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ABSTRACT 

The Internet of Things (IoT) technology has been widely introduced to the existing medical system. An 

eHealth system based on IoT devices has gained widespread popularity. In this article, we propose an IoT 

eHealth framework to provide an autonomous solution for patients with interventional cardiovascular 

diseases. In the framework, the wearable sensors are used to collect a patient’s health data, which is daily 

monitored by a remote doctor. When the monitoring data is abnormal, the remote doctor will ask for 

image acquisition of the patient’s cardiovascular internal conditions. We leverage edge computing to 

classify these training images by the local base classifier, thereafter, the pseudo-labels are generated 

according to its output. Moreover, a deep segmentation network is leveraged for the segmentation of 

stent structs in the intravascular optical coherence tomography (IVOCT) and intravenous ultrasound 

(IVUS) images of patients. The experimental results demonstrate that the remote and local doctors 

perform real-time visual communication to complete the telesurgery. In the experiments, we adopt the 

U-net backbone with a pretrained SeResNet34 as the encoder to segment the stent structs. Meanwhile, a 

series of comparative experiments have been conducted to demonstrate the effectiveness of our method 

based on accuracy, sensitivity, jaccard, and dice. 

INTRODUCTION 

The Internet of Things (IoT) is a system generally comprised of a large number of distributed mobile 

terminals embedded with sensors. IoT applications typically range from several fields, such as sports, 

agriculture, commerce, households, and medical care. In recent years, IoT has developed rapidly as it can 

minimize the effort with high accuracy, and effectively reduce time by predicting the outlook in a better 

way. Integrating IoT devices with actuators and sensors into gadget-like appliances and machines can 

introduce automation to almost every field. 

Healthcare is one of the most attractive application areas for IoT. IoT technology has great potential for 

remote medical care (also named telemedicine or eHealth). It can effectively help doctors solve many 

problems caused by distance barriers. Sensor devices in the IoT can bring great convenience to 

telemedicine and have recently been developed for daily monitoring of physical activity awareness, 

personal health, and medical care. The smart wearable sensor devices used in remote health monitoring 

systems [1] collect and store a large amount of patient health status data (such as body temperature, 

blood pressure, and electromyography) through sensors. Afterwards, doctors can remotely monitor the 

health of patients in real time and make appropriate treatment recommendations accordingly until the 

patients have fully recovered. Hence, IoT technology is helpful to achieve an early diagnosis of patients 

and thus improving their health. 

 

World Health Organization (WHO) [2] demonstrate that cardiovascular diseases (CVDs) are the 



number 1 cause of death all over the world. Timely medical treatment at the time of the onset is of vital 

importance for patients with cardiovascular diseases. Thus, it has attracted increasing attention to 

telemedicine services based on IoT, which provide real-time medical care for interventional 

cardiovascular diseases and even make remote surgery possible. Stents are widely adopted to treat severe 

narrowing of the arterial lumen through implantation in patients. In clinical practice, it is essential to 

track the location of planted stents in a biomedical image, which determines the success or failure of stent 

surgery to some extent. But it is a great challenge as well. Traditionally, the task is completed by the 

arterial experts manually, requiring exhausting work and is time-consuming. As widely applied in 

biomedicine, deep learning [3] can realize the automation of stent detection. Therefore, combining deep 

learning with IoT enables a new direction towards the stent struct segmentation for cardiovascular 

diagnosis and treatment. 

In this article, we introduce an eHealth framework based on IoT for interventional cardiovascular 

diagnosis and treatment. The framework provides an autonomous solution for cardiovascular patients 

who need interventional therapy and health monitoring. It mainly relies on wearable sensors that record 

information about the patient's health, such as respiratory rate, heart rate, and body temperature. 

Moreover, the framework combines the cloud-edge paradigm with deep learning to perform the stent 

struct segmentation to overcome the challenges of limited and imbalanced cardiovascular images. The 

local base classifier is deployed in the edge server to classify the local cardiovascular images. The 

pseudo-label generated from all the predicted results together with global data is fed to the image 

segmentation network in the cloud after data augmentation. Finally, asynchronous visualization 

telesurgery is adopted when the patient requires interventional therapy. The local doctors near the 

patient and the remote professional doctors interact with each other in real time to make surgical 

decisions. After the telesurgery, the framework restarts to the first step, and the remote doctors will 

continue to do the daily monitoring work. The entire framework is a cyclical process until the patient has 

fully recovered. 

LITERATURE REVIEW 

IoT Architecture for Healthcare Systems: In recent years, the potential viability and widespread use of 

electronic healthcare systems have set off a revolution in the field of healthcare. The aging of the global 

population and the increase in the number of patients are the two main factors driving this revolution. 

Moreover, the birth of IoT technology has brought a huge impact on the health care system. The decision 

support system based on the IoT is a typical part of recent healthcare [4]. Through this system, a patient's 

health is recorded to gain a deeper understanding of the patient’s status for clinical decisions. Chatterjee 

et al. [4] ascertained the risk groups by embedding the logic of a Framingham score into the reasoning 

engine, where an input of a patient with all the parameters considered would return the risk score. 

However, they did not propose an efficient method of data collection in their research, and the proposed 

analysis system for running data is non-automated. With the advent of high-precision sensors and 

medical devices in the IoT, they can be regarded as smart devices or objects that constitute the core part of 

the IoT. The IoT devices are able to connect patients, clinics, and healthcare organizations seamlessly and 

securely via the Internet, making IoT based eHealth system a research trend. For patients with 

cardiovascular disease, doctors usually make a diagnosis based on certain parameters such as 

Electrocardiogram (ECG) signal, blood pressure, body temperature, and heart beat rate (HBR). Many 

scholars have also carried out researches on ECG monitoring based on the IoT. Most recently, Maity and 

Misra [5] proposed a more comprehensive patient data collection system by using specified sensors (HBR, 

ECG, and Heart sound), which can be applied in the remote monitoring and prevention of cardiovascular 



diseases. However, there is a lack of an eHealth system for the diagnosis and treatment of interventional 

cardiovascular diseases so far. Thus, we propose an IoT framework for telemedicine that combines edge 

computing and cloud training. 

 

Deep Learning for Stent Segmentation: Bioresorbable Vascular Scaffolds (BVS), one of the most 

frequently used types of stents in cardiovascular interventional therapy, is absorbable and harmless 

compared to the metallic stent. In vascular medical imaging (e.g., intravascular optical coherence 

tomography (IVOCT), intravenous ultrasound (IVUS), and optical coherence tomography (OCT)), it 

effectively tracks the position of BVS. Currently, such a task is still mainly performed by the experts 

manually, which results in time-consuming and labor-intensive operations. In recent years, many 

researchers have realized the segmentation of BVS through machine learning. Although machine learning 

segmentation methods based on traditional features can almost achieve excellent results in stent 

segmentation tasks, these methods often depend on manually designed features, and its subjectivity may 

lead to large fluctuations in the performance of the constructed models. Recently, with the rapid 

development of deep learning, its end-to-end training pattern has effectively solved the defect. In terms 

of BVS segmentation, Cao et al. [3] proposed a robust BSV structs detection model based on Region-based 

Fully Convolutional Network (R-FCN), which used a Region Proposal Network (RPN) to extract structs 

region of interest (ROIs) in IVOCT images, and then classify the ROIs to realize the detection. To deal 

with limited training samples, they adopted transfer learning to train the detection model but there was a 

lack of data augmentation in their work. U-shaped convolutional neural network (U-net), a classical 

network widely used in medical image processing, has also been applied in BVS struts detection and 

segmentation by Zhou et al. [6]. Their network consisted of four up-sampling modules and five 

down-sampling modules. In this article, we enlarge our dataset through data enhancement and then 

propose a U-net based network with the pretrained SEResNet34 as its encoder. The proposed network 

outperforms the existing deep learning models and achieves a high segmentation accuracy, which will be 

able to aid the clinical surgery. 

The framework for Interventional Cardiovascular Diagnosis and Treatment 

An Overview of the Framework: As illustrated in Fig. 1 (a), the framework can be divided into the 

following five parts. First, the remote doctor daily monitors the patient’s data collected by the wearable 

sensor devices. When the heart rate is over 100/min, or diastolic blood pressure is over 90, or systolic 

blood pressure is over 140, the patient’s physical signs can be regarded as abnormal. Then, the remote 

doctor will immediately inform the patient and ask him/her to go to the local hospital to obtain the 

IVUS/IVOCT images. After the image acquisition, the local training images are classified by the local base 

classifier in the edge server, and pseudo-labels will be generated by the output of the local base classifier. 

Then, after the data augmentation of the cloud global data and pseudo-labels, cloud training is performed 

on the deep segmentation network of stent structs. Next, the local and remote doctors complete 

telesurgery through real-time interaction and exchange of decisions. Finally, patients continue to wear 

sensor devices to record physical health data after telesurgery, and the remote doctor continues to 

monitor the data. The entire framework is a cyclical process until the patient has fully recovered. 



 

(a) 

 

(b) 

FIGURE 1. (a) The flowchart of the proposed framework for interventional cardiovascular diagnosis. The framework is divided into 

five parts: Daily Monitoring, Edge Computing, Cloud Training, Telesurgery, and Postoperative Following up. (b) Edge computing 

structure for IoT deep learning. The local base classifiers are deployed in edge nodes to train local images. The deep segmentation 

network is deployed in the cloud to train global data. 

 

Daily Monitoring: In recent years, more and more scholars have tried to develop some smart 

wearable sensor devices [1] that can be used in remote health monitoring systems to continuously 

monitor the health of individuals. There is already a low-cost wrist-worn wearable sensor E-Vital which 

has an acceptable signal-to-noise ratio (SNR) and has achieved success in continuous data transmission, 

signal quality, and data storage performance [1]. The wrist-worn wearable sensor integrates several 



sensors (such as accelerometer, temperature, ECG, and gyro) to monitor the patient's physical signs (such 

as body temperature and heart rate), real-time activity, and emotional state. In the first part of this 

framework (Fig. 2), wearable sensor devices are used to collect a large amount of patient’s health data 

(such as respiratory rate, heart rate, and body temperature), which are archived and processed by 

connecting to the cloud services through the Internet. Then, the data is transmitted to the remote doctor 

via the cloud. The remote doctor constantly monitors the patient's health in real time based on these data 

and can quickly discover the patient's risky conditions. When the remote doctor observes an abnormality 

in the data, the remote doctor would notify the patient and collect images of the patient's cardiovascular 

internal conditions. 

 

FIGURE 2. The process of daily monitoring. In this part, the remote doctor is constantly monitoring the health data collected from 

wearable sensor devices. When the data is abnormal, the remote doctor will inform the patient. 

 

Role of Edge Computing: Currently, IVUS and IVOCT images are used to observe the internal 

conditions of coronary arteries. These two image acquisition techniques can provide more detailed 

information about the internal vessels for interventional cardiovascular diagnosis and treatment. As 

illustrated in Fig. 1 (b), the framework collects local IVUS/IVOCT images of patients through edge 

sensors deployed in edge nodes. These images are mainly divided into two datasets with one labeled and 

another not. Moreover, we introduce a deep segmentation network in the cloud that can work on global 

data without consuming excessive local resources. The local IVUS/IVOCT images are used to train the 

local base classifier located on the edge node. To make full use of the unlabeled dataset, we generate 

pseudo-tags by using the predicted results of the local base classifier with the average method as the 

decision function. Pseudo-tags are transmitted to the cloud services and used with real tags for cloud 

training, which reduces network traffic and pressure. 

 



Training at Cloud Server: In the cloud, global data is used to train the deep segmentation network. 

Due to the limited training data, it is necessary to enhance the image data. For the deep segmentation 

network in the cloud, U-net [7] is adopted to realize stent structs segmentation. As shown in Fig. 3 (a), the 

network consists of a down-sampling path and an up-sampling path with 16 encoder blocks and 5 

decoder blocks. The former path extracts feature from the input global data beginning with a 7 × 7 

convolution, a batch normalization (BN), and a ReLU activation. Then, a max-pooling layer is inserted 

before 16 encoder blocks. The encoder blocks are placed in 4 layers with 3, 4, 6, 3 ones in each layer. In the 

up-sampling path, 5 decoder units are placed and the first four of which are concatenated by skip 

connections with their corresponding layers in the contracting path as illustrated in Fig. 3 (a). In this way, 

both low-level details and high-level semantic information can be learned in this symmetrical architecture. 

At last, we use a 3 × 3 convolution followed by a sigmoid activation layer to generate the output. The 

obtained segmentation result of stent structs is then transmitted to the local doctor still via the cloud. 

To explain our network architecture in more detail, we present the internal structure of the encoder 

block and decoder block in Fig. 3 (b). The encoder block is constructed through integrating the 

Squeeze-and-Excitation Networks (SENet) [8] with residual connection [9]. 

In Fig. 3 (c), we provide a theoretical illustration of the Squeeze-and-Excitation (SE) mechanism. The SE 

block can be applied to any mapping and here we take convolution as an example. Since the convolution 

only takes place in a local space, it is difficult to obtain enough information to extract the relationship 

among channels. Hence, SENet proposed the Squeeze operation which encodes the entire spatial 

characteristics on a channel into a global feature through global average pooling, which is depicted in Fig. 

3 (b). Therefore, the initial input is converted to the output which indicates the numerical distribution of 

the feature maps in this certain layer or global information in other words. 

Next, we conduct the Excitation operation to extract the relationships among channels with the gating 

mechanism in the form of sigmoid. In this step, we adopt two full connection (FC) layer contained 

bottlenecks to reduce the complexity of the model and improve generalization performance. As can be 

seen in Fig. 3 (b), the former FC layer reduces the dimension with a ReLU activation followed, while the 

latter one restores the original dimension followed by a sigmoid activation. Finally, we multiply the 

initial characteristics with the learnt activation values of each channel. This is the corresponding step 

‘scale’ drawn in Fig. 3 (b). In general, the whole Squeeze-and-Excitation operation can be regarded as a 

learning process of each channel’s weight coefficient, making the model more discriminative to the 

characteristics of different channels. 

In our implementation, the SE module is embedded in the residual learning branch in the encoder 

block shown in Fig. 3 (b). As a ResNet unit, if we denote the input of each encoder block as 𝑋𝑖, the output 

will be 𝑓(𝑋𝑖) + 𝑋𝑖  with 𝑓(∙)  representing the residual function. During the encoding process, the 

down-sampling block begins with two sets of BN + ReLU, and each one is followed by a 3 × 3 

convolution layer. The SE block is inserted right after the latter convolution. As for the decoder block, it is 

constructed by 5 layers: a 4 × 4 transpose convolution, BN + ReLU, Concatenate, 3 × 3 convolution, and 

BN + ReLU in turn. Note that a skip connection is linked before each Concatenate layer in the first four 

decoder blocks, connecting different levels of information to improve the deep segmentation network. 
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FIGURE 3. (a)The architecture of the deep segmentation network. (b) The internal structure of the encoder block and decoder block. 

(c) The Squeeze-and-Excitation mechanism. (d) The training and testing process. 

 



Due to the limited training data and even fewer stent contained training images, there is a strong 

imbalance between positive and negative samples. Therefore, Dice Loss (DL) is used as the loss function 

of the network. Additionally, we adopt adaptive moment estimation (Adam) Optimizer to train our 

network. The initial learning rate is set to 0.001 and decays by 0.15. We set the batch size to 4 and a 

total of 25 epochs are trained. 

 

Telesurgery: If the patient’s condition is serious to a level where surgical treatment is required, then a 

remote surgery will be performed. Firstly, the sensor data and images are transmitted to the local doctor 

and remote doctor via the cloud as the basis for diagnosis. During the operation, real-time interaction and 

visualization are achieved between the doctors on both sides through cloud services. Thus, the two sides 

can share their decisions instantly, enabling specialized surgeons to assist and guide doctors with less 

experience remotely. As the technical support for telesurgery, the transmission quality and speed of the 

image/video communication must be guaranteed. However, visual distortions after transmission caused 

by limited equipment conditions may interfere with the operation and even endanger patients’ health. In 

the area of eHealth, there already exist some medical image quality evaluations such as Double Stimulus 

Continuous Quality Scale (DSCQS) and Mean Opinion Score (MOS). We adopt these metrics to further 

measure and improve the perceived quality of telecommunication. 

 

Postoperative Following up: After the remote surgery, patients will continue to wear sensors so that 

their health data can be continuously recorded and sent to the remote doctor via the cloud. The remote 

doctor is responsible for follow-up health monitoring just as with their routine work. Actually, the entire 

framework forms a cyclical structure applying to the treatment of each patient until he/she has fully 

recovered. 

Experiment 

Experiment Set: We collect the IVOCT images dataset of bioabsorbable stents from the department of 

cardiology of Dongfang hospital affiliated to Tongji University. A total of 1040 labeled photos are 

provided from experts, among which 624 images are used as training set while 208 ones as testing and 

validation set. The network trains on the training set and validates on the validation set, using the 

validation error as the stopping criteria of the training process. Our experimental results are derived from 

the performance on the testing set that is unused during the training process. Besides, we adopt data 

augmentation methods, such as random rotation with 0 – 90 degree, width and height shifting with range 

0.2, vertical flipping, and horizontal mirroring, to enhance the training set to avoid overfitting. The 

training set has been expanded to three times the original set. 

 

Metrics: Accuracy, sensitivity, Jaccard similarity coefficient, and Dice similarity coefficient are four 

commonly used evaluation criteria for medical image segmentation. They range from 0 to 1, and the 

closer to 1, the predicted contour is more similar to the ground truth. 

 

Result: The training and testing process of our experiment is described in Fig. 3 (d). Firstly, we adopt 

transfer learning through pre-training the SEResNet34 with ImageNet, which can simplify the learning 

process and improve the segmentation effectiveness at the same time. As for the preprocessing, data 

enhancement of the IVOCT images is conducted to tackle the limited data. After comparison, the 

pretrained SEResNet34 is used as the encoder of the U-shape network. Finally, the trained model is 

validated by the testing set. We conduct the experiment based on the Keras framework with a GPU of 



NVIDIA GeForce GTX 1080 (8GB). 

To determine the structure of the encoder and decoder, we perform two comparative experiments 

respectively for selection. As listed in Table 1, we find that a transferred network performs better in most 

cases. Also, ResNet added with Squeeze-and-Excitation (SE) modules shows improved effectiveness than 

its original model because the SE mechanism enables the network to focus the attention on the important 

channels. Since a deep network is able to extract more features, ResNet34 performs better than ResNet18. 

However, a deeper network, such as ResNet50, will cause the loss of information and unclear 

segmentation boundaries due to a limited number of images in our dataset. Thus, we choose SEResNet34 

to be the encoder due to its best results among the comparative tests. In addition, we record the 

parameters of these encoders in Table 1. Both the model size and prediction time are not at a large level 

for the limited training data. Nevertheless, the gap can be widened when a huge amount of data is 

accessible in future practical applications. 

 

Encoder Decoder Transferable 
Accuracy 

(%) 

Sensitivity 

(%) 

Jaccard 

(%) 

Dice 

(%) 

Model 

size 

(MB) 

Prediction 

time 

(second / 

image) 

Epochs to 

converge 

ResNet18 

transpose 

convolution + 

Batch 

Normalization 

N 89.4 91.0 88.3 91.0 

172 0.28 

15 

Y 89.7 91.1 88.4 92.1 15 

ResNet34 

transpose 

convolution + 

Batch 

Normalization 

N 90.3 90.7 89.8 92.1 

294 0.75 

15 

Y 90.5 90.7 90.0 92.5 20 

SeResNet

18 

transpose 

convolution + 

Batch 

Normalization 

N 90.5 90.8 90.3 92.4 

174 0.80 

17 

Y 90.6 91.1 90.4 92.6 20 

SeResNet

34 

upsampling Y 90.4 91.0 89.7 92.8 

311 0.92 

25 

transpose 

convolution 
Y 90.9 91.3 90.0 93.0 25 

upsampling + 

Batch 

Normalization 

Y 90.8 91.5 90.2 92.9 25 

transpose 

convolution + 

Batch 

Normalization 

N 90.8 91.5 90.7 93.0 25 

transpose 

convolution + 

Batch 

Normalization 

Y 91.1 91.9 90.7 93.3 30 

SeResNet

50 

transpose 

convolution + 

N 91.0 91.3 90.5 92.8 
422 1.31 

40 

Y 90.9 91.1 90.4 92.9 50 



Batch 

Normalization 

TABLE 1. The comparison of network structures. 

 

When it comes to the decoder, we fix the pretrained SEResNe34 as our encoder for subsequent 

operations. When used alone, a transpose convolution works better than an upsampling in all the four 

metrics, and it is the same with their effects improved by adding Batch Normalization (BN). Therefore, 

the final decoder is constructed by a transpose convolution plus with BN. 

Finally, we demonstrate the reliability of our deep segmentation network by comparing our results 

with other state-of-art methods on the same dataset. The segmentation outputs are given in Fig. 4 and the 

quantitative results are summarized in Table 2. 

Ground TruthOriginal Images SegNet FCN U-Net U-Net++ Attention U-Net Ours

 

FIGURE 4. The segmentation outputs of images. 

 

Model Accuracy (%) Sensitivity (%) Jaccard (%) Dice (%) 

SegNet[10] 86.9 89.3 88.6 91.2 

FCN[11] 87.1 90.7 87.9 92.1 

U-Net[7] 87.6 90.3 86.3 91.5 

U-Net++[12] 89.3 91.4 88.1 91.7 

VGG_UNet[13] 89.3 91.4 88.1 91.7 

Resnet_Unet[14] 89.9 91.8 89.2 92.3 

Attention U-net [15] 90.1 91.3 89.4 92.5 

Ours 91.1 91.9 90.7 93.3 

TABLE 2. The comparison of other state-of-art methods. 

 

CONCLUSIONS 

In this article, we introduce an IoT-based eHealth system for interventional cardiovascular disease. The 

system can effectively monitor the health of patients in real time through sensors and provide timely 

interventional telesurgery treatment for patients when necessary. Besides, we introduce the deep learning 



of the Internet of Things into the edge computing environment, reducing the network pressure between 

IoT devices and cloud services. In the experiments, we choose U-net as the backbone for the deep 

segmentation network and use the pretrained SEResNet34 as its encoder. Extensive experiments have 

been conducted to prove the effectiveness and robustness of the proposed method, and accuracy, 

sensitivity, jaccard, and dice of 91.1 percent, 91.9 percent, 90.7 percent, 93.3 percent are achieved 

respectively. In the future, various deep learning methods can be introduced to propose an adaptive deep 

learning network for different kinds of data images from different distribution. Moreover, high latency 

and reliability remain the focuses of future implementation as required by the medical industry. With the 

development of the 5th generation wireless systems (5G), while guaranteeing end-to-end 

millisecond-level latency and nearly 100 percent reliability, it will be possible to deal with massive data 

collected from every edge of the world. 
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