In [10], a context-aware RBAC model is

presented, where context constraints are defined on different

parts of the model. Moreover, role revocation is supported,

in case values of the user attributes no longer satisfy the

constraints.

The notion of context constraints in workflow environ-

ments has been studied, e.g., in the workflow authorization

model (WAM) [1]. In this approach, subjects only can access

objects during the execution of a task. Another approach for

contextual security policies in organizational environments

is presented in [7], where context is viewed as an extra

condition that must be satisfied to activate a security rule.

However, only certain types of contextual attributes, such as

time or location are considered.

Other approaches for modeling context exist for various

domains. There are some UML-based modeling approaches

for considering context constraints in mobile or distributed

systems. In contrast to our modeling approach, none of these

works considers the business process/workflow perspective.

In [24], a UML profile for modeling context for mobile

distributed systems via special UML class diagrams was

presented. The ContextUML language [23] is another UML

profile for modeling context-aware Web-services.

To the best of our knowledge, our paper presents the first

attempt to address RBAC context constraints from a business

process modeling perspective. While many sophisticated ap-

proaches exist that formally integrate process-related context

constraints into access control models, corresponding pro-

cess modeling support is largely missing. Our approach com-

plements existing context modeling approaches by providing

modeling support for business processes and corresponding

contextual authorization constraints in a consolidated mod-

eling language.

V. CONCLUSION

This paper was motivated by the need for considering

context-aware access control mechanisms in business pro-

cesses. This is especially important due to the rising im-

portance of ubiquitous computing technologies in business

environments. We defined a formal metamodel to inte-

grate context constraints into process-related RBAC models.

Based on these definitions, we extended the UML to allow

for the model-based specification of context-aware RBAC

models for business processes in UML Activity diagrams.

Moreover, we apply the Object Constraint Language (OCL)

to define the semantics of the newly introduced UML meta

classes. Our extension can be integrated with other UML-

based approaches or tools.

REFERENCES

[1] N. R. Adam, V. Atluri, and W.-K. Huang. Modeling and
Analysis of Workflows Using Petri Nets. Journal of Intelligent
Information Systems, 10(2), 1998.

[2] J. Becker, M. Rosemann, and C. v. Uthmann. Guidelines of
Business Process Modeling. In Business Process Manage-
ment, Models, Techniques, and Empirical Studies, London,
UK, 2000. Springer.

[3] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A Temporal
Role-based Access Control Model. ACM Transactions on
Information and System Security (TISSEC), 4(3), 2001.

[4] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. GEO-
RBAC: A Spatially Aware RBAC. In Proc. of the tenth
ACM Symposium on Access control models and technologies
(SACMAT), 2005.

[5] A. Corradi, R. Montanari, and D. Tibaldi. Context-Based
Access Control Management in Ubiquitous Environments. In
Proc. of the Network Computing and Applications (NCA),
Third IEEE International Symposium, 2004.

[6] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev.
Deriving Petri Nets from Finite Transition Systems. IEEE
Transactions on Computers, 47(8), 1998.

[7] F. Cuppens and N. Cuppens-Boulahia. Modeling Contextual
Security Policies. International Journal of Information Secu-
rity, 7(4), July 2008.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-
Based Access Control. Artech House, second edition, 2007.

[9] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas.
Flexible Team-Based Access Control Using Contexts. In
Proc. of the sixth ACM symposium on Access control models
and technologies (SACMAT), May 2001.

[10] D. Kulkarni and A. Tripathi. Context-Aware Role-Based
Access Control in Pervasive Computing Systems. In Proc.
of the 13th ACM symposium on Access control models and
technologies (SACMAT), 2008.

[11] N. Leavitt. Mobile Security: Finally a Serious Problem?
Computer, 44(6), 2011.

[12] C. Miller. Mobile Attacks and Defence. IEEE Security and
Privacy, 9(4), 2011.

[13] H. Mouratidis and J. Jürjens. From Goal-Driven Security
Requirements Engineering to Secure Design. International
Journal of Intelligent Systems, 25(8), 2010.

[14] T. Murata. Petri Nets: Properties, Analysis and Applications.
In Proceedings of the IEEE, 1989.

[15] S. Oh and S. Park. Task-Role-Based Access Control Model.
Information Systems, 28(6), 2003.

[16] OMG. Object Constraint Language Specification. available
at: http://www.omg.org/spec/OCL/, February 2010. Version
2.2, formal/2010-02-01, Object Management Group.

[17] OMG. Business Process Modeling And Notation (BPMN).
available at: http://www.omg.org/spec/BPMN/, January 2011.
Version 2.0, formal/2011-01-03, Object Management Group.

[18] OMG. Unified Modeling Language (OMG UML): Su-
perstructure. available at: http://www.omg.org/spec/UML/,
August 2011. Version 2.4.1, formal/2011-08-05, Object
Management Group.

[19] M. Rosemann, J. C. Recker, and C. Flender. Contextualisation
of Business Processes. International Journal of Business
Process Integration and Management, 3(1), 2008.

[20] G. Roussos. Ubiquitous Computing for Electronic Business.
In G. Roussos, editor, Ubiquitous and Pervasive Commerce,
Computer Communications and Networks. Springer London,
London, UK, 2006.

[21] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2), 1996.

[22] R. S. Sandhu and P. Samarati. Access Control: Principles and
Practice. IEEE Communications Magazine, 32(9), September
1994.

[23] Q. Z. Sheng and B. Benatallah. ContextUML: A UML-
Based Modeling Language for Model-Driven Development
of Context-Aware Web Services Development. In Proc. of
the International Conference on Mobile Business, 2005.

[24] C. Simons. CMP: A UML Context Modeling Profile for Mo-
bile Distributed Systems. In Proc. of the 40th Annual Hawaii
International Conference on System Sciences (HICSS), 2007.

[25] M. Strembeck. Scenario-Driven Role Engineering. IEEE
Security & Privacy, 8(1), 2010.

[26] M. Strembeck and J. Mendling. Modeling Process-related
RBAC Models with Extended UML Activity Models. Infor-
mation and Software Technology, 53(5), 2011.

[27] M. Strembeck and G. Neumann. An Integrated Approach
to Engineer and Enforce Context Constraints in RBAC En-
vironments. ACM Transactions on Information and System
Security (TISSEC), 7(3), 2004.

