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Abstract—Deep learning (DL) has achieved great success in sig-
nal processing and communications and has become a promising
technology for future wireless communications. Existing works
mainly focus on exploiting DL to improve the performance of
communication systems. However, the high memory requirement
and computational complexity constitute a major hurdle for
the practical deployment of DL-based communications. In this
article, we investigate how to compress and accelerate the neural
networks (NNs) in communication systems. After introducing the
deployment challenges for DL-based communication algorithms,
we discuss some representative NN compression and acceleration
techniques. Afterwards, two case studies for multiple-input-
multiple-output (MIMO) communications, including DL-based
channel state information feedback and signal detection, are
presented to show the feasibility and potential of these techniques.
We finally identify some challenges on NN compression and ac-
celeration in DL-based communications and provide a guideline
for subsequent research.

I. INTRODUCTION

IN recent years, deep learning (DL) has brought many
breakthroughs in various fields, such as computer vision

and natural language processing. Inspired by these successful
applications, DL-based methods have gained a lot of attention
from the communication community [1], [2]. Different from
the traditional approaches that need rich expert knowledge,
DL-based communication systems can automatedly discover
the intricate structure from a large dataset.

The most existing literature explores the power of DL
in wireless communications to improve the performance but
seldom discusses the implementation challenges. One of the
most critical problems is the complexity of neural networks
(NNs), including the large numbers of network weights and
the high computational requirement. Though NNs can be
rapidly trained offline using powerful Graphics Processing
Units (GPUs), the memory resources and computational units
are limited at the real-time inference phase [3]. For example,
in the fifth generation cellular systems (5G), the end-to-end
latency should be within no more than 1 ms, so the DL-
based algorithms should finish the inference of all NN-based
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modules in much less than 1 ms. It is impractical for user
equipment (UE) with limited resources (memory resources,
computational units, and battery power) to realize the inference
in such a short period. CsiNet-LSTM in [4], only compressing
and reconstructing downlink channel state information (CSI),
needs about 0.3 ms with a powerful NVIDIA 1080Ti GPU.
Obviously, these kind algorithms cannot be directly deployed
to practical communication systems. Most existing DL-based
algorithms are based on simulation using DL libraries, e.g.,
TensorFlow and PyTorch. In these DL libraries, the NN
weights are set as 32-bit floating point numbers by default,
which not only occupies substantial storage space but also
wastes precious computational resource.

Compared with the most traditional approaches, which store
no weights and carry out limited iterations, the DL-based
communication algorithms have to store up to millions of
weights and need huge computational resources. The compu-
tational complexity and memory requirement severely hinder
the deployment of DL-based algorithms to communication
systems and it becomes essential to design efficient and high-
performance NNs for communication systems. However, to
the best of our knowledge, only few papers have taken the
implementation of DL-based communication algorithms into
consideration so far.

In this article, we first investigate the complexity trend
of NN-based communications. Then, we introduce the NN
compression and acceleration techniques for communication
systems. Two case studies on DL-based CSI feedback [5] and
signal detection [6] in multiple-input-multiple-output (MIMO)
communications are presented to show the feasibility and
potential of the above techniques. Finally, we highlight some
open research issues of the NN compression and acceleration
in communications.

The rest of this work is organized as follows. Section II
explains the growing trend of NN complexity in DL-based
communications. In Section III, we introduce representative
NN compression and acceleration techniques and their recent
advances. Then, two case studies, including the DL-based CSI
feedback and signal detection, are prensented in Sections IV.
Section V discusses the model compression and acceleration
on communication algorithms and proposes several challenges.

II. TREND OF GROWING NN COMPLEXITY

The NNs nowadays are pretty complicated compared with
conventional communication algorithms. Inevitably, the NNs
will be more and more sophisticated in the future.
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Fig. 1. Overview of the training and implementation strategy of DL-based communication algorithms.

First, the current model-driven DL-based algorithms [7]
only implement the function of one or two modules in a
communication system. For example, only CSI feedback and
signal detection are realized by CsiNet [5] and FullyCon [6],
respectively. But a complete communication system includes
more modules, such as, source coding and decoding, channel
coding and decoding, channel estimation, symbol detection,
equalization, etc. If NNs perform functions of all modules,
the whole NN system will be much more complicated.

Furthermore, most of the existing DL-based communication
algorithms focus on demonstrating what DL can bring to
communications under simple scenarios. For example, only
limited literature takes the multiple-user scenario into consid-
eration and most of the proposed NNs can only work under
a certain channel model [8]. Future DL-based algorithms are
expected to deal with much more complicated scenarios. The
requirement of memory space and computational resource will
be further increased.

More and more novel techniques will be developed in future
communication systems. How to combine them with DL is
an emerging problem. Extra-large scale massive MIMO is a
promising technology for the next-generation communication
systems [9]. More computational resource is required for
signal processing in massive MIMO to obtain its benefits. For
instance, the fully connected (FC) layers for massive MIMO
CSI feedback in [10] occupy over 95% the number of the
trainable weights, which is proportional to the square of the
antenna number. In brief, when DL meets extra-large scale
massive MIMO, the NN weight number and complexity will
drastically increase.

III. NN COMPRESSION AND ACCELERATION

We have witnessed a remarkable development in NNs,
specifically in convolutional NNs (CNNs), across a wide range
of areas. In order to achieve better performance and perform
more functions, the scale of NNs is continuously expanding.
As a result, NNs are becoming model-complicated, memory-
extensive, and computation-intensive. To tackle these issues,

many approaches, including knowledge distillation, efficient
NN design, pruning, quantization, and low-rank approxima-
tion, have been proposed over the past several years.

As shown in Fig. 1, we can address the issue in the DL-
based communications using the following steps:

i) the high-performance NNs are first trained without con-
sidering complexity.

ii) the dark knowledge achieved by these NNs and the
efficient network design principles are utilized to design
and train a compact NN model.

iii) the trained NNs are compressed by pruning, quantization,
low-rank approximation, etc.

iv) the NNs are implemented on the task-specific hardware
and deployed to practical environments.

In this section, we will provide some NN compression and
acceleration techniques for communication algorithms.

A. Knowledge Distillation

Ensemble learning can improve the model performance
by averaging the predictions from different models trained
on the same dataset but at the expense of vast complexity
increase. The complexity of ensemble learning can be reduced
by knowledge distillation, namely, a teacher-student network
structure, which utilizes the dark knowledge achieved by
the ensemble or cumbersome models (teacher) to train an
efficient and compact model (student). The student network
can achieve a better performance than that directly trained on
the same dataset. For example, in [11], a fast and compact NN
model is trained with pseudo data labeled by the ensemble of
cumbersome NN models to approximate the function learned
by the ensemble NNs. It has been shown by the experiment
results that, the NNs can be 1,000 times smaller and faster
than the ensemble NNs with negligible performance loss.
Meanwhile, it can still alleviate the overfitting issue and has
no memory and time costs of building an ensemble.
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Fig. 2. Fire module architecture: a squeeze layer and a branching layer with
1× 1 and 3× 3 filters [12].

B. Efficient NN Architecture Design

The goal of efficient NN architecture design is to make the
NNs less redundant, i.e., decreasing the number of the network
weights and computations straightforward with only limited
model performance loss. FC layers are the most widely used
NN layers in communications. But they contain substantial
weights and often lead to overfitting, thus hampering the NN
generalization ability. The global average pooling layers can
be used to replace all FC layers to compress and accelerate
NNs [13]. There are no weights to optimize in these layers,
thus avoiding overfitting. Also, they are more native to the
feature extract modules by enforcing correspondences between
classification labels and feature maps. Therefore, the feature
maps can be easily regarded as classification confidence maps.
Meanwhile, these layers sum out the spatial information and
increase its robustness to spatial translations.

Convolution plays an important role for the NNs in com-
munication systems. Compared with FC layers, convolutional
layers are better feature extractors, which take advantage of
the local spatial coherence and have fewer weights via weight
sharing strategy. Convolutional layers have been used to CSI
feedback [10], channel decoding [14], etc. When the channel1

numbers of the input and the output feature maps, feature
map size, and the convolutional kernel size are Cin, Cout,
H × W , and K × K, respectively, the weight number and
floating point operations (FLOPs) of a convolutional layer

1The ‘channel’ here is totally different from that in communications. Each
channel is coressponding to a feature map. For examples, RGB images have
3 channels.

will be Cin

(
K2 + 1

)
Cout and 2HW

(
C in ×K2 + 1

)
C out ,

respectively. Even if they are much fewer than these in FC
layers, decreasing the above hyperparameters is the key of the
efficient but low-cost convolution operation design. Therefore,
1×1 filters are often first utilized to reduce the dimensionality
of input features. To decrease K, 1× 1 or 3× 3 filters rather
than those with large sizes are stacked to extract features.

Another widely used strategy for reducing convolution
complexity is group convolution, where the filters of a con-
volutional layer are split into multiple groups and the de-
creased weight number is proportional to the group number.
SqueezeNet [12] is one of the representative efficient CNNs.
The core block in SqueezeNet is the fire module, which
consists of a squeeze layer and an expand layer and follows
the aforementioned design principles, as in Fig. 2. It achieves
AlexNet-level classification accuracy but with 50× fewer NN
weights.

C. Network Pruning

The performance of a NN can be improved by adding NN
layers and neural neurons. Sometimes, a tiny performance
improvement may incur a huge increase in the network depth
and weight number, introducing substantial redundancy and
complexity. To remove these redundant connections and neu-
rons that are unimportant and with less contribution to perfor-
mance, network pruning has been widely studied. The basic
idea of network pruning is to drop these weights with small
absolute values. This operation can introduce two benefits to
NN compression and acceleration. There are fewer weights
needing to be stored, thereby saving the memory space. Also,
the computational operation involving these pruned weights
are no longer needed, thereby reducing the computational
complexity of NNs.

According to the granularity of pruning operation, the
common pruning techniques can be divided into five groups:
fine-grained, vector-level, kernel-level, group-level, and filter-
level prunings. The fine-grained pruning removes weights in
an unstructured way, i.e., without considering weight locations.
This method leads to high sparsity of network weight but
is not friendly to implementation since extra memory space
is occupied to store indices that indicate the location of
each pruned weight. The vector-level and kernel-level pruning
methods remove the dispensable vectors and 2-dimension (2D)
kernels in the filters, respectively. The group-level pruning
method drops the weight at the same location of the filter.
In the filter-level method, the unimportant filters are pruned,
which makes the NNs thinner. The vector-level, kernel-level,
and filter-level are friendly to hardware implementation since
they prune weights in a structured way.

D. Network Quantization

Network quantization includes the weight and the activation
quantization2 and is another effective way to save memory
space, speed up computations, and reduce memory access.

2Gradient quantization, focusing on accelerating NN training, is also a
model quantization method and we, however, just concentrate on those
speeding up the inference stage.
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In particular, weight quantization reduces the number of bits
used to represent per weight and is the most widely used
quantization technique. Activation quantization replaces the
substantial floating point multiply-accumulate operations in
the activation layers with binary operations, thereby further
speeding up the inference.

When quantizing the weights or activations, we can use the
fixed or the adaptive codebook. The fixed codebook quan-
tization methodology is fixed-point quantization, where the
codebook is predefined. For example, in the binaried NNs, all
network weights are quantized by Sign(x) function to {−1, 1}.
The basic issue of this methodology is how to pre-define
the codebook since it has great effects on the performance
of quantized NNs. In the adaptive codebook methodology,
the codebook is learned from the weight dataset rather than
predefined. Therefore, the adaptive codebook quantization
methodology can avoid the extra modifications to the training
algorithms since NN weights are quantized after training.

Quantization can be performed deterministically or stochas-
tically. Rounding is perhaps the simpliest method of deter-
ministic quantization; but the NN performance drops after
this operation. Vector quantization is also applied to NN
quantization. Its basic idea is to cluster the weights into several
groups and then use the centroid of each group to represent
the corresponding weights. K-means algorithm is usually used
to cluster weights. It however is with expensive computation
since the weight number is pretty large. Both of rounding
and vector quantization ignore the features or distributions of
the weights of NNs. In the stochastic quantization, random
rounding acts as a regularizer, injecting noises to NNs while
the probabilistic quantization quantizes weights according to
the weight distributions.

E. Low-Rank Approximation

The convolutional kernel W ∈ Rw×h×c×n of the convolu-
tional layers is a 4-D tensor, where w, h, c, and n denote the
kernel width, kernel height, and the numbers of the channel
of the input and output feature maps, respectively. Reducing
the redundancy in these 4-D tensors by merging some of
the dimensions can greatly decrease the computational cost
and memory requirement. The basic issue here is to find an
approximate tensor Ŵ to represent the high-dimension tensor
W. According to the number of components, this method can
be divided into three kinds: 2-component, 3-component, and
4-component decomposition. In the n-component decomposi-
tion, a fat convolutional layer is replaced with n thin ones. For
example, for the 2-component decomposition, a w × h filter
can be decomposed into two components: w × 1 and 1 × h
filters. In other words, two convolutional layers, whose kernel
sizes are w × 1 and 1 × h, respectively, replace the original
w×h one, which not only reduces the weight number but also
facilitates catching the horizontal and vertical correlations.

F. Hardware Design

The general-purpose platforms, e.g., powerful GPUs, cannot
be deployed at the NN inference phase because of high
monetary and energy cost. Therefore, the specific platforms,

which are computation-intensive and energy-efficient, should
be designed. Application Specific Integrated Circuit (ASIC)
and Field-Programmable Gate Array (FPGA) are two promis-
ing hardware platforms [3].

ASIC is a kind of task-specific hardware and might be
delicately designed to maxmize the benefits, e.g., power-
efficiency and high throughput, in a specific NN implemen-
tation. The hardware parameters, however, are difficult to
change once the DL-based algorithms are implemented on the
ASIC. Therefore, online training and NN model update are
infeasible in the ASIC. Different from ASIC, FPGA can be
easily programmed and reconfigured and is friendly to online
training and NN model update. Meanwhile, the hierarchical
storage structure and scheduling mechanism of FPGA can be
optimized to improve the efficiency of accessing data, thereby
reducing energy consumption.

The industry has invested a lot in the design of the
novel NN accelerators. For example, NVIDIA has released
a highly flexible mobile multicore embedded System-on-
Chip (SoC), namely, NVIDIA Tegra K1. It has not only a
high-performmance CPU cluster and GPU but also a low-
performance and low-power CPU cluster. The developer can
fully control the operation setting to minimize the energy
consumption.

IV. TWO CASE STUDIES FOR MASSIVE MIMO

We demonstrate the feasibility and potential of NN compres-
sion and acceleration techniques in the DL-based communica-
tions. Since massive MIMO is a critical technique for future
wireless networks, we present two case studies in massive
MIMO systems: the CSI feedback based on an autoencoder
architecture with substantial parameters and the signal detec-
tion based on FC layers with relatively few parameters.

A. CSI Feedback

The benefit achieved by massive MIMO in communication
systems is dependent on the accuracy of available CSI. In
frequency-division duplexing (FDD) systems, the UE has to
constantly feed CSI back to the BSs for precoding. With the
increase of antenna number, the feedback overhead sharply
increases, thereby leading to a large overhead and occupying
precious bandwidth. As a result, greatly compressing CSI
before feeding it back is critical in massive MIMO systems.

The DL-based CSI feedback method [5] uses an encoder-
decoder architecture to compress and reconstruct CSI at the
UE and the BS, respectively, and outperforms the traditional
compressive sensing (CS) algorithms by a margin. With the
two principles for DL-based CSI feedback network design, the
CsiNet+ in [10] achieves much higher reconstruction accuracy
than the original CsiNet [5] but only with a slight increase in
parameter number. To overcome the constraint of the fixed
antenna number in the CsiNet caused by the FC layers, the
ConvCsiNet in [15] replaces the FC layers at the encoder and
the decoder with stacked convolutional layers, each of which
is followed by an average pooling layer and an upsampling
layer, respectively.
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Fig. 3. NMSE performance and weight number comparison between ConvCsiNet and ConvSquCsiNet.

TABLE I
THE NMSE (dB) OF THE PRUNED CSINET+.

CR 4 8 16 32
Original CsiNet+ -27.13 -17.69 -13.78 -9.82

In
do

or

t=0.010 -21.82(0.50%) -18.40(4.07%) -13.75(6.02%) -10.14(20.26%)
t=0.025 -19.03(0.23%) -17.55(2.22%) -13.54(2.79%) -10.09(11.38%)
t=0.050 -12.98(0.11%) -16.16(1.25%) -13.15(1.39%) -9.93(6.04%)
t=0.075 -9.63(0.07%) -14.92(0.83%) -12.79(0.86%) -9.73(3.84%)
t=0.100 -8.49(0.06%) -13.75(0.59%) -12.53(0.62%) -9.73(2.69%)

O
ut

do
or

t=0.010 -12.17(34.48%) -8.82(54.56%) -5.89(67.18%) -3.61(74.32%)
t=0.025 -10.16(16.77%) -8.39(35.10%) -5.79(49.50%) -3.58(59.81%)
t=0.050 -8.76(6.18%) -6.66(17.60%) -5.39(32.32%) -3.44(44.55%)
t=0.075 -8.43(2.55%) -5.10(8.37%) -4.72(20.64%) -3.19(32.92%)
t=0.100 -8.18(1.19%) -5.05(3.81%) -4.06(12.82%) -2.93(24.01%)

Note: (.) denotes the remaining weight proportion after pruned.

In this case study, we will prune and quantize CsiNet+,
respectively, and design an efficient NN architecture based on
ConvCsiNet for CSI feedback. We first train the CsiNet+ using
an end-to-end approach. Then, we prune the weights in the
FC layers with a threshold t and the NNs are retrained until
convergent. Afterwards, the weights in pre-trained NNs are
quantized using k-means clustering and retrained until conver-
gent. The key idea of designing an efficient architecture based
on ConvCsiNet is to reduce the dimension of convolutional
kernels with the fire module in Fig. 2. We call this modified
ConvCsiNet as ConvSquCsiNet and train it from scratch.

As in [5], [10], the datasets contain two representative sce-
narios, i.e., indoor and outdoor scenarios. The pruning thresh-
old t for two FC layers is set as 0.010, 0.025, 0.050, 0.075,
and 0.100, respectively. The weights of CsiNet+ are quantized
with 3-7 bits, respectively. Normalized MSE (NMSE) is used
to measure the CSI reconstruction accuracy.

Table I shows the reconstruction accuracy versus com-
pression rate (CR) with different pruning thresholds and the
numbers of remaining weights after pruned. Surprisingly, the
pruned CsiNet+ even performs better than the original one
when CR = 16 or 32, t = 0.010, 0.025 or 0.050, where
more than 80% and 30% weights are pruned for the indoor

and the outdoor scenarios, respectively. Since there are too
many redundant weight connections in the original FC layers,
pruning operation can reduce the redundancy, improve the
generality of CsiNet+, and help prevent overfitting.

The CSI reconstruction accuracy of the quantized CsiNet+
corresponding to different quantization bits B is shown in
Table II. With the increase of quantization bits B, the perfor-
mance of NNs are improved as we can imagine. The quantized
CsiNet+ can even have a similar accuracy as the original
CsiNet+ without weight quantization when CR = 16 or 32 and
B = 7. Since the default quantization bits of network weights
are set as 32-bit floating point, the memory space used to store

TABLE II
THE NMSE (dB) OF THE QUANTIZED CSINET+.

Indoor Outdoor
B=32 -27.13 -17.69 -13.78 -9.82 -11.36 -8.28 -5.60 -3.42
B=7 -15.38 -15.56 -13.09 -9.64 -10.69 -8.17 -5.51 -3.37
B=6 -11.60 -13.21 -11.51 -9.02 -9.81 -7.73 -5.21 -3.11
B=5 -8.37 -10.17 -8.95 -7.62 -8.29 -6.79 -4.35 -2.57
B=4 -3.91 -6.37 -5.88 -5.27 -5.97 -4.29 -2.83 -1.60
B=3 -1.84 -3.73 -3.47 -1.49 -2.10 -1.51 -0.20 -0.06
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Fig. 4. BER performance comparison between FullyCon and the pruned or quantized one.

network weights can reduce as more as 78%, thereby greatly
saving memory requirement and the power used to access data.

Fig. 3 shows the reconstruction performance and total
weight number of ConvCsiNet and ConvSquCsiNet. From that,
ConvSquCsiNet has high reconstruction performance compa-
rable to ConvCsiNet with fewer than half network weights and
even outperforms ConvCsiNet when CR = 32.

B. Signal Detection

Inspired by the success achieved by DL in communications,
a FC layer-based NN, namely FullyCon, is introduced in [6]
to realize MIMO detection without an iterative operation.
The inference time of FullyCon in a fixed channel has an
order of magnitude decrease compared with approximate mes-
sage passing (AMP) algorithm. The FullyCon contains about
211,220 NN weights, which can be pruned and quantized to
further reduce the complexity.

The NN in FullyCon consists of FC layers. The input layer
has N neurons, which are determined by the received signal
size. There are 4 FC layers with 10K neurons followed by the
Rectified Linear Unit (ReLU) activation function, where K is
the symbol length. The last layer has K neurons to output
the classification probability of each symbol. We use 4 hidden
layers in this case study instead of 6 hidden layers in [6]
since we focus on the effects of NN compression rather than
improving the performance of signal detection.

In the signal detection, we only prune and quantize the NN
weights, respectively. Since all hidden layers in the FullyCon
are FC layers, all weights are pruned and quantized. The
pruning threshold t is set as 0.010, 0.025, 0.050, 0.075, and
0.100, respectively. The weights are quantized using 3-9 bits,
respectively. We first train the FullyCon from scratch with a
large learning rate and then prune and quantize all weights
in the trained FullyCon, respectively. Finally, the pruned and
quantized FullyCon models are respectively retrained with a
relatively small learning rate until converged.

All experiments are performed on a fixed channel of size
30× 20, which means that the signal length N = 30 and the
symbol length K = 20. The transmit symbols are modulated
by BPSK. The original learning rate is 0.001 and the one for
pruning and quantization is 0.000,1. The batch size is 1,000
and the FullyCon is optimized using Adam optimizer. The
SNRs of test scenarios are set as 8, 9 ,10 11, 12, and 13 dB,
as in [6].

Fig. 4(a) shows the effects of network pruning on signal
detection. When the pruning threshold t is 0.01, 0.025, and
0.05, i.e., 8.31%, 19.89%, and 36.74% of the total weights are
pruned, there is nearly no impact on the bit-error rate (BER).
With the increase of threshold t, the BER of pruned FullyCon
will rise rapidly since the redundant connections have been
dropped and the remaining are all dominant. Therefore, finding
a suitable pruning threshold is critical and should be carefully
determined by extensive experiments.

In Fig. 4(b), the BER drops with the increase of quantization
bits. When B = 6, the BER of the quantized FullyCon rapidly
rises. If B = 9, its performance is close to the original Ful-
lyCon without quantization operation. In this scenario, about
71.878% memory space is saved nearly without performance
loss compared with 32-bit floating point.

V. CONCLUSION AND DISCUSSIONS

In this article, we have investigated accelerating the de-
ployment of DL-based algorithms in communications, which
usually need large storage space and have high computa-
tional complexity. We have introduced the NN compression
and acceleration techniques to tackle the above challenges,
including knowledge distillation, compact NN architecture
design, network pruning, weight quantization, and low-rank
approximation. We have then demonstrated how to apply them
to two representative problems in massive MIMO systems: CSI
feedback and signal detection.
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Encouraged by existing research results, there are still
some issues needing to be addressed in NN compression and
acceleration for future wireless communications.

(1) The performance loss is unavoidable when a NN model
is compressed. The tradeoff between the accuracy and the
efficiency should be balanced according to specific hardware
configurations and communication tasks. For example, the UE
has limited memory space and computational power, which
however are not a constraint at the BSs. Therefore, more
attention should be paid to the compression at the UE.

(2) Different from the computer version problems that
often contain just an NN model, communication systems may
contain many DL-based modules. If each DL-based module is
compressed, the error caused by compression might accumu-
late, thereby greatly affecting the performance of the whole
communication systems. Hence, how to reduce this kind of
errors should be taken into consideration. Meanwhile, different
modules should be compressed to varying degrees since the
performances of different modules have different effects on
the final performance of the whole communication systems.

(3) For the most compression techniques, finding the opti-
mal hyperparameters and the balance between accuracy and
computational cost is time-consuming and requires substantial
experiments. Therefore, it will be great if developing an
efficient way to determine the hyperparameters and balance.

(4) There is still a big room to exploit prior in compression
because most of NN-based methods are fully data-driven.
However, model-driven DL [7] is very promising in future
communications. In the compression of the communication
NNs, expert knowledge should be full exploited rather than
just using pure data-driven compression.
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