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The forthcoming fifth generation (5G) mobile wireless system 
is likely to lead to an increasingly heterogeneous data demand 
pattern, including a small number of high data-rate mobile 
broadband links and a large number of low data-rate Internet-
of-Things (IoT) applications. Aspects which govern seamless 
mobility between different access-technologies, cell tiers, cell 
sectors, and frequency bands will be sensitive to the mobility 
model of the people, their devices, and the machines. An 
understanding about how such entities will play a fundamental 
role in the future standardization and exploiting of the 5G 
technologies. In this article, we provide a comprehensive and 
general overview about existing mobility models useful to 
characterizing movements patterns across multiple distance 
and populations scales. In doing so, all the models are 
critically discussed, providing strengths and weaknesses. 
Finally, open issues and critical design choices are highlighted 
to serve as guidelines for future research in this topic. 

Introduction 
The growing demand of a fully mobile and connected 

wireless ecosystem is driving the telecoms operators towards 
the hard task of managing existing services and planning new 
ones to meet the tremendous growth in both the traffic density 
and the number of connected devices. It is evident nowadays 
that the mobile/cellular ecosystem is evolving to something 
that is highly dynamic and flexible. This regards not only the 
networks infrastructure and equipment but also the actors that 
take part over the system landscape. Indeed, whereas in current 
mobile network vehicle play the dominant role when talking 
about mobility, in future fifth generation of cellular networks 
(5G) systems the difference about what is “mobile”, part of the 
infrastructure, and end-user it will become more and more 
blurred. In fact, the advent of the Internet of Everything (IoE) 
paradigm and new wireless technologies1, e.g., device-to-
device (D2D) communications, mmWave, LiFi, there is the 
need of a deep rethinking about what will be the impact of 
mobility on the system performance. Indeed, 5G has been 
identified as the key standard to overcome the increasingly 

                                                                    
1 Ericsson, ”5G Radio Access”, White paper, April 2016. 

large demands of new multimedia services, applications, and 
connectivity. Therefore, the launch of a 5G standard will need 
to provide higher performance benefits, such as: greater 
throughput, lower latency, ultra-high reliability, higher 
connectivity, and higher mobility tolerance. In addition to an 
envisaged high density deployment, where different types of 
network nodes and wireless standards are deployed within the 
same area, a fundamental rethink about the design of the 
mobility management and its application to the future 5G 
scenarios is needed. Is it expected, indeed, that the exploitation 
of the enhanced capability of the network devices jointly with 
the context applications (and information), that they could 
provide, will play a fundamental role in the mobility modelling 
over the future 5G systems. 

State of mobility 
Human mobility modelling and prediction has applications 

in several areas including transportation, telecommunications, 
crowd control, urban planning, commerce, and epidemiology. 
Over the past decade, two factors have significantly influenced 
the need to better understand human mobility. The first factor 
is that, increasingly, humans are simply travelling more. For 
example, in the United Kingdom, the average commuting 
distance between home and work has increased by an average 
of 10% over the past 10 years (Office for National Statistics 
2014). The second factor is that user-centered services are 
becoming more important. This has arisen partly due to the 
increasing availability of personal information, as well as a 
recognition that services can be tailored to suit certain 
individual needs. Mobility affects a wide range of mobile 
network service provisioning mechanisms, such as handover 
and small-cell deployment [1,2]. Hence, modeling human 
mobility is a general and critical part of improving a wide 
range of services. 

There exist many known and unknown factors that 
influence our movement, including the final destination of a 
user, his/her route selection, and the mode of transport [3]. 
Factors such as congestion, financial and family imposed 
restrictions, as well as unexpected events make mobility 
prediction on an individual basis challenging. Nonetheless, 
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there exists general models for mobility at various distance and 
population scales that we can use for engineering applications. 
Prior to 2007, the data sets available for mobility research were 
limited. Macroscopic studies (typically at or national scale) 
were confined to utilizing either telecommunication Call-Data-
Records (CDRs) or government Census Data. Whilst both data 
sets offered wide geographic and demographic coverage, they 
both lacked the temporal resolution required for high precision 
spatial or temporal applications [4,5]. For example, census data 
is taken on a yearly basis, and only reveals where people live 
and how they travel to work. On the other hand, CDR data sets 
prior to 2007 were mainly from voice calls and text message 
interactions, which means the temporal resolution varies 
between minutes to hours and the spatial resolution is limited 
to the coverage area of a base station (~km2). Nevertheless, 
even this is adequate for understanding human mobility on a 
metropolitan scale, fine-grain microscopic models of statistical 
significance cannot be derived. It is also worth mentioning that 
other novel methods of tracking human movement include 
tracking financial transactions [6], and as with CDR data, these 
methodologies generally require strong industrial collaboration 
and the results are often biased towards intensive users of these 
data generating mechanisms. 

Finally, also traffic engineering2 addresses techniques and 
methods to achieve the safe and efficient movements of people 
and goods on roadways. In particular, these models in the past 
mainly focused on the vehicular-side of mobility but in the 
recent years evolved their analysis also to other fields such as 
drone, pedestrian, and robot/machine mobility. Nevertheless, 
models from traffic engineering solutions are often difficult to 
scale or too complicated to tune when come to understand the 
performance of 5G system through simulations. For this 
reason, we believe that statistically traceable and easily tunable 
models may represent a good trade-off in characterizing 
mobility of devices (or different scales) and, at the same time, 
not compromising too much the realism of the scenario 
considered. As an example, in future mobile/cellular network 
will be addresses problematics related to unmanned vehicles 
and micro movements of the users (e.g., by considering 
mmWave communications). In such cases, we fell that models 
provided by traffic engineering will be difficult to tune in order 
to characterize the impact that those 3D mobile patterns or 
human movements may have on the system performance. 

Contribution and organization 
Driven by these challenges and needs, in this work we 

propose a general overview of different mobility models that 
can be used at various scales. Multi-scale mobility modeling is 
not new to literature [7], but its importance is particularly 
prominent in new 5G and IoT services, and we highlight their 
developments as well as connections to specific radio 

                                                                    
2 “Road Safety Fundamentals”. Ithaca, NY, Cornell Local Roads 
Program. September 2009. 

engineering technologies. In particular, we focus our analysis 
on three main scales that is expected to be of interest in the 
future modelling of user and network mobility for the future 
fifth generation wireless network (i.e., 5G), namely: (i) Macro-
scale, (ii) Micro-scale, and (iii) Device-scale environments. 
Our main objective is to explore and analyse current mobility 
models available in literature and that may be suitable in 
characterize devices' movements at various levels of 
environment-scales. In doing this, we also pointed out what are 
the limits of these models and which are the current and future 
challenges that the academic and industry communities should 
face during the next years. 

The structure of the paper is organized as follows. After 
describing the need of mobility support in the 5G system in 
Section II, we divide mobility prediction models into different 
distance and population scales: macroscopic (Section III), 
microscopic (Section IV), and user-centric models (Section V). 
Finally, in Section VI we provide a comprehensive discussion 
about the lessons learned and the open challenges. 

 

The mobility support in the 5G Era 
The exponential growth of "smart" devices with enhanced 

capabilities and applications and the rapid increase of new 
multimedia services demand over the wireless and cellular 
infrastructure is expected to represent one of the biggest 
challenges in the 5G standardization process during the next 
years. The concept of the Internet-of-Everything (IoE) in the 
5G era, where end-users (i.e., represented by machines but also 
humans) and network entities (i.e., network nodes either fixed 
or mobile) are connected "anywhere", "anytime", and to 
"anything", will represent a depth revolution in the way 
wireless/cellular communications takes place in supporting 
new immersive multimedia applications and services requiring 
ambitious requirements, e.g., ultra-low latency and high 
throughput. 

The problem of mobility support and providing high 
performance in almost all kind of environments is also stated in 
the consensus on the requirements3 for 5G systems as 
illustrated below in these 5G criteria: 

 
1. 10000x more traffic through the cellular 

infrastructure. 
2. 10-100x more devices connected. 
3. latency below 1ms. 
4. single link data rates up to 10 Gpbs. 
5. 10 − 100× reduction in cost of deployment. 
6. Mobility support and always-on connectivity of users 

that have high throughput requirements. 
7. Mobility support for high speed transport (up to 500 

km/h). 
 

                                                                    
3 5GPPP, “5G vision”, White paper, Feb. 2015 



In fact, 10,000 times more traffic will need to be carried 
through all mobile broadband technologies at some point 
between 2020 and 2030. Further, the need for more capacity 
goes hand-in-hand with access to more spectrum on higher 
carrier frequencies. However, jointly with these demanding 
improvements to be achieved on the performance-side, it will 
result extremely important to ensure a mobility support even 
for velocities that nowadays cause strong degradation on the 
system performance (e.g., from 350 km/h to 500 km/h). 

Indeed, the support of such high mobility will help not 
only network operator to deploy a more efficiency and 
performing cellular infrastructure, but also end-user that may 
be able to experience a more “reliable” and “always available” 
network connectivity. Based on these requirements, it will be 
extremely challenging to manage an increment of 10000x of 
the traffic demand driven by 10 to 100x more devices and to 
provide an efficient mobility support by guaranteeing adequate 
levels of connectivity and performance. What is really clear, 
instead, is that the knowledge and characterization of user 
movements will play a key role in reaching the aforementioned 
goals. In doing this, 5G technologies are expected to cope 
efficiently with all degrees of mobility by providing "mobility 
on demand" based on each device's and service's needs. On one 
hand, the starting point should be guaranteed a mobility 
support at least the same level as the current 4G technology - 
that is the baseline. On the other hand, there is the ambitious 
challenge to support mobility at speeds that reach up to 500 
km/h (e.g., high speed trains and airplanes). 

Therefore, the concept of applying basic mobility models 
to self-organising-networks (SONs) was proposed in [4]. In 
recent years, the popularity of smartphones has led to the 
availability of more accurate large-scale mobility data at a 
higher and more controlled spatial-temporal resolution.  Novel 
techniques have also been proposed for really small-scale 
localizations (e.g., indoor environment or restricted outdoor 
area due to fairs, concerts or events) opening the possibility of 
mapping human movement not only in buildings and other 
close spaces, but also in really small-delimited areas driven by 
the surrounding environment [8]. As a result, we have 
witnessed a renewed interest in mobility modelling in the 
research community. Furthermore, the growing complexity and 
multi-dimensional challenges faced by cellular network 
operators regarding the upcoming 5G technologies and 
applications has meant that there is an increasing need for 
mobility prediction algorithms in mobility related services. In 
the next sections of this work, we provide a comprehensive 
insight about the possible mobility models useful to 
characterize user's movements at different network area scales.  

 

Macro-scale environment 

Gravity model 
A widely used universal mobility model is the gravity 

model (entropy maximization interaction model), which is 
typically applied to model metropolitan zones. It originated 
from more than 50 years ago [9], and argues the following: (i) 
the number of people travelling between two locations i and j is 
proportional to the number of possible people to contact in the 
two locations, and (ii) the number decreases as some function 
of the distance separating the two locations. Alternatively, the 
gravitational law set out below can be argued from either an 
entropy maximization perspective or from a simpler statistical 
argument [9]. The law assumes the number of people travelling 
per unit time (flux, 𝑇"#) between two locations (i and j) is 
dependent on both the populations (P) of i and j, and the 
distance 𝑑"# between them, i.e., 𝑇"# ∝ 𝑃"𝑃#/𝑑"#

(, where 𝜎 
denotes an adjustable independent variable of distance based 
on specific data. It has been successfully applied to various 
metropolitan scenarios. Typically, the value 𝜎 is lower for 
long-distance mobility (i.e., 𝜎 = 0.59 for global shipping 
routes, and 𝜎 = 1-2 for railways and highways [9]). 

 

 
Figure 1 London commuter data for number of people traveling 
from a London borough to the central City of London. The red 
circles reflect the number of commuters travelling to and from 
the City of London (borough) and the population density of an 
area is shown in a color gradient by post code area. 
 
Even if this can be considered as a seminal model, we can 
identify a number of deficiencies. Firstly, there should be a 
threshold for the flux 𝑇"#. For if the population of one location 
becomes infinity, the model cannot be used in practice.  
Secondly, the predictability of this gravity model is limited, as 
the data for both the population at the locations and the specific 
traffic conditions are required to tune the parameter 𝜎 [10]. 
 

Parameter the free radiation model 
Inspired by the gravity model, the radiation model [9] has 

recently been proposed to overcome all the aforementioned 
limitations. Using mobile data from commuters (traveling from 



home to work), in [10] the authors show that the flux is 
independent of key parameters in the job market, namely: (i) 
benefits of the job, (ii) the number of jobs available at the 
location, and (iii) the number of people 𝑁+. Hence, unlike the 
gravity model, the radiation model is parameter-free. The 
average flux 𝑇"#  is predicted by: 
 

𝑇"# = 𝑇"
𝑃"𝑃#

(𝑃" + 𝑠"#)(𝑃" + 𝑃# + 𝑠"#)
 

 
where 𝑇" 	= 	𝑃"	(𝑁+/𝑁) denotes the total number of commuters 
transferring from i to j, and N is the total number of people in 
the country. The parameter 𝑠"# denotes the population within a 
circle of radius 𝑟"# that is centred around the location i. 
 

 
 
Figure 2 Commuter number prediction based on population size 
and distance of travel. The parameters used are α4 = α5 = 1 
and f(r4,5) 	= 	 r4,5:  [9]. In particular, α4 and α5 are adjustable 
exponents referred to positions “i” and “j”, whereas f(r4,5) is a 
deferred function based on the distance r4,5 between the two 
locations. 

Applications & limits of macroscopic models 
Macroscopic mobility models are suitable for 

understanding statistically aggregated commuter patterns, and 
this is useful for planning base station and mobile relays for to 
meet 5G criteria 6 and 7 (see earlier). Being able to predict 
changes to large-scale human mobility patterns due to 
continuous urbanization, new transport and cities emerging, 
allows preemptive scoping and construction of the necessary 
wireless infrastructure.  

Whilst the gravitational and radiation laws have largely 
been applied to distances of around 100km, we demonstrate the 
accuracy of the gravity law at the local urban scale (3-50km). 
We apply it to London commuter data4, and examine the 
number of commuters going to the central borough (City of 
London) from other boroughs in London. Fig. 1 shows the 
London commuter data for number of people traveling from a 

                                                                    
4 Mobility data from Datashine Commute: 
http://commute.datashine.org.uk/ 

London borough to the City of London borough (centre of 
map). The population density by post code area is also 
visualized as a reference5. From the visual data, we can see that 
population centres near the destination (centre of the map) have 
a high number of commuters compared to distant boroughs. 
This fits the logic of the aforementioned gravity law, i.e., 
commuting distance in the denominator dominates the flux. 
From the data, we found a strong correlation between the 
gravity law for commuting distances greater than 3km (as 
shown by the blue circle symbols in Fig. 2). For distances less 
than 3km, the data from nearby areas could not be fitted to the 
gravity model (red cross symbols). We speculate that the 
commuters walk to work and local microscopic mobility 
models are more appropriate than macroscopic metropolitan 
ones. 

 

Micro-scale environment 
Whilst macroscopic models can adequately describe how 

large numbers of people move between metropolitan zones or 
between cities, these laws breakdown as we approach walking 
distance scales (i.e., below 3km). Furthermore, the laws only 
quantify movement between locations, but not the journey 
details (i.e., stoppages and activities that happened along the 
way). Therefore, there is a need for microscopic scale mobility 
models for individuals, in order to add resolution and precision. 
In order to produce more spatially and temporally fine-grain 
studies than those found in the previous section, data from 
connecting to Wi-Fi access points or GPS data are a popular 
source of research. These studies often sacrifice coverage (i.e., 
a small location area) for modelling accuracy. 

 
 

 
Figure 3 Illustration of microscopic mobility model parameters. 
 

                                                                    
5 Data courtesy of ONS: http://data.london.gov.uk/dataset/land-area-
and-population-density-ward-and-borough 
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Lèvy movement models 
Historically, microscopic models on human and animal 

movement have been based on random walk (RW) or random 
way point (RWP) models. As illustrated in Fig. 3, primitive 
RW models assume that people are uniformly distributed and at 
certain time intervals, change their direction according to a 
random uniform angle 𝜑 change and proceed to travel at a 
velocity v that is randomly uniformly distributed between two 
values. The time between a speed and direction change 
generally follows an exponential distribution: 𝛥𝑡 ∼ 𝛥𝑡	𝑒𝑥𝑝(𝛥𝑡) 
[11]. More environment specific RW models also exist for 
telecommunication system testing. For example, the European 
Telecommunications Standards Institute (ETSI) defines more 
discrete RW models for outdoor pedestrian and vehicular 
environments (UMTS TR 30.03). These models restrict the 
angle change to be along orthogonal vectors in order to mimic 
the Manhattan city model. More empirically derived RW 
models were later derived. These were not derived using the 
big mobile data sets we have today, but rather from pain-
staking human observation of individual entities. For example, 
the Lèvy flight (LF) model, which has been shown to apply to 
humans [6], is one where the random walk step size 𝛥𝑟 follows 
a power-law distribution: 

 
ℙ	 𝛥𝑟 ∼ 	 𝛥𝑟 C(DEF) 

 
where the β exponent is typically smaller than 2. A 
demonstration of the resulting movement pattern is shown in 
Fig. 4(a) for seven people's movement. This model is consistent 
with human movement, i.e., each person has a finite and small 
probability of travelling a long distance in a single step. More 
recently, rich CDRs have been used to improve upon the 
previous LF model to derive a truncated Lèvy flight (TLF) 
model [3], with step size truncation parameters rH and κ (see 
Table 1). 
 
Parameter Distributions 
RW Step Duration 𝛥𝑡 [10] ∼ 𝛥𝑡𝑒JK 
RW Angle 𝜑 ∼ 	1/2𝜋 
RW Velocity v ∼ 	1/(𝑣: 	− 	𝑣D) 
RW Residence Period T [11] ∼ 	𝑇P  
Obstacle Repulsion Force [4] ∝ 	𝑑C: 
LF Step Distance 𝛥𝑟 [6] ∼ 𝛥𝑟C(DEF) 
TLF Step Distance 𝛥𝑟 [3] ∼ 	 𝛥𝑟	 + 	𝑟H CF	𝑒C(JQ)/R  
TLF Revisit Probability 𝑃 𝐿  
[3] 

∼ 	1/𝐿 

Attraction Acceleration 𝑔",#  [12] ∝ 	1/𝑟",#U  

Table 1 Microscopic mobility parameter models 

Correlated models 
More enhanced RW models add boundary conditions and 

Markov models to correlate the movement of individuals or 
groups of individuals. A summary of different microscopic 

mobility parameters and their models is summarized in Table 
1. In terms of boundary conditions, collision avoidance is often 
considered to mimic how individual movement interacts with 
other individuals and obstacles. In order to avoid colliding with 
other individuals, a small circle zone is defined around each 
individual and overlap of the zones is avoided [4].  As for 
obstacle avoidance, a repulsive force is created, with a vector 
that is normal to the obstacle's surface. The force of the 
repulsion is proportion to the inverse square of the distance d to 
the obstacle [4]. 

In terms of correlated movement for individuals, the 
likelihood of moving between zones is biased according to a 
personalized Markov model. For example, in 
telecommunications, people in one base station (BS)'s coverage 
area will be assigned transition probabilities to migrate to other 
BS. Unlike uncorrelated RW models, in this case each new 
destination is correlated with the previous movement pattern, 
such that the overall trajectory of movement is smoother than 
those shown in Fig. 4(a). This will avoid the sharp speed 
changes (VW K

VK
→ 	∞	) and sharp angular changes (VZ K

VK
→ 	∞) 

produced by uncorrelated RW models, which fits close to real 
observations. For example, vehicular correlated models will 
add either the stop-turn-and-go or the slowdown-before-turn 
modifications to existing RW models. Both of the 
modifications assign a high probability to low initial velocity at 
the start of every direction change [11]. This can be achieved 
by decoupling the two random events, i.e., changing speed 
occurs before the change in direction. The time between a 
speed or a direction change commonly follow an exponential 
distribution [11]. In terms of group correlated movement, each 
individual also adapts its own velocity and direction to those of 
neighboring individuals.  Typically, a visibility range is 
defined, and a weighting rule is created to weight the influence 
of the neighbors [4]. 

In terms of location based correlation, another observed 
feature of human mobility is that most people travel only 
between certain locations [12]. This can make the final 
destination easier to predict, and a model called Self-Similar 
Least-Action Human Walk (SLAW) shows that reinforced 
machine learning can achieve accurate predictions [12]. For 
each person, let L represents the descending rank of popularity 
of the location to the person (i.e., L=2 represents the second 
most visited location).  It was found in [3] that the probability 
of revisiting a location is 𝑃 𝐿 ∼ 	1/𝐿, which is independent of 
the absolute number of locations or the number of visits.  That 
is to say, most people dedicate their time to a very few 
locations, whilst spending a small time roughly uniformly 
divided between a large set of different locations. 
Decomposing the model into different classes according to the 
transportation modes was conducted in [13] using GPS 
datasets. The analysis found that when the movement is 
decomposed into individual transportation modes, the step 
sizes 𝛥𝑟 can be approximated by a log-normal distribution 
rather than the power-law distribution found in [3], [6]. Yet, 



when the ensemble of all movement modes still exhibits the 
power-law distribution.  This highlights the importance of 
gathering more accurate movement data for microscopic 
movement modeling. 

Applications of microscopic models 
Microscopic mobility models are suitable for predicting 

small number of users’ movement over a small area (e.g. single 
cell coverage). This is important for aspects of RRM within a 
sector and load balancing between sectors. Real-time data can 
drive parameter updates of the aforementioned microscopic 
models and complement state-of-the-art machine learning 
algorithms (e.g. stochastic Q-learning and deep learning) 
methods to improve resource allocation to meet the previously 
mentioned 5G criteria 1 and 2 of higher throughput and device 
number support.  

 
(a) Example of the Lèvy flight (LF) mobility model with power-law 
step distribution (β=2). 
 

 
(b) Example of the hotspot attraction with Lèvy flight (LF) mobility 
model with power-law step distribution (β=2). The gravitational 
attraction parameters are c4\c5]=20 and n=1.5. 
 
Figure 4 Examples of microscopic mobility traces. 
 

Device-scale environment 
It has recently been understood that proximity connections 

among two nearby devices (i.e., identified as Device-to-Device 
Communications -- D2D) and autonomous flying 
robots/drones, have the potential to quickly deploy dedicated 
communication networks, thus bringing access supply to where 
the demand actually is. Facilitated by miniaturization and cost 
reduction of electronic components, users' smartphones (but 
also small objects or devices) and unmanned aerial vehicles 
(UAVs) equipped with wireless transceivers may soon lay the 
foundation for truly dynamic Radio Access Network (RAN) 
solutions. Owing to their agility and mobility, rapidly 
deployable D2D relays and drone small cells will be 
particularly useful in 5G networks during unexpected and 
temporary events, such as concerts and fares, but also in daily 
life situations where there are unpredictable (or not) access 
demand fluctuations.  

Based on this, even if microscopic models may be useful 
to characterize the mobility that either the users and this new 
concept of "mobile" infrastructure could have, there is the need 
to go deeper in the investigation of which mobility models 
could be suitable for scenarios where the given are of interest is 
particularly small and defined as "user-centric". These 
scenarios are related not only to outdoor environments but also 
to indoor areas where users (or devices) move under restrict 
daily hotspots. In such scenarios, there is a lack of accurate 
indoor and outdoor positioning systems and the lack of 
automated contextualization inside buildings. Existing research 
has largely focused on a very limited set of premises [5], [14]. 
The increasing number of smart-wearable devices with inertia 
sensors can provide a pathway to mining large amounts of 
movement data [8], but large-scale capability is lacking in 
understanding when are we truly in restricted area of interest, 
and what the context of these environments (i.e., topology and 
why we are there). 

 

Hotspot gravitational model 
For generally small-scale indoor and outdoor areas, where 

layout and architecture do not play a major impact in the 
human movements, an interesting model in describing the 
mobility is discovered in [13] where people are attracted 
towards certain hotspots. Similar to the pursuit-based or group 
mobility models, the hotspot gravitational model adds an extra 
acceleration vector to existing RW models. As illustrated in   
Fig. 3, the gravitational acceleration 𝑔",# of a person i moving 
towards a hotspot j was found in [12] to be governed by 𝑔",# 	=
	𝑐"_𝑐#`/𝑟",#U , where 𝑐"_ defines the tendency for the person to 
move towards access points (behavioral), 𝑐#` defines the 
strength of the hotspot signal, and 𝑟",# denotes            the 
separation distance with exponent n. Fig. 4(b) shows the 
resulting Lèvy flight (LF) mobility model modified by the 
hotspot attraction model in [13] with parameters 𝑐"_𝑐#`= 20 and 
n=1.5 for six people's movements.  Compared to outdoor 
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microscopic models, the hotspot model offers greater flexibility 
in tuning human and devices (e.g., drones, sensors) movements 
to event-motivated movement, which is more representative of 
particularly small-scale motions. 

 

Preferred route model 
For restricted areas that have physical features which 

significantly impact on the mobility model, a more 
deterministic mobility model is needed, based on personal 
preferences and tasks. In [14], a Preferred Route Indoor 
Mobility Model (PRIMM) is proposed, which is inspired by the 
observation that people tend to move driven by some event and 
to reach the destination along the most accustomed path. In 
terms of implementation, people can move from one location to 
another when a task needs to be completed or an event have 
been triggered. Each regular event is assigned a time-dependent 
probability. Hidden Markov Models (HMMs) are used to 
generate the sequence of events that determines the transit state 
of mobility pattern, while a Hidden Markov Events (HME) will 
be used to determine the event duration. In such a case, events 
are classified according to resident events (person remains 
stationary to complete a task) and flight events (person moves 
to another location to start a task), both of which are modeled 

by a truncated power-law distribution [12]. Compared to 
outdoor correlated mobility models, such as SLAW [12], 
PRIMM can model the motion feature in indoor environments 
by introducing personalized HMMs to use event triggers at 
various time states and predict the preferred indoor route. 

 

Lessons learned and open challenges 
In this article, we have surveyed the current human 

mobility models across three different distance and population 
scales, as well as examined what are the future challenges that 
have to be faced in order to have comprehensive models 
suitable for the forthcoming 5G wireless networks. We note 
that even our discussions were mainly focused on the 
pedestrian (or low intensity of mobility) cases, most or the 
models may be tuned to characterize other type of movements 
related to e.g., vehicles, drones, or trains. In particular, by 
changing the value of the alpha parameter in the Lèvy flight 
model (e.g., alpha equal to 1), we can generate paths with 
presence of large “jumps” that may be useful to characterize 
vehicle movements in transitions from urban to suburban 
scenario. Also, RW models can be used to characterize other 
types of mobility. In fact, if the third dimension of those model 
is considered, it becomes easy to model drone movements over 

Open challenges Key issues Expected benefits 

New mobility models for 5G 
systems 

• Real time information from the deployed 
devices to increase accuracy and precision 

 
• Exploiting new technologies proper of the 

upcoming 5G networks 

Improved understanding of mobility and network 
processes 

Managing mobility in 5G-
grade IoT scenarios 

• Understanding the effect of mobility in 5G 
system targeting the IoT market. 
 

• Merging 5G multi-connectivity with 
heterogeneous mobility 

Provide a reliable and secure connection 
“anywhere”, “anytime”, and to “any” device. 

Tunable models 

• Identification of common features in group of 
environments 

 
• Presence of tunable parameters given by the 

network, social, and environment aspects 

Tunable framework to be used with different 
environments and network deployments 

Mobility models linked with 
connectivity and sociality 

• Jointly use of connectivity, sociality, and 
mobility tiers in an effective way 

• Find an easy way to link all the environment 
tiers 

Fully characterization of direct relationships 
among the social interactions, users’ movements 
and the connectivity options 

Softwares and tools 
availability 

• Implementation of a complete and free-to-use 
frameworks for mobility 

 
• Availability of network emulators able to link 

connectivity procedures on underlying 
mobility models 

General and complete frameworks useful for 
implementing mobility in wireless/cellular 
networks 

Common standard for the 
traces 

• Availability of a common standard either for     
the mobility models and real traces 

Promotion of an easy data exchange among 
researchers for cross-comparisons 

 
Table 2 A summary of the main deployment issues to support mobility over future 5G systems. 
 



random (i.e., in case of random walk model) and predefined 
paths (i.e. in case of random waypoint).  Of course, for the case 
of large-scale movements is meaningless to consider different 
types of mobility since the described models include somehow 
all of them. 

What we learned for our general overview, is that at the 
macroscopic distance scale (i.e., 10-100km), we found that 
gravitational laws can adequately describe how large number 
of people move between metropolitan areas. We used 
commuter data in London to show that those gravitational laws 
breakdown as we approach walking distances (i.e., below 
3km). At the microscopic scale, where walking dominates 
human movement, we reviewed different Lèvy flight models. It 
was found that whilst uncorrelated models are useful as a 
general model, location and past-movement correlated models 
can remove irregularities such as sharp direction changes. 
Having a look at a more in-depth scale where the increasing 
number of devices, "smart" object and flying vehicles (e.g., 
drones) are starting to be part of the future 5G scenarios, we 
noticed the lack of research in this area due to the difficulty of 
collecting large-scale and accurate indoor and outdoor location 
data. Based on this, we reviewed two recent mobility models 
that may be on interest in such a case, one based on 
gravitational attraction to hotspots and the other based on event 
triggered preferential route learning through HMMs. Both 
research outputs have shown that users' movements are much 
more sensitive to environmental structural restrictions and 
events than in large-scale movements. This remains an open 
area of research and an encompassing universal mobility model 
for such restricted area of interest remains absent. 

Many other challenges relevant to the mobility support in 
future 5G networks definitely require deeper analysis. Some of 
them uniquely arise for mobility model standardization, 
whereas others are exacerbated in networks protocols and 
regulations.  The most relevant issues are addressed below and 
summarized in Table 2. We discuss these open challenges in 
detail below. 

New suitable mobility models for the 5G Era 
More accurate information and position tools may be 

derived by the even more increase deployment of smartphones 
and "smart" devices. Although existing mobility models are 
able to provide a good understanding of users' behavior is 
different environments, the randomness of specific scenarios 
and situation make these models difficult to apply. As an 
alternative solution, real time information from the devices 
deployed in the area of interest should be gathering towards a 
central unit that will be able to manage efficiently some 
network processes such as, the radio resource allocation, 
handover procedures, and network selection when considering 
a dense environment including different tiers of connectivity 
and network access nodes. 

Managing mobility in 5G-grade IoT scenarios 
The explosion of devices connected to internet has been 

dubbed the Internet of Things (IoT). In particular, these devices 
are not just connected to the human hand, but may belong to 
cars, infrastructure, and, more generally, by the overall 
environment that is surrounding us. As a matter of fact, 
connectivity support for mobility is particularly important for 
IoT devices moving at slow, medium, or high speeds over a 
certain geographical area. Ironically, while mobility models 
have been routinely used in the evaluation of human-centric 
communications technologies, such as mobile ad-hoc and 
legacy cellular networks, the effects of mobility in mobile 5G 
systems that are targeting the IoT market are much less 
understood. For applications with “loose” delay constraints, 
where network topology may change over the time-scale of 
single packet delivery, the per-user throughput can increase 
dramatically when nodes are mobile rather than static. 
Following this assumption, a possible solution may be to 
explore the enhancements offered by a set of innovative 5G 
technologies in practical IoT contexts and, most importantly, 
understand how effects such as mobility and multi-connectivity 
influence the communications performance in terms of 
availability and reliability. Along this line, it is worth noticing 
to remark that when thinking about IoT mobility is not only 
related to static or semi-static environments. In fact, nowadays 
the deployment of sensors and actuators is spreading along 
many field such as factory automation, automotive, 
aeronautical, and smart grid. As an example, in the automotive 
industry higher transmission rates and lower transfer delays of 
today’s wireless systems coupled with decisive capacity 
enhancements promised by the emerging 5G mmWave cellular, 
are expected to support growing densities of automotive 
mMTC devices, up to 200 items per vehicle by 2020. 

Tunable models for “Any” environment 
Nowadays the availability of mobility traces is not useful 

to describe a wide group of scenarios that can be grouped under 
unique "classes" due to their common features and network 
deployment. It is difficult, indeed, to generalize the result 
obtained from real-trace that more often give us a picture of a 
very specific situation like, for instance, movements within a 
campus, conference, office, or urban area. To overcome these 
issues, future mobility models for 5G scenarios should identify 
the common features in group of environments by proposing a 
general solution where researchers can play with tunable 
parameters dealing with the social contacts, geographic area, 
applications, services, and network deployment. We believe, 
that this problem will be tackled more and more effectively 
with the increasing availability of mobility traces extracted 
from the future 5G heterogeneous environments. 

Whilst centralizing the gathering and processing of data 
can increase both control signaling and increase the delay, 
rapid advances in cloud computing for C-RAN and joint cloud 



data analytics and IoT control (e.g., Microsoft Azure and 
InterDigital oneM2M) can make this feasible and desirable. 
These centralized services ensure greater guarantee in uniform 
service provisioning in 5G, as well as higher security and 
reliability in experience.  
 
Merging the Connectivity, Sociality, and Mobility 
Tiers 

Concerning future 5G scenario, we observe that physical 
layer connections, network level associations, and social 
network level relationships are all inter-connected to each other 
[15]. For instance, social aspects among the users may be of 
particularly interest to understand the patterns that users could 
have in the evolution of the time. Therefore, an open problem 
is to find a way to integrate and merge the use of connectivity, 
sociality, and mobility tiers in an effective way to characterize 
the evolution of the overall deployed system. As for tunable 
mobility models, further investigations are needed to 
characterize which are the common properties and distinct 
features for each specific 5G networks scenarios. In such a 
way, it will way easier to characterize the direct relationships 
among the social interactions, users' movements and the 
connectivity options driven by the surrounding environments. 
More specifically, the influence of the connectivity options in a 
deployed scenario, (i.e., with the presence of obstacles (e.g., 
buildings, hills, green areas) on human sociality and mobility 
patterns has not been studied yet. 
 

Software and tools for simulations 
Looking at the literature, it is evident that there is a lack of 

available and complete tools (i.e., in particular open source or 
free) able to provide a general framework useful for 
implementing mobility in wireless/cellular networks. 
Concerning the simulation tools that will be implemented for 
testing future 5G performance, there is a concrete need of 
mobility and network emulators that are able to fully 
characterize the connectivity procedures and processes in 
environments on an underlying mobility model (i.e., either 
through models or real traces). Even some tools are already 
available in literature, mainly they focus on the transmissions 
and the protocol stack procedures without taking a fully 
consideration mobility aspects. In such a case, we want to point 
out that more attention should be dedicated in the development 
of a more adaptable mobility models by integrating not only 
those derived from the analytical methods but also the ones 
available through measurements and real traces. 

 

Standardization of trace formats 
Although many real traces are available on the web and in 

literature (e.g., the CRAWDAD6 repository), most of them do 
                                                                    
6 CRAWDAD repository: http://crawdad.org  

not follow a common standard. Based on this, more often "ad-
hoc" scripts are needed to convert them into various formats to 
make them more suitable in the development of system level 
simulators. Therefore, to overcome this issue the research 
community should converge in a common standard able to 
promote an easy data exchange among researchers for cross-
comparisons thus increasing, in this way, also the visibility of 
their work and the collaborations among different international 
groups. 
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