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Abstract—A novel framework is proposed to integrate com-
munication, control and computing (3C) into the fifth-generation
and beyond (5GB) wireless networks for satisfying the ultra-
reliable low-latency connectivity requirements of remote-e-Health
systems. Non-orthogonal multiple access (NOMA) enabled 5GB
network architecture is envisioned, while the benefits of bringing
to the remote-e-Health systems are demonstrated. Firstly, the
application of NOMA into e-Health systems is presented. To
elaborate further, a unified NOMA framework for e-Health is
proposed. As a further advance, NOMA-enabled autonomous
robotics (NOMA-ARs) systems and NOMA-enabled edge in-
telligence (NOMA-EI) towards remote-e-Health are discussed,
respectively. Furthermore, a pair of case studies are provided
to show the great performance enhancement with the use of
NOMA technique in typical application scenarios of 5GB in
remote-e-Health systems. Finally, potential research challenges
and opportunities are discussed.

I. INTRODUCTION

With the rapid economic development and improvement of
living standards, the high-quality demands of medical health
and care are gradually increasing. The full set of qualified
health services are provided in highly urbanized areas, which
are very well covered by communication networks. However,
it is non-trivial to cover the sparsely populated rural areas.
The fifth-generation and beyond (5GB) wireless networks
have evoked a great deal of attention, due to its ability
to reflect a large diversity of communication requirements
and application domains [1, 2]. The 5GB is more ambitious
than only supporting ultra-reliable and secure communication
links, but also aims for providing uninterrupted and ubiquitous
connectivity, which meet the requirements of remote-e-Health
systems such as 5G platform based tele-medicine/tele-surgery,
autonomous robotics enabled medical resource delivery and
mobile health monitoring [3].

Fig. 1 illustrates several typical applications of 5GB in
remote-e-health systems. In Fig. 1(a), a remote surgery can
be operated safely and smoothly with the aid of 5GB cellular
networks. Thus, physicians in hospitals of highly urbanized
areas can perform an operation on patients in areas where
Internet cables are difficult to lay or cannot be laid. Fig. 1(b)
characterizes the application of 5GB in remote diagnosis. Real-
time data derived from electroencephalography and electrocar-
diography can be transmitted from a rural hospital or commu-
nity clinic to a remote center, where online diagnosis are made
by experienced physicians. Fig. 1(c) shows how physicians
in a remote center can monitor individuals’ health condition
by invoking smart-phones and smart-watches to record their

position and physical data (e.g., heart rate, blood pressure,
body temperature) and transmit these data to physicians via
5GB cellular networks. In Fig. 1(d), medical images, which
are usually with jumbo size and are often regarded as burdens
for cloud networks, can be processed by offloading computing
resources to edge devices via 5GB networks, since 5GB
networks are expected to carry a significantly higher volume
of data while maintaining reliability. Fig. 1(e) illustrates the
employment of autonomous robotics (ARs) to collect indi-
viduals’ biological data. The 5GB networks enables medical
groups or related organizations to collect pedestrians’s body
temperature through forward looking infrared radar (FLIR)
empowered unmanned aerial vehicles (UAVs), or collect sam-
ples of individuals who are self-isolated. In Fig. 1(f), cellular-
connected ARs are employed for delivering medical resources
from hospital to individuals in a time-saving and energy-saving
manner.

Non-orthogonal multiple access (NOMA), whose key idea
is to superimpose the signals of two users at different powers
for exploiting the spectrum efficiently by opportunistically
exploring the users’ different channel conditions, is capable of
satisfying the requirements of massive connectivity, as well as
high access speed and low latency in remote-e-Health systems.
The goal of this article is to provide a potential solution to
realize the application of 5GB in remote-e-Health systems
through the NOMA technique. Before fully reap the benefits
of NOMA-enabled 5GB networks in remote-e-Health systems,
several research challenges have to be tackled, ranging from
investigating the performance limits of NOMA-enabled 5GB
networks, jointly designing the control policy and resource
allocation policy for ARs, as well as determining the com-
puting resource offloading policy in remote-e-Health systems.
Motivated by the aforementioned challenges, the main contri-
butions of this articles are integrating communication, control
and computing (3C) in 5GB-enabled remote-e-Health systems.
In contrast to the recent research contributions, we highlight
how NOMA technique copes with the challenges and improves
the performance of remote-e-Health systems. The application
of the proposed NOMA-enabled 5GB networking framework
is discussed in the context of NOMA-AR and NOMA-mobile
edge computing (MEC) case studies.

II. NOMA ENABLED REMOTE-E-HEALTH SYSTEMS

In this section, we first describe the NOMA-enabled 5GB
remote-e-Health structure. Then the application of a unified
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Fig. 1. Applications of 5GB in remote-e-Health systems.

NOMA framework is introduced to the remote-e-Health sys-
tems.

A. NOMA for remote-e-Health

Due to supporting the enhanced spectrum efficiency and
massive connectivity, NOMA technology has received an
increased attention for the rising emergence of remote e-
Healthcare services in the recent years. The remote-e-Health
is an effective approach to solve the lack of health infrastruc-
tures and resources for the community, suburban and remote
territories. The focus on the interoperability of personal health
devices has intensified especially in the context of medical
healthcare environments, which is capable of supporting the
habitants of remote locations, chronic patients and independent
living of elderly people. Currently, the remote-e-Health is still
in the development stage, and it needs to satisfy the require-
ments of larger connectivity and individualization. Hence the
application of NOMA to remote-e-Health system is one of
better choices for the development of healthcare. As shown in
Fig. 2(a), the total remote-e-Health network is deployment of
multiple cells (e.g. macro, micro and intelligent reflecting sur-
face (IRS) etc.). In NOMA-enabled remote-e-Health system,
the NOMA protocol is adopted in each small cells and massive
multiple-input and multiple-output technologies are employed
by macro cells. For the macro cells, base stations (BSs) are
equipped with multiple antennas and transmit the signals to
carry out the remote surgery for patients. Meanwhile, the
macros can be connected to medical center by utilizing optical
fiber or wireless cloud networks. In particular, assuming that
the transmitting antennas of macro BSs is much larger than
the number of users. For the micro cells, users are equipped
with single-antenna monitoring device and are allocated with
the different power levels to carry out NOMA protocol. In
the following subsection, we will discuss a unified NOMA
frameworks for remote-e-Health in detail.

B. A unified NOMA framework for remote-e-Health

The superior spectral efficiency of NOMA has been demon-
strated by extensive theoretic studies as well as experimental
trials executed by academia and industry. Up to now, multiple
NOMA proposals have been examined by different industrial
companies [4]. Based on spreading signature of proposals,
NOMA schemes can be classified as two categories: power-
domain NOMA (PD-NOMA) and code-power NOMA (CD-
NOMA). The superposed signals of multiple users are mapped
into a single resource element (RB) for PD-NOMA, while
the superposed signals are mapped into multiple subcarriers
for CD-NOMA. Based on this property, a unified NOMA
framework was discussed in [5], which can be reduced into
PD/CD-NOMA according to the changes of scenario and busi-
ness. The remote-e-Health combined with the unified NOMA
framework is further capable of supporting its diversified
remote businesses flexibly. As shown in Fig. 2(b), we take the
uplink PD-NOMA enabled remote-e-Health as an example.
Assuming that a pair of remote users are served by the PD-
NOMA scheme, where the medical center needs to monitor
or inquiry elderly people’s health profile in their own home.
According to the requirements of quality of service (QoS), the
inquired user i.e., the n-th user is seemed as a delay-sensitive
user with a low target data rate, which needs to send the urgent
health status changes. On the other hand, the monitored user
i.e., the m-th user is served in a delay-tolerant mode with
sending the personal health records. Finally, the QoS-based
successive interference cancellation (SIC) scheme is carried
out to first detect the inquired user’s signal and then decode the
monitored user’s information. Certainly this procedure can also
be easily extend to general case with more than two remote
users, while ensuring the users’ QoS requirements.
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(a) NOMA-enabled remote-e-Health structure.

K N

(b) A unified NOMA for remote-e-Health systems.

Fig. 2. NOMA enabled remote-e-Health systems.

III. NOMA-ENABLED AUTONOMOUS ROBOTICS FOR
REMOTE-E-HEALTH: INTEGRATED COMMUNICATION AND

CONTROL

To validate the distinguished capabilities of NOMA
for remote-e-Health systems, a NOMA-enabled autonomous
robotics architecture is presented in this section.

A. Key features of NOMA-enabled autonomous robotics for
remote-e-Health

Autonomous robotics, which has brought tremendous
changes in various socio-economic aspects in our society,
has also been the focal point of the e-Health research
field. Autonomous robots are partitioned into three cate-
gories: aerospace robot (e.g., small intelligent satellite, air-
ship/airplane, high-altitude platform (HAP), and unmanned
aerial vehicle); ground robot (e.g., autonomous vehicle (AV),
smart home robot, and mobile robot); marine robot (e.g.,
unmanned ship, unmanned submarine, underwater robot) [6].

In previous research contributions, ARs are found to be ex-
tremely useful to replace humans or manned aircrafts/vehicles
in missions that are dull (e.g., extended surveillance), dirty
(e.g., pesticide spray), and dangerous (e.g., rescue and search
after disaster) [7]. With the aid of ARs, revolutionary benefits
have been witnessed in the area of e-Health. As shown in
Fig. 3, UAVs and ground mobile robots are already used for
medical service delivery and biological information monitor-
ing, while ground social robots are used for dealing with the
mental health. ARs can make decision without the intervene
from human, because that they can receive reliable real-
time traffic information from the cellular network via access
point (AP)/BS-ARs wireless links. It is worth mention that
ARs invoked in e-health are danger-intolerable and delay-
sensitive. It means that it is of the upmost importance to
guarantee that ARs can move safely, which requires ultra-
reliable and secure communication links for them. To provide
uninterrupted and ubiquitous connectivity for ARs, as well as
provide massive connectivity in ARs networks, power-domain
NOMA can be adopted to support different users over the
same time/frequency slot by exploring their different channel
conditions.

1) NOMA-enabled autonomous robotics for making avail-
able drugs and vaccines: UAVs/AVs-based delivery systems
have attracted remarkable attention in recent years due to
the reason that a faster delivery speed and a lower cost can
be obtained than the conventional manned delivery services,
especially when the destination areas are inaccessible. In
remote-e-Health system, ARs can be invoked for making
available drugs, vaccines and other medical resource to un-
reached individuals. During the delivery process, critical con-
trol information has to be transmitted from BSs/APs to ARs,
which requires the communication signal to be ultra-reliable
and low-latency. In the NOMA-enabled ARs systems, ARs
with different channel conditions can be partitioned into a
same NOMA cluster. Additionally, a particular AR can also be
partitioned into the same cluster with other cellular network
users. Since the wireless service quality for ARs has to be
guaranteed at each timeslot, the trajectory of ARs needs to
be designed based on the radio map. The movement of ARs
affects the decoding order among ARs and user clustering,
which makes the decoding order design, user clustering and
resource allocation highly coupled in the NOMA-enabled ARs
systems.

2) NOMA-enabled autonomous robotics for collecting bio-
logical samples/data: In the previous research contributions,
UAVs/robots are capable of collecting data from ground In-
ternet of Things (IoT) devices in a given geographical area,
in which constructing a complete cellular infrastructure is
unaffordable. Sparked by this application, ARs are capable of
being used for collecting biological samples/data from small
sensors carried by individuals, which are used to monitoring
individuals physical conditions (e.g., heart rate, blood pressure,
body temperature) in both outdoor and indoor scenarios. Since
these sensors/devices cannot support long distance transmis-
sion due to their power constraints, ARs can be helpful to
collect the data and then efficiently transmit the data to other
linked devices or directly to the data center. Additionally, ARs
can also be invoked to collect individuals’ biological samples
in an efficient and non-touch manner. Given the position of
all individuals, ARs are capable of automatically designing
the most energy-efficient trajectory or fulfilling tasks within
minimal flight duration. Since aerial robotics are battery-
powered, their energy consumption is one of the gravest
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Fig. 3. NOMA-enabled autonomous robotics for 5GB remote-e-Health.

challenges. The limited flight-time of aerial robotics (usually
under 30 minutes) hampers the wide commercial roll-out of
AR-aided networking. Hence, improving the transmission effi-
ciency from sensors to ARs is of utmost importance. With the
aid of NOMA technique, the reliability of the wireless link can
be improved due to superior spectrum efficiency of NOMA-
aided networks. The information age can be minimized by
jointly optimizing the sub-channel assignment, the decoding
order, the uplink transmit power of medical nodes, as well as
ARs’ trajectory.

B. NOMA for autonomous robotic communication: a machine
learning approach

We consider the multiple aerial autonomous robotics aided
wireless networking scenario, where multi-ARs are invoked as
aerial base stations for epidemic information broadcasting with
the aid of NOMA technique. It is assumed that all ARs are
deployed in the cellular utilizing the same frequency band, as a
result, inter-cell interference has to be considered in this multi-
cell network. Ground users are individuals who would like to
receive real-time epidemic information in both video and text
formats. Ground users are considered as roaming continuously
instead of keeping static. Therefore, ARs have to be re-
deployed based on the movement of users for guaranteeing
high quality of wireless services. Intending to maximize the
total throughput, we optimize the ARs’s trajectory and power
allocation policy, subject to the maximum power constraint,
decoding order constraints, and the QoS constraint. It is worth
noting that the dynamic decoding order has to be determined
at each time slot to guarantee the successful SIC, since the
position of both UAVs and users is time-varying.

Users are typically considered to be stationary in the
conventional convex optimization based ARs-aided wireless
networks and the data demand of users is also considered to be
time-invariant, hence only static communication environments
are considered in conventional ARs-aided wireless networks.
Hence, the control policy can indeed be analyzed based on

tractable models, but ARs are not capable of learning from the
environment or from the feedback of the users for enhancing
their ability to cope with the dynamically fluctuating propa-
gation and tele-traffic environment. In an effort to tackle the
aforementioned challenges, reinforcement learning (RL) algo-
rithms are adopted due to the reason that they are capable to
indicate a near-optimal solution through an experience-based
method but not a functional express. The ARs accumulate cer-
tain experiences through continuous exploration of the current
environment and obtains high reward solutions by learning and
remembering these fruitful or dreadful experiences.

The advantage of online RL model is that it can adapt the
control policy of autonomous robots to the dynamic environ-
ment in real-time. However, online RL model requires addi-
tional communication resource for uploading each autonomous
robot’s real-time mobility information or feedback to base
stations. In contrast to online RL model, offline RL model
does not require additional communication resource, user
mobility/QoS requirement can be predicted offline. However,
performance loss cannot be avoid compared to online RL
model. Since ARs are battery-powered, their energy consump-
tion is one of the gravest challenges, especially when on-board
data processing and on-line computation are used.

Fig. 4 characterizes the throughput of the network over
episodes. The results are derived from both the deep Q-
network (DQN) algorithm and the mutual deep Q-network
(MDQN) algorithm, in which multiple ARs are permitted to
connect with the same neural network during the training
process with the assistance of state abstraction. One can
observe that the NOMA-enabled ARs network is capable of
achieving roughly 23% enhancement than OMA case in terms
of throughput. It can also be observed that in the NOMA case,
the dynamic decoding order and the power allocation policy
derived from the proposed MDQN algorithm are capable of
achieving gains of approximately 12% and 14%.
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Fig. 4. Throughput enhancement of NOMA in ARs-aided wireless networks.

IV. NOMA-ENABLED EDGE INTELLIGENCE FOR 5GB
REMOTE-E-HEALTH: INTEGRATED COMMUNICATION AND

COMPUTING

In this section, we present the network structure of the
NOMA-enabled edge intelligence (NOMA-EI) framework in
remote-e-Health under consideration. Subsequently, the asso-
ciated key modules are detailed.

A. Network structure for NOMA-EI in remote-e-Health

Recent proliferation of edge smart devices in remote-e-
Health have been growing exponentially, e.g., smart watches
or other portable sensing equipments. The prosperity of health
services in remote-e-Health require the integration of commu-
nication and computing resource in network edge. To fulfill
these requirements, EI is proposed to push network functions
from the network centre to the network edge [8].

Fig. 5 illustrates the network structure of NOMA-enabled
EI. NOMA strategy has shown great potential for circum-
venting the limitation of massive connectivity compared to
conventional OMA techniques [2], it is anticipated that the
unprecedented high access speed and low latency requirements
could be well addressed by NOMA enabled EI. The marriage
of NOMA and EI has given rise to a new research area,
namely, NOMA-EI. In NOMA-EI, the data offloading between
edge devices and edge server can be conducted by NOMA
strategy, to fulfill the stringent data rate and delay requirements
of data offloading and task computation using the limited
energy and computation resource.

In NOMA-EI, high-computation capabilities is required for
edge devices to fulfill the computing demand for remote-e-
Health. To meet this demand, MEC is proposed to push the
computation function of the network centre to the network
edge of remote-e-Health. The motivation of NOMA-MEC for
remote-e-Health is to take advantages of the massive connec-
tivity characteristic of NOMA and the delay reducing property
of MEC. The computation services requested by smart devices
are transmitted to the BSs for emancipating smart equipments
from onerous computing and reducing computation latency.
The core of MEC is to promote plentiful computing capabil-
ities at the edge of networks by integrating MEC servers at

BSs. The NOMA-enabled MEC (NOMA-MEC) is capable of
offloading the tasks simultaneously to reduce task transmission
delay. This motivated extensive researches from both academia
and industry. In [9], a novel framework of cooperative NOMA-
MEC is proposed to exploit parallel task transmission on the
whole NOMA transmission resource block.

B. Reinforcement learning for NOMA-MEC in remote-e-
Health

The motivation of using RL for NOMA-MEC in remote-
e-Health is to obtain a long-term offline solution for the
optimization problem. The advantage of RL is that the agent
of RL, differs from supervised learning algorithms, such as
deep neural networks, do not needing labelled input/output
pairs during the training process, therefore, the patients’ pri-
vacies are preserved. The application of RL has been widely
employed in various scenarios to obtain a best trajectory or
path for a given environment. The aim of RL in remote-
e-Health systems is to obtain the best trajectory from the
experience of intelligent agent, and measure the best state-
action value function in the environments of remote-e-Health.
The advantage of RL is that the intelligent agent does not
estimate all the state-action pairs, which is capable of reducing
the computation complexity. By maximizing the long-term
reward of the intelligent agent in NOMA-MEC, the associated
stochastic optimization problems in NOMA-MEC are solved.
However, the performance of the conventional RL is restricted
by the dimensions of the action space and state space.

In order to overcome the dimension curse of the conven-
tional RL, deep reinforcement learning (DRL) is proposed,
which uses deep learning and RL principles to create more
efficient algorithms compared with RL, because deep neural
networks are integrated with RL to fit the complex relationship
between the action space and state space. Fig. 6(b) shows
the structure of DRL for NOMA-MEC in remote-e-Health.
In [10], a DRL approach is proposed for MEC to deploy the
computation services to the network edge, in which the users’
request models and resource limitations is considered.

C. Case study: NOMA-MEC in remote-e-Health

We continue by providing case studies of NOMA-MEC
in remote-e-Health. The major advantage of NOMA-MEC is
to obtain speedy task computing taking advantages of both
NOMA strategy and MEC. In this section, RL based solutions
to sufficiently utilize the computing capabilities in NOMA-
MEC network are studied.

In the proposed NOMA-MEC framework in e-Health, a
long-term optimization problem is formulated that indicates a
joint optimization of transmission decisions and computation
resource allocation. Instead of solving a sophisticated joint
optimization problem, we propose a modified RL algorithm, in
which, the intelligent agent is capable of learning the optimal
resource allocation scheme according to the history informa-
tion and searching for the optimal trajectory automatically.

The performance of the proposed NOMA-MEC framework
is shown in Fig. 6. We can see from Fig. 6 that the proposed
NOMA-MEC framework achieves lower energy consumption
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than the conventional OMA-MEC scheme. Also can be noted
that the NOMA/OMA gain is higher with the increase of the
task input size, which means that the benefit of NOMA is
larger when we transmit larger computation tasks. In Fig. 6, the
computation tasks’ MEC computing outperforms conventional
local computing, because there are abound computing capa-
bilities in the network edge. Also, we note that the proposed
RL algorithm outperforms conventional schemes.

V. CONCLUSION AND FUTURE DIRECTIONS

A. Concluding remarks

In this paper, we have investigated the application of
NOMA-enabled 5GB networks in remote-e-Health sys-
tems. Both NOMA-empowered ARs networks and NOMA-
empowered EI networks are discussed by comparing to the
conventional communication-based e-Health networks. A pair
of case studies are provided to verify the performance of
the proposed architecture, while the research challenges and
future directions are also presented in terms of practical
implementation.

B. Challenges of integrating 3C into remote-e-Health

1) Cooperative NOMA-5GB design by exploiting heteroge-
neous mobility: With the explosive development of mobile
ARs in remote-e-Health systems, devices are expected to
communicate with each other in an environment with het-
erogeneous mobility profiles. Nevertheless, there exist many
mobility-related problems, which may become obstacles to
the future 5GB networks, especially for the scenarios that
massive devices access the wireless networks simultaneously.
In practice, it is likely that the high-mobility users’ channel
conditions are worse than the low-mobility users’ channel
conditions, which is beneficial for the implementation of
NOMA technique. However, how to reap the benefits of this
channel difference is challenging.

2) Pareto-optimization for meeting multiple objectives:
In contrast to the conventional wireless networks, NOMA-
enabled 5GB in remote-e-Health systems are characterized by
more rapidly fluctuating network topologies and more vulner-
able communication links. Furthermore, NOMA-enabled 5GB
rely on the seamless integration of heterogeneous network
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segments with the goal of providing improved QoS. Hence,
it operates in a complex time-variant hybrid environment,
where the classic mathematical models have limited accu-
racy [12]. Additionally, the challenging optimization problems
encountered in remote-e-Health systems have to meet multiple
objectives (delay, throughput, BER, power) in order to arrive at
an attractive solution. However, determining the entire Pareto-
front of optimal solutions is still challenging.

C. Future directions

1) COVID-19 related applications: COVID-19 pandemic
has spread globally and resulted in an ongoing pandemic
that not only has placed people at risk of illness and death,
but also impacted the global economy and daily life. Quick
individual screening is an effective method to protect citizens
and make the best use of resources as the COVID-19 test
kits are far from enough to provide nucleic acid testing for
everyone and people may get infected anytime. Since fever is
one of the common symptoms of being infected by COVID-19,
identifying individuals with elevated body temperature (EBT)
in public areas has been recognized as one of the most efficient
methods to distinguish suspected infected individuals from the
general public. Since the COVID-19 is highly infectious, it
is expected to accomplish EBT detection missions without
participation of trained staff or medical personnel.

By deploying thermal imaging empowered ARs in a par-
ticular public area for identifying individuals with high EBT,
individuals who need additional screening can be detected and
alerted. Thus, the spread of COVID-19 virus and infections in
the public area can be slowed down or cut off dramatically. In
addition, by integrating ARs instead of face-to-face detection,
the staff or medical personnel can obtain people’s body
temperature data, as well as coordinate individuals with high
EBT without approaching them in person for safety purposes,
which could reduce the infection risk and save life of a large
number of personnel working in public areas.

However, it is of the upmost importance to guarantee
that all thermal imaging empowered ARs can move safely,
which requires ultra-reliable and secure communication links
between UAVs and their ground control stations (GCSs).
Furthermore, high-rate and massive-connected NOMA ARs-
BS communication links are also needed for sending back
real-time thermal images from ARs to GCSs. To this end, a
5G-driven NOMA-ARs platform, which integrates ARs into
the existing and future-generation wireless networks as new
users, is a promising approach to tackle the aforementioned
fundamental challenges.

2) Federated learning for individuals’ privacy preserving:
Since healthcare is a sensitive issue, medical data privacy
preserving should be considered carefully. Federated learning
(FL) is capable of achieving distributed network training
utilizing large amount of local data, but update only network
parameters instead of the sensitive raw data. The advantage
of FL is that the central networks do not need local data of
the patients for training, only the local networks’ parameters
are shared with the central networks. The local sensitive data
of the patients is kept in the local storage units. Therefore,

the privacy of the patients and hospitals are preserved while
enabling excellent network training performance [13]. Accord-
ing to the functions of FL, medical image classification (MIC)
and medical big data prediction (MBDP) are also important
application of EI in e-Health.

1) MIC: MIC plays an important role in the computer
version area. The goal of MIC is to recognize hidden in-
formation from medical image and provide fundamental
information for doctors and researchers in disease diag-
nosis. Recent advancements in medical image collection
and processing enable large volumes of medical images
and medical data possible for complex network training.
With the assist of FL, the neural network for MIC can
be trained in a distributed manner. NOMA strategy can
be adopted for parameters updating in FL based MIC,
which provides a low-latency multiple access medical
service to patients [14].

2) MBDP: The massive medical data collected from hos-
pitals and health-care organization provide a new era
for the medical services. The MBDP hold excellently
values for the patients and hospitals. However, the
complexity of clinic data require novel data processing
techniques to extract useful features and information.
High efficient AI technologies are needed for processing
large volume of medical big data. The role of MBDP is
to provide better health care services for individuals and
communities. [15].
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