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Abstract—In existing mobile network systems, the data plane
(DP) is mainly considered a pipeline consisting of network
elements end-to-end forwarding user data traffics. With the
rapid maturity of programmable network devices, however,
mobile network infrastructure mutates towards a programmable
computing platform. Therefore, such a programmable DP can
provide in-network computing capability for many application
services. In this paper, we target to enhance the data plane
with in-network deep learning (DL) capability. However, in-
network intelligence can be a significant load for network devices.
Then, the paradigm of the functional split is applied so that the
deep neural network (DNN) is decomposed into sub-elements
of the data plane for making machine learning inference jobs
more efficient. As a proof-of-concept, we take a Blind Source
Separation (BSS) problem as an example to exhibit the benefits
of such an approach. We implement the proposed enhancement
in a full-stack emulator and we provide a quantitative evaluation
with professional datasets. As an initial trial, our study provides
insightful guidelines for the design of the future mobile network
system, employing in-network intelligence (e.g., 6G).

Index Terms—Artificial Intelligence, In-Network Computing,
Blind Source Separation, Data Plane Enhancement, 6G

I. INTRODUCTION

With the advent of network softwarization and 5G, the
mobile network system consists of a control plane (CP) and
a data plane (DP). CP serves the purposes of access control,
security, handling service requests, policy/charging, etc.; DP
consists of network resource elements to deploy network
services commanded by CP. Before 5G, CP and DP were
tightly coupled, in vendor-specific hardware devices.

5G decoupling allows CP and DP to evolve separately
and flexibly by Network Function Virtualization (NFV) and
Software Defined Networking (SDN) enablers of network
softwarization. Currently, both CP and DP Network Functions
(NFs) can be fully virtualized, interconnected as software
components in virtual chains, deployed wherever network
resources are available.

Recent development in programmability has opened the
way for in-network intelligence, which is going to be a
key aspect of future 6G networks. P4 language is used in
softwarization and its performance is nearly equivalent to
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those traditional vendor-specific products. Examples can be
found in model training [1], distributed database consensus [2],
etc. These pioneer works show a chance to bring application
services back to operator’s networks if the DP becomes fully
programmable in the forthcoming 6G.

In this paper, driven by the key importance of artificial
intelligence (AI) in various vertical industries, we consider a
DP enhancement with in-network deep learning (DL) capabil-
ity. Specifically, we extend configurable user plane functions
(UPFs) with a shredding deep neural network (DNN) after
modeling training to support in-transit inference services over
the extended UPFs deployed in the DP. In order to exemplify
the benefits of such an enhancement in DP, we take Blind
Source Separation (BSS) problem as a case study. A BSS
problem is a mixture data separation problem having many
realistic applications e.g., audio analysis, natural language
processing, speech recognition, etc. It is representative of
a set of typical inference problems that can be solved by
DNN-based approaches. We expect that these will occupy the
majority of future applications in 6G.

The unique features of our work are as follows. First,
we consider DP for DNN inference tasks, complementary to
model training problems widely studied in the literature [1].
Secondly, our problem is a special type of distributed AI
problems as the inference job has to be done in sequential
order over the extended UPFs of a forwarding path in DP. In
other words, our problem has to take the order of UPFs into
account when designing a DNN split-and-deployment strategy.
In contrast, usual distributed learning problems do not have
such a constraint. Last but not least, the DP enhancement also
requires modifying the counterpart CP procedures/interfaces.
In summary, our contributions are briefly listed as follows:

• We enhanced DP with in-network DL capability in order
to support popular DNN inference application services for
end-users. Specifically, We proposed DNN split strategies
in order to realize a progressive data processing for AI
inference tasks; accordingly, extended CP interfaces and
procedures are introduced as well;

• We took a BSS problem as an example to demonstrate
how UPFs can be enhanced with accommodating split
DNN. Particularly, we converted a monolithic convolu-
tional neural network (CNN) Conv-TasNet [3] into a split
version that can be deployed on the extended UPFs;

• We implemented our proposed solutions in a full-stack
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emulator–Communication Networks Emulator (ComNet-
sEmu). We compared with its original monolithic version
and the latest non-DL-based solution [4], the evaluation
results based on a professional dataset confirm the bene-
fits of the DP intelligence enhancement.

To the best of our knowledge, we are not aware of similar
works in the literature. In addition, our work well aligns with
3GPP prospective work items for the upcoming 5G Release 18,
targeting to support AI applications, and the design of future
6G networks. Our work also provides insightful guidelines
on the impact of AI on the design of open programmable
networks in 6G.

The rest of the paper is organized as follows. First, the
related works on in-network DL are introduced in Section II.
Section III describes the general strategy for DL enhance-
ment. After that, a BSS problem is used to showcase the
proposed scheme in Section IV. Section V covers the full-
stack implementation, the quantitative evaluation, and in-depth
discussions about our measurement results. Finally, Section VI
concludes our contributions and points out future research
aspects.

II. RELATED WORK

This section introduces the related works on programmable
network devices and in-network DL.

A. Programmable network devices

Network softwarization technologies decouple the CP and
DP structure of the network to make in-network computing
possible. One of the main advantages of this is that the network
endpoints (e.g., servers) suffer from reduced computing power
as the workload is offloaded to the network [5].

The drive for programmability of network devices has a long
history, such as Protocol-Independent Switch Architecture
(PISA), smartNIC, etc. With the advance of SDN, Virtual-
ized Network Functions (VNFs) are interconnected through
the underlying infrastructure network as containers, virtual
machines, or natively as bare-metal. This allows the creation
of an Service Function Chain (SFC) that performs the required
computation on the physical devices.

On this basis, P4 – a high-level language to configure pro-
grammable network devices – was proposed. The P4 compiler
translates P4 programs into code that runs on the underlying
switches. Thus, P4 serves as a common interface between SDN
controllers and programmable network devices [2]. These
trends stimulate the concept of in-network DL, which naturally
fits into an edge-cloud continuum within a common framework
integrated compute-network capabilities.

B. In-network DL

Within the broad area of in-network DL, there have been
several streams of research. One stream of research focuses
on enabling DNN training by using distributed learning. [1]
supports in-network aggregation to enable sharing switch re-
sources across training jobs. [6] considers the overhead issues
of distributed learning problems. A unified traffic compression
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Fig. 1: DL capability enhancements in a 3GPP system. For more information
on the interface between NFV-MANO and MP/DP, please refer to the NFV-
IFA group specification published by the European Telecommunications
Standards Institute.

framework for distributed learning is proposed, which can
be easily implemented with most toolkits. In [7], authors
explored the challenges and future directions for federate
learning on edge devices. In [8], an edge computing-based
system is designed to offload the data analysis process from the
cloud by deploying the same CNN model to edge nodes and
feeding them with different data subsets. These efforts deploy
the deep learning network as a whole on a network device,
while the end server is mainly responsible for parameter
synchronization and updating during the training phase. For
training models, these approaches have obvious advantages,
such as distributing the training tasks and reducing the data
communication volume. However, these advantages cannot be
retained in the inference phase, where parameter learning is
no longer required.

Another stream has focused on deploying and running DNN
in the DP. The authors of [9] transformed the machine learning
model for network traffic classification into a P4 language
pipeline and deployed it on programmable switches via an
Agent Deployer. However, this study focused on the design
of the neural network (NN) and the interface between CP and
DP. Splitting NNs into multiple VNFs to be deployed is not
covered. [10] provides the first open-source implementation
of a distributed NN in a programmable DP. This paper is
based on the deployment of neurons, however, as DNNs grow
increasingly large, the number of neurons explodes much
larger than the available network devices, making neuron-
based deployment in the network impractical.

While these streams have made important and unique con-
tributions to in-network DL, the need for a splitting strategy
to distribute DNNs is becoming more and more intense,
especially with today’s programmable network devices and
increasingly large-scale NN models.

III. IN-NETWORK DL ENHANCEMENT FOR 6G
In this section, our proposed extension on DP is presented,

followed by an introduction to the management plane (MP)
and CP extension for 6G.

A. DP DL capability extension
According to the reference architecture defined by 3GPP

SA2, in core network part, DP mainly consists of UPFs
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transporting packet data unit (PDU) sessions. A PDU session
represents a QoS-aware connection between a user entity (UE)
and a data network located at the edge or in a data center. As
mentioned, in existing mobile network systems, UPF acts as
a pure networking element, only transmitting bits and bytes
in terms of the IP header of a data packet. In order to extend
UPF with DL capability, it is equivalent to enhancing UPF
with a local DNN component as shown in Fig. 1, which can
be configured according to specific applications.

Trivially embedding a DNN is unrealistic because DL is
computationally demanding, and it often requires a complex
computing architecture (such as dedicated hardware like GPU
and large memory). Although the future UPF element will be
programmable with compute-oriented resources onboard, its
computational power shall be still much less than a Commer-
cial off-the-shelf (COTS) server node. Nevertheless, the size
of a DNN is usually huge [11]. Hence, a central challenge
is how to split a DNN into pieces that are network element-
suitable. Considering this challenge, we propose the following
principles when a DNN needs to be split and embedded on
several UPFs along a forwarding path.

1) Principle-1 proportionally splitting a model: Currently,
popular DNNs easily have millions or higher numbers
of parameters with dozens of network layers. Unlike a
server, a UPF cannot offload the entire model. Splitting
a model proportionally can assure that a UPF will not
be overloaded;

2) Principle-2 avoiding inter-UPF traffic explosion: A
DNN transforms raw data into high-dimensional feature
representations by convolution or other operations. This
process usually accompanies temporal variations of data
volume transmitted between layers. To avoid the data
volume between two UPFs exploding, it is necessary to
split a DNN at the layers whose temporal data volume is
small. Note that achieving this objective may contradict
to the first one;

3) Principle-3 parallelizing local processing and forward-
ing: Local DL on a UPF requires data and temporal
outputs of the last layer of a DNN delivered from the
previous UPF. Caching and waiting for the required
inputs take time, especially when the path length in-
creases. Hence, parallelizing the underlying forwarding
strategy and efficient inter-UPFs interactions should be
considered.

Bearing with the three principles above, a generic way to split
a DNN can follow the procedures below:

The first step is to analyze the parameter size distribution
of the DNN. Following Principle-1, the DNN is divided
into multiple neural blocks proportional to the capacities of
allocated UPFs.

The second step is to adjust the splitting result from the
first step and avoid data explosion splitting points located in
between two consecutive UPFs as much as possible, following
Principle-2. For example, the authors in [12] use the saddle
point of filtering rate to determine splitting points where the
amount of temporal data is smaller. This tells us which layer
should or should not be a splitting point.

The third step is to analyze the computing logic of neural
blocks to avoid waiting for other neural blocks’ processing,
thus wasting UPF’s computing resources. For example, the
low-complexity shortcut path of a bottleneck residual block
must wait for data from the high-complexity path. With
following Principle-3, such processing and forwarding need
to be parallelized to avoid caching and waiting. Therefore, the
splitting result may be further revised.

B. MP and CP extension

After we introduce the part of DP enhancement, we briefly
introduce what has to be done at the MP and CP accordingly
for completeness, although this part is not the main focus of
this paper.

1) MP extension: MP has to support orchestrating the new
type of UPF with DL capability. Specifically, since a DL
application usually uses a dedicated DNN model, creation and
modification of such a UPF need to involve a service provider,
which is not supported in 5G MP. In other words, the existing
5G MP does not allow to configure UPF with an additional
processing logic for a particular application service. In order
to enable this, as highlighted in red in Fig. 1, the following
minimum extensions are suggested:

• Os-Ma-nfvo: Over this interface, an application service
provider shall be able to publish a set of in-network
computing logic for its application services to NFV-
Management and orchestration (MANO) (nfvo);

• Ve-Vnfm-vnf: Virtualized Network Function Manager
(VNFM) shall be able to receive the request of deploying
a UPF with an in-network computing logic defined by
the service provider from NFV-MANO; VNFM prepares
a NF description in terms of the resource availability;

• Nf-Vi: A NF description with the service provider’s
feature is sent to Virtualized Infrastructure Manager
(VIM) who will instantiate a VNF instance at the NFV
infrastructure.

After the customized UPF is instantiated, the instance will
register itself or be identified by the relevant management
entity (e.g., the element manager of the network) for configu-
ration, fault, and performance managements. It is also ready
for service provisioning with CP. For our case, the extended
MP deploys the UPF instances with a split DNN for a DL
application service.

2) CP extension: CP has to support provision a service that
is requested by a UE indicating to activate the enhanced feature
at the DP (i.e., the UPF with DL capability). This requires a
series of updated control flows among existing CP-NFs. At
least the two aspects below have to be extended:

• Service Discovery: As shown in Fig. 1, this happens
between a UE and an Edge Application Service Dis-
covery Function (EASDF). An EASDF provides edge
application service information that is needed for a UE.
The information has to be extended to include whether
a requested application service supports the in-network
computing feature; after receiving the response from
EASDF, a UE can decide if it wants to establish a PDU
session over the enhance UPFs;
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Fig. 2: An illustration of the ultimate splitting of Conv-TasNet. DP path length is five, and every UPF can accommodate maximum of two neural blocks.

• Session Management: As shown in Fig. 1, this happens
between a UE and a Session Management Function
(SMF) that is responsible for PDU session establishment.
SMF has to be extended to support identify, select and
configure the new type of UPFs that are enhanced with
application-specific processing logic; SMF shall also re-
act to mobility events of the UE for service continuity,
Quality-of-Service (QoS) measurement collections and
report to other CP-NFs for charging and policy interven-
tions and so on.

In summary, DP and M-/CP enhancements together com-
plete the picture of enhancing in-network DL capability for
machine learning (ML) inference application services in 6G.

IV. A CASE STUDY: BLIND SOURCE SEPARATION (BSS)
PROBLEM

A. BSS problem

BSS [13] is the process of recovering the source signal from
a mixture of observed signals without the aid of information
(or with very little information) about the source signals
and the mixing process. Since acoustic signals are naturally
interfered with, the observed signals need to be separated to
understand each source individually. As introduced, BSS is
a fundamental data pre-processing technique for numerous
acoustic applications, such as audio analysis, natural language
processing, speech recognition, etc. It is also promising if such
a pre-processing can be accelerated when collected data is
being transmitted via a mobile network before arriving at a
server end.

BSS problem has been studied for years in the field of
signal processing. One of the most successful approaches is
Independent Component Analysis (ICA) [13]. Because of its
high demand for computational power, ICA is often executed
on a powerful server machine. Recently, DL techniques are
adopted to solve the BSS problem, as an alternative to ICA

methods. One of the most advanced is a CNN-based Conv-
TasNet [3], which is recalled upon next.

B. Conv-TasNet preliminary

Conv-TasNet consists of several convolutional layers as
shown in Fig. 2. The input time-domain signal is encoded
into the feature space by the convolutional layer at the be-
ginning (marked with yellow). After the first layer, there are
eight stacked 1-D convolutional layers as the separation part
(marked with light blue) performing the actual data separation
jobs. After the separation part, another convolutional layer
(marked with purple) expands the intermediate data to masks
whose size will be significantly increased (indicated by a
thicker line in Fig. 2). The last convolutional layer (marked
with green) decodes the data into the time-domain and also
causes an increase in the length of the data.

Conv-TasNet is a valuable candidate to demonstrate how
to accommodate a DNN into an in-network scheme. The
reasons are as follows. First, Conv-TasNet utilizes lightweight
1-D convolutional blocks to separate the observed signals.
Such a lightweight design reduces the overall computational
complexity with guaranteed separation accuracy that makes it
suitable for deployment in networks. Deriving an in-network
solution for it will also be instrumental for other similar
BSS problems. Second, we will see that splitting its CNN
will face all challenges we mentioned before. Therefore,
this exemplifies how the three proposed principles shall be
exercised in practice.

C. Splitting Conv-TasNet into DP

Refer to the three principles introduced in Section III-A,
Conv-TasNet is split into ten neural blocks, as shown in Fig. 2.

Following Principle-1, with homogeneous UPFs, we ini-
tially split Conv-TasNet into eight even neural blocks, each of
which occupies approximately 12.649% out of 0.663 millions
of model parameters defining the entire CNN. Specifically,



ACCEPTED FOR PUBLICATION IN THE IEEE WIRELESS COMMUNICATIONS MAGAZINE, DOI: 10.1109/MWC.003.2200060 5

the first neural block contains the encoding part convolutional
layer and a subset of separation part convolution layers; the
next six neural blocks correspond to the second to seventh
evenly split convolutional layers of the separation part; the
eighth neural block contains the rest of the separation part
convolutional layers (including mask) and the decoding part.
Note that the separation part occupies almost 98.764% param-
eters while all the other parts share the rest 1.236%.

According to Principle-2, furthermore, the last neural block
(i.e., the rest of the separation part and the mask plus decoding
part) enlarges output data size, which leads to traffic explosion
to stress network bandwidth to the server node. Therefore, the
decoding part is taken out as a new neural block and merged
to the server node. This hides the explosion inside the server
node thus avoiding large volume temporal data flooding the
network link.

Observing the computing logic of the encoding part, its
output is needed by both the separation part and the last
decoding part. To prevent the last convolutional layer from
waiting for temporal output, with Principle-3 we split the
convolutional layer of the decoding part as a separate neural
block, so that its output data can be directly sent to the last
in parallel.

Ultimately, from the initial eight neural blocks, with con-
sidering Principle-2 and Principle-3, the total number of split
neural blocks becomes ten. For illustration, Fig. 2 shows a
mapping with its final deployment on DP consisting of UPFs
and the server node, given that every UPF can accommodate
maximum of two neural blocks, i.e., δ-type is 2 as how we
define later.

V. EVALUATION

A. Experimental setups

We emulated the proposed enhancements with a network
emulator–ComNetsEmu developed in [14]. The reason to
choose ComNetsEmu is because of its full capability of
supporting both NFV and SDN. Specifically, we used Com-
NetsEmu to implement the extended DP described in Sec-
tion III-A and accommodated the split Conv-TasNet solution
introduced in Section IV-C. The virtualized network node
created by ComNetsEmu is equivalent to a UPF with a split
DNN component. Hence, a series of virtualized nodes form the
DP running the data separation service. Additionally, the SDN
controller mimics the role of extended MP and CP introduced
in Section III-B.

Data was transmitted with User Datagram Protocol (UDP)
and the bandwidth between UPFs was 1 Gbps with propaga-
tion delay 10 ms. These are normal conditions in an average
network system. Since we mainly focused on the split of NN
models, we assumed that possible transmission failures were
handled by lower-layer protocols. All emulations were done
on a COTS server with an Intel(R) Xeon(R) Gold 6148 CPU
2.40GHz and 4GB RAM using Ubuntu 18.04.4 LTS.

1) Scenarios: We evaluated under a linear topology with
two different DP path lengths: three and five hops (i.e., namely
3H-N and 5H-N), respectively. This is in the typical range
of the UPF numbers in an operator’s network from a UE to

TABLE I: Distributions of ten neural block] on network elements within two
network path lengths. The first neural block always occupies one UPF and
the last neural block is always on server node.

δ-
Type

Max. Neural
Block] per UPF

Neural Block] on
Server (UPF] = 3)

Neural Block] on
Server (UPF] = 5)

0 NULL 10 10
1 1 7 5
2 2 5 1
3 3 3 1
4 4 1 1

data networks. We considered five types of UPFs, numbered
with an integer value δ from 0 → 4. Each δ-type represents a
UPF with the capacity to accommodate maximally δ numbers
of Conv-TasNet’s neural blocks onboard. In particular, the
scenario of 0-type UPFs was used as the baseline system,
since δ equals zero means that the network has no in-network
DL enhancement, in this case, it is equivalent to the original
Conv-TasNet scheme in [3]. Table I gives the detailed network
topology configurations consisting of different δ-type UPFs
and a server end. In addition to comparing with Conv-TasNet
without in-network DL capability, we also selected a recent
non-DL-based solution – progressive ICA (pICA) [4] for
comparison.

For each configuration in Table I, we performed 50 tests
i.e., 50 randomly selected datasets will be processed with our
implementation in the ComNetsEmu emulator.

2) Metrics: The first metric is residual time, which tells
the residual time taken by the last node (i.e. server node) to
finalize the entire data separation jobs. The smaller the residual
time, the more jobs were done by the intermediate network
nodes. Therefore, it measures the acceleration speed to the
DL service application service.

The second metric is Source-to-Distortion Ratio (SDR),
which is used to evaluate the separation accuracy of Conv-
TasNet service. The SDR definition is the most widely used
metric nowadays because different types of errors, i.e., in-
terference, noise, and artifacts errors, are comprehensively
considered. This metric examines whether the accuracy of
neural networks has been affected by in-network computing.

3) Dataset: We picked a public open dataset from [15],
called Malfunctioning Industrial Machine Investigation and
Inspection (MIMII). The main reasons for choosing the MIMII
dataset are as follows. First, it is a well-known dataset that
is widely referenced in research and engineering for acoustic
machine anomaly detection. In addition, it exactly reflects the
theme of this work, i.e., processing the most relevant acoustic
data of factory machines from industry rather than random
acoustic data such as music or daily life data.

This dataset has collected 26092 normal and anomalous
operating sound data of four types of machines. 2-second-long
audio of each segment is used, which is single-channel with
a sample rate of 16kHz. The size of one data source is 32k.

B. Residual computing time and separation quality

Fig. 3 shows the residual time on the server node when using
the DL-based Conv-TasNet (with and without the proposed DP
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Fig. 3: Residual time of the DL-based Conv-TasNet and the non-DL-based
pICA on DP.

enhancement) and pICA, which is an ICA algorithm but not
based on DL, under the two DP lengths with different δ-type
UPFs.

The first observation is that no matter if using DP enhance-
ment, Conv-TasNet showed smaller residual time than pICA
has, e.g., 310 ms of 0-type UPF v.s. 447 ms of pICA in 3H-
N. This is because of the nature of the Conv-TasNet method,
where Conv-TasNet needed less input data thus less overall
workloads. This justifies that Conv-TasNet is representative to
the benefits of DL-based methods.

Secondly, boosted with the proposed DP enhancement,
when the computing resources gradually increased, the resid-
ual time on the server node could be further reduced. Specif-
ically, given the same DP path length, the more powerful the
UPFs were used, the smaller the residual time would be spent
on the server node. The residual time was reduced by 98.83%
when the δ-type went from zero to four in the 3H-N scenario.
Similarly, given the same δ-type UPFs, the longer the DP path
length, the smaller the residual time would be spent on the
server node. For instance, by increasing the path length of
2-type UPFs from three to five, the residual time fell from
144.34 ms to 3.74 ms.

Moreover, it showed an upper bound of the acceleration,
influenced by both the computing resources of the UPF and
the offloaded neural blocks. Specifically, in 5H-N case, the
residual time reduced to 3 ms and did not change anymore
since UPF type was two and onward. This is because according
to the Conv-TasNet splitting in Section IV-C, maximally only
nine intermediate nodes were needed to accommodate all split
neural blocks even if the UPF δ-type equals one. Hence,
adding more intermediate UPFs will not further improve the
acceleration (i.e., reducing residual time on the server node).

Last but not least, Fig. 4 shows the achievable separation
quality, SDR, with the proposed in-network scheme within the
two different DP path lengths. All SDRs had no noticeable loss
(about 71 dB) compared with the original centralized Conv-
TasNet (i.e., the UPF with δ-type is zero). This is because
although we split the whole CNN into several neural blocks,
its structure across all UPFs was not modified. This suggests
that running the DL inference jobs with the DP enhancement
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can be a promising potential scheme.

C. Traffic explosion avoidance

Between two adjacent UPFs, since the neural blocks on a
UPF may increase the size of output data, this may cause traffic
explosion on the link to the next UPF. The traffic explosion
can be mitigated by carefully splitting the CNN at the layers
whose temporal data size is smaller, i.e., Principle-2 avoiding
inter-UPF traffic explosion introduced in Section III-A.

As shown in Fig. 5, without following Principle-2, the
number of packets cached by the server grew from 356 to
886, and the caching time increased four times from 366ms to
1472 ms when δ was bigger than one. As we explained, this is
because the mask part (the purple block in Fig. 2) is a splitting
point that will temporally increase the output data size. Hence,
we merged this layer to the server end following Principle-2,
this avoided sending large data traffic to the network link.
As we can see, the caching time remained 366 ms, which
was slightly higher than 263 ms of 0-type UPF only. This
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again confirms the influence of the splitting points to the traffic
generated in the network.

D. Processing and forwarding parallelization

We also measured the caching time at the server waiting
for caching required processing data, presented in Fig. 5. This
caching time can be improved by Principle-3 in Section III-A.

Fig. 5 provides a comparison on processing and forwarding
with and without Principle-3 in 5H-N scenario. With the
applied parallelization scheme, the server started receiving
the encoding data at the same time as the UPF, therefore,
the idle time was only about 103 ms, a 78.09% reduction.
In contrast, without parallelization, the caching time of the
server increaseed from 263 ms to 733 ms, i.e., the server was
idle approximately 470 ms. This is because the encoding part
and the first separator belong to the same neural block, which
causes UPF to forward the intermediate data to the server only
after it completes all operations. This confirms the necessity
of such a parallelization consideration and the result confirms
its effectiveness to improve the efficiency at the server end.

VI. CONCLUSION

This paper presents a DP enhancement with accommodating
an application-specific in-network deep learning. In particular,
the focus is on how to split a trained DNN model so that it can
fit into UPFs along a forwarding path. Taking a specific use
case – Blind Source Separation – as an example, we demon-
strated how a CNN used in an existing work shall be split
with our proposed principles. Furthermore, we implemented
the suggested scheme with a full-stack emulator – Commu-
nication Networks Emulator (ComNetsEmu) and showed that
the proposed enhancement indeed yields noticeable caching
accelerations and reduces the workload left to the server end.
Since the structure of the CNN is untouched, we believe that
the suggested strategy/principles shall be applicable to other
DL application services based on DNN. As an initial trial,
our work also reveals further challenges that require deeper
investigations from the whole community when considering
splitting a CNN onto in-network elements, to support AI
application in future 6G.
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