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Abstract

In this study, we propose a novel scene descriptor for visual place recognition. Unlike popular bag-of-words
scene descriptors which rely on a library of vector quantized visual features, our proposed descriptor is based on
a library of raw image data, such as publicly available photo collections from Google StreetView and Flickr. The
library images need not to be associated with spatial information regarding the viewpoint and orientation of the
scene. As a result, these images are cheaper than the database images; in addition, they are readily available.
Our proposed descriptor directly mines the image library to discover landmarks (i.e., image patches) that suitably
match an input query/database image. The discovered landmarks are then compactly described by their pose and
shape (i.e., library image ID, bounding boxes) and used as a compact discriminative scene descriptor for the
input image. We evaluate the effectiveness of our scene description framework by comparing its performance to
that of previous approaches.

1 Introduction

Scene description is an important first stage in visual place recognition (VPR), which allows one to search
through a pre-built image database to find visually similar views. The most popular scene description method
is to translate each image into a bag of vector-quantized visual features, termed as visual words, and then
apply document retrieval techniques that are based on the bag-of-words document model (BoW) [1]. Many
recent VPR systems are based on the BoW scene description scheme. Despite its computational efficiency and
robustness, these BoW scene descriptor -based VPR systems suffer from vector quantization errors, and often
fail to handle the appearance changes across views that appear in practice [2].

In this study, we address this issue by leveraging image based prior. Unlike popular BoW scene descriptors
which rely on a library of vector quantized visual features, our proposed method is based on a library of raw
image data, such as publicly available photo collections from Google StreetView and Flickr. These library
images need not be associated with spatial information such as the viewpoint and orientation of the scene, and
are thus cheaper than the database images; furthermore, these library images are readily available, which is
an added advantage. In our approach, the descriptor directly mines the image library to identify landmarks
(i.e., image patches) that suitably match an input query/database image. The discovered landmarks are then
compactly described by their pose and shape, i.e., library image ID, bounding boxes (BB), and used as a compact
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discriminative scene descriptor for the input image. We evaluate the effectiveness of our scene description
framework by comparing its performance to that of previous approaches.

The problem associated with conventional scene descriptors for VPR have been studied extensively. Lo-
cal feature approaches such as BoW scene descriptors have been widely studied considering various aspects,
including self-similarity of images [3], quantization errors [4], query expansion [5], database augmentation [6],
vocabulary tree [7], global spatial geometric verification as post-processing [8], and pyramid matching to cap-
ture spatial context [9]. Previous researches on VPR have shown that the BoW scene model is not sufficiently
discriminative and is often unsuccessful at capturing the appearance changes across views [2]. Global feature
approaches such as GIST feature descriptor [10] (in which a scene is represented by a single global feature
vector) focus on the compactness of scene description and have high matching speeds. Other possible represen-
tations include those that describe a scene as a collection of meaningful parts, such as object models [11] and
part models [12]. Although these approaches may potentially provide rich information about a scene, existing
techniques rely on a large amount of training examples to learn about the models under supervision. Note that
our use of a publicly available photo collection (e.g., Flickr) is different from that of large-scale geo-localization
[13] where the collection is directly utilized as the database rather than a library.

This study is motivated by the authors’ previuos works on a novel data mining approach to scene description
[14, 15, 16]. [14] built a prototype method called “common landmark discovery”, in which landmark objects
are mined through common pattern discovery (CPD) between an input image and known reference images.
This framework has been further extended for large-scale visual place recognition by introducing efficient CPD
techniques in [15]. The data mining approach has been utilized for single-view cross-season place recognition
in [16], where objects whose appearance remain the same across seasons are utilized as valid landmarks. The
effectiveness of the scene description framework was evaluated by comparing its performance to that of previous
BoW approaches, and by adapting the Naive Bayes Nearest neighbor (NBNN) distance metric [17] to our scene
description framework, (“NBNN scene descriptor”). In contrast, the current study further investigates the
effectiveness of the proposed approach from a novel perspective of landmark mining.

2 VPR Framework

The VPR framework consists of three main steps, including scene parsing, scene description, and scene retrieval.
First, during scene parsing, an input scene is analyzed, and landmarks are discovered that effectively explain
the input image. Second, the framework describes the input scene using IDs of the library images and BBs
that crop landmark objects within each library image. Scene descriptors are also computed for all images in
the image database. Finally, the third step involves the retrieval of database images using the computed scene
descriptors as the query.

For the above mentioned method, we assume a dictionary or library of random Lo view images to be given.
The library images need not required associated with spatial information such as the viewpoint and orientation.
A small subset of L(L ≤ Lo) appropriate library images that are most similar to a given input image are selected
and used to interpret the image. Our experimental results suggest that high recognition performance tends to
be associated with the coverage of the database images provided by these library images.

2.1 Scene Parsing

We consider scene parsing as data mining over the image library. Our scheme begins by over-segmenting the
input scene image into a set of R superpixels and clustering them into a set of K scene parts, which will serve
as landmark candidates. Then, it evaluates the usefulness of each landmark region in terms of the saliency
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of the region. It selects K landmark regions with the highest usefulness score, and translates each of these
into a compact VLAD code. VLAD codes are also computed for each landmark for all images in the image
library. Then, the image library is searched using the K VLAD codes as query, and a score is assigned to
each library image in terms of the sum of the reverse rank

∑K

i=1
1/ri of the individual VLAD-based ranking

results ri(i = 1, · · · ,K). For image segmentation, R = 72 superpixels are produced by SLIC superpixel [18],
and clustered into 2R − 1 landmark regions using hierarchical region clustering method provided in [19]. For
saliency evaluation, the PCA-based distinctiveness score that has been described in [20] is evaluated for all
the SIFTs belonging to the region and these are summed up to obtain the region’s saliency. To calculate the
VLAD codes, method used in [21] is employed. The number of landmarks K per image controls the reliability-
efficiency tradeoff of our data mining and currently was set to a relatively high value K = 40 (i.e., put weights
on reliability) during our study.

2.2 Scene Description

We describe a scene using L landmarks and each landmark is described as a pairing of a landmark image ID
and a BB of landmark region with respect to the landmark image. The procedure for discovering landmark
images was as discussed in the previous subsection. However, the problem of determining the BB has not been
addressed yet. In the proposed method, we extract sets of SIFT features from the input and the library images,
FQ and FL, in addition, the nearest point to each f ∈ FQ among the FL points in the 128-dim SIFT descriptor
space, and then use keypoints {(x, y)} of the nearest point to compute the BB. For noise reduction, only the
middle 80% x (or y) values are used for the computation after all the x (or y) values are sorted numerically. As
a consequence, our scene descriptor is of the form:

{〈Ii, Bi〉}
L

i=1
, (1)

where Ii is the ID of landmark image, Bi is the BB consisting of the top left and the bottom right node,
(xmin

i , ymin
i ) and (xmax

i , ymax
i ), of BB.

2.3 Scene Retrieval

In this final step, we search the image database and score each database image using the scene descriptor. To
build the database, the image ID Ii with the BB Bi for each database image is stored in an inverted file using
the element Ii as index. This structure is an array of Lo inverted lists, one per library image ID. For database
retrieval, each Ii of a given query image is used as the index and all the database images assigned to the inverted
list associated with this Ii are returned. To evaluate the similarity between the query and each of the returned
database images, we use the number of common Ii between the image pair as the primary similarity measure,
and the area of overlap between the BB pair as the secondary similarity measure.

3 Experimental Results

To evaluate our proposed method, we used an image dataset consisting of view images captured at a university
campus, using a handheld camera as the vision sensor. Occlusion is severe in the scenes, and people and
vehicles are dynamic entities occupying the scene. We took nine different paths three times each, to collect
three independent collections of images of each path, and used each of them for query, library and database
image collections. The size of each query and library imageset was 100. The sizes of the database imagesets
were 338, 406, 474, 529, 371, 340, 354, 397 and 328. Fig.1 shows examples of library and database images. It
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Figure 1: Snapshot of our image collection captured at a University Campus.

Figure 2: Scene parsing. The first column shows the input view image that is to be described. The columns
numbered 1-20 show the L = 20 library images used for describing the input view image.

can be seen that the database consists of near duplicate images, which makes our scene retrieval a challenging
task.

Fig.2 shows some examples of scene parsing. The first column in Fig.2 shows the input image and the
following L = 20 columns show the L landmark images and their BBs that describe the input image. Further, it
is evident that not all the selected landmark images look similar to the input query image they describe. Despite
this fact, many of the landmark images actually contribute to obtaining discriminative scene descriptors as we
report in the following results.

Fig.3 shows the relationship between input and library images. In the figure, “rank” means that the ranking
assigned by our library image selection at the image description stage. For instance, when we set L = 20, only
“rank:1-10” and “rank:11-20” images are used for description. We observe that only a small subset of library
images tend to contribute to the retrieval performance.

Table 1 lists performance results. We evaluated the proposed image based prior method (“IP”) in terms
of the retrieval accuracy and compare it with the BoW method (“BoW”) [1], and VLAD [21]. For the BoW
method, we employed a visual feature descriptor and a vocabulary provided in [1]. For VLAD, we employed the
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Figure 3: Relationship between input and library images. The x-axis represents the ID of input image that
needs to be classified, whereas the y-axis indicates the ID of library images used.

code used in [21]. A series of independent 100×9 retrievals were conducted for each of the 100 random query
images of all the 9 different paths. The retrieval performance was measured in terms of the averaged normalized
rank (ANR) as percentage; the ANR is a ranking-based retrieval performance measure wherein a smaller value
indicates a better retrieval performance. To evaluate ANR, the rank assigned to the ground-truth relevant
image was evaluated for each of the 100 independent retrievals, and then the rank was normalized on the basis
of the database size and these ranks were averaged over the 100 retrievals. From Table 1, one can observe that
our approach outperformed both BoW and VLAD in most of the retrievals considered in this study.

We also investigate the influence of the parameter L, i.e., the number of landmarks used for scene modeling.
Fig.4 shows the ANR performance for different settings of the parameter L, including L = 10, 20, 30, 40 and
50. As can be seen, the results are comparable to each other. An exception is the case where L = 10, where
the number of landmarks are too small to make our bag of landmarks based representation less discriminative.

We also investigated the effect of using BBs on the retrieval performance. In this study, we conducted
another set of experiments using the proposed scene descriptor without using the BBs, as a proof-of-concept,
and compared the recognition performance against that of the proposed descriptor. Fig.5 shows the comparison
of results of the proposed descriptor with and without the BBs. The vertical axis in this figure is the ANR
performance of the case using BBs subtracted from that of the case without using BBs. It can be seen that
the ANR performance shows an improvement when the BBs are used for most of the cases considered in this
study. A notable exception is the case where L is set to a relatively large value, e.g., 50. This is due to a
large number of landmark images that naturally include dissimilar scenes as we already showed in Fig.3, and
BBs of landmarks with respect to such dissimilar landmark images provide less meaningful and less reliable
information. However, it should be noted that even such dissimilar landmark images do actually improve the
scene retrieval performance as we can see in Fig.4.

Fig.6 reports some examples of failure cases. For each row, the first column shows the query images, the
2nd, 3rd, and 4th columns show the images that received higher similarity score than the ground-truth images
when the proposed method was used, and the last column shows the ground-truth images. As can be seen,
the proposed approach can be confused if some database images with locally similar but globally dissimilar
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Table 1: Performance results.

dataset BoW VLAD
IP

w/o BB w/ BB

0 31.7 26.9 24.2 22.0
1 38.7 27.8 21.9 21.2
2 34.4 14.0 15.3 14.8
3 27.5 20.8 21.6 19.6
4 28.9 17.5 16.2 14.8
5 21.6 17.6 16.9 15.4
6 21.7 27.1 26.4 24.1
7 28.9 28.2 23.1 21.1
8 26.4 23.7 25.2 22.1

structures that cannot be captured by “bag-of-X” scene model are included. However, the issue of the globally
dissimilar structure can be mitigated by introducing some extension to the BoX model such as spatial pyramid
matching; this will form part of our future work.

4 Conclusions

The primary contribution of this paper is the proposal of a simple and effective approach to VPR. Unlike popular
BoW scene descriptors which rely on a library of vector quantized visual features, our descriptor is based on a
library of raw image data, such as publicly available photo collections from Google StreetView and Flickr; our
method directly mines the library to discover landmarks (i.e., image patches) that effectively explain an input
query/database image. The discovered landmarks are then compactly described by their pose and shape (i.e.,
library image ID, BBs) and used as a compact discriminative scene descriptor for the input image. Experiments
using a challenging dataset validate the effectiveness of the proposed approach.
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Figure 4: Graph showing the effect of the number of landmarks used per image during the description process.
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[10] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg, and Cordelia Schmid. Evaluation
of gist descriptors for web-scale image search. In Proceedings of the ACM International Conference on
Image and Video Retrieval, pages 19:1–19:8, 2009.

[11] Li-Jia Li, Hao Su, Li Fei-Fei, and Eric P Xing. Object bank: A high-level image representation for scene
classification & semantic feature sparsification. In Advances in neural information processing systems, pages
1378–1386, 2010.

[12] Mayank Juneja, Andrea Vedaldi, C. V. Jawahar, and Andrew Zisserman. Blocks that shout: Distinctive
parts for scene classification. In CVPR, pages 923–930, 2013.

[13] Amir Roshan Zamir and Mubarak Shah. Accurate image localization based on google maps street view.
In Computer Vision–ECCV 2010, pages 255–268. Springer, 2010.

7



Figure 6: Snapshot that shows the cases in which our method fails.

[14] Ando Masatoshi, Tanaka Kanji, Inagaki Yousuke, Chokushi Yuuto, and Hanada Shogo. Common landmark
discovery for object-level view image retrieval: Modeling and matching of scenes via bag-of-bounding-boxes.
In ACPR, 2013.

[15] Tanaka Kanji, Chokushi Yuuto, and Ando Masatoshi. Mining visual phrases for long-term visual slam. In
IROS, pages 136–142, 2014.

[16] Ando Masatoshi, Chokushi Yuuto, Tanaka Kanji, and Yanagihara Kentaro. Leveraging image-based prior
in cross-season place recognition. In ICRA, 2015.

[17] Tatiana Tommasi and Barbara Caputo. Frustratingly easy nbnn domain adaptation. In ICCV, pages
897–904, 2013.

[18] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk. Slic
superpixels compared to state-of-the-art superpixel methods. IEEE Trans. PAMI, 34(11):2274–2282, 2012.

[19] Koen EA Van de Sande, Jasper RR Uijlings, Theo Gevers, and Arnold WM Smeulders. Segmentation as
selective search for object recognition. In ICCV, pages 1879–1886, 2011.

[20] Ran Margolin, Ayellet Tal, and Lihi Zelnik-Manor. What makes a patch distinct? In CVPR, pages
1139–1146, 2013.
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