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Abstract—An efficient resource management scheme is critical
to enable network slicing in 5G networks and in envisioned 6G
networks, and artificial intelligence (AI) techniques offer promis-
ing solutions. Considering the rapidly emerging new machine
learning techniques, such as graph learning, federated learning,
and transfer learning, a timely survey is needed to provide an
overview of resource management and network slicing techniques
of AI-enabled wireless networks. This article provides such a
survey along with an application of knowledge transfer in radio
access network (RAN) slicing. In particular, we first provide
some background on resource management and network slicing,
and review relevant state-of-the-art AI and machine learning
(ML) techniques and their applications. Then, we introduce
our AI-enabled knowledge transfer and reuse-based resource
management (AKRM) scheme, where we apply transfer learning
to improve system performance. Compared with most existing
works, which focus on the training of standalone agents from
scratch, the main difference of AKRM lies in its knowledge
transfer and reuse capability between different tasks. Our paper
aims to be a roadmap for researchers to use knowledge transfer
schemes in AI-enabled wireless networks, and we provide a case
study over the resource allocation problem in RAN slicing.

Index Terms—Resource management, knowledge transfer, ar-
tificial intelligence, network slicing.

I. INTRODUCTION

Network slicing is a fundamental concept for 5G networks

and envisioned 6G networks that enables multiple services

and applications with heterogeneous demands. With software-

defined networks and network function virtualization tech-

niques, various slices can be defined over the same physical

network devices for flexibility and scalability [1]. However,

network slicing also leads to significant complexity for re-

source management. Compared with core network slicing,

radio access network (RAN) slicing requires more efficient

resource management to adequately utilize the limited band-

width resources. In addition, user types are not limited to

enhanced Mobile Broad Band (eMBB), Ultra Reliable Low

Latency Communications (URLLC), and massive Machine

Type Communications (mMTC). An enterprise slice with var-

ious demands can be dynamically created, and these demands

need to be fulfilled in a much shorter time scale than the core.

Moreover, dynamic traffic patterns, increasing device numbers,

and emerging new services also contribute to the technical
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challenges of RAN slicing. Such complexity of RAN slicing

prevents the applications of conventional optimization meth-

ods, especially considering a dynamic wireless environment.

To this end, artificial intelligence (AI) and machine learning

(ML) offer promising opportunities [2]. For instance, convex

optimization must design dedicated optimization models for

each problem, while reinforcement learning (RL) can signif-

icantly reduce the optimization complexity by transforming

problems into a unified Markov decision process (MDP).

AI-based network management has attracted interest from

both academia and industry. The Management and Orches-

tration (MANO) is the most notable framework defined by

European Telecommunications Standards Institute (ETSI) [3].

Similarly, the Third Generation Partnership Project (3GPP)

also defined the network data analytics function and manage-

ment data analytics function to incorporate AI into resource

management [4]. These ingeniously designed schemes, never-

theless, are still ongoing, and these frameworks mainly focus

on system-level definitions of key elements.

Meanwhile, AI-enabled wireless networks have been exten-

sively investigated by academia. For example, [5] summarizes

the applications for employing AI in cellular networks, and

identifies the challenges and roadmaps for AI-enabled 5G and

6G networks. A thorough survey is presented in [6] on recent

advances and future challenges of applying AI to wireless

networks, including algorithms, applications, standards and

so on. However, some newly emerging techniques, such as

graph learning and federated learning, are not included in

these works, which calls for a timely survey on the latest ML

methods as applied to problems in wireless communications.

On the other hand, numerous schemes have been proposed

to make the most of AI for network management. For instance,

AI is considered a built-in architectural feature in [7] that

enables resource elasticity, and it includes different use cases

that utilize AI for elastic management. In these studies, plenty

of samples are generally required to train their algorithms,

such as deep Q-learning (DQN), and the long training time

may hamper the system efficiency and their applicability in

practice. Moreover, in these schemes, the costly training needs

to be repeated for each arriving new problem, and this low

generalization capability inspires us to find a more efficient

architecture to utilize AI/ML.

Motivated by these challenges, in this work, we first provide

some background on resource management and summarize

various network resources, ranging from the RAN to the core

network. Then, we review state-of-the-art AI/ML algorithms
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Fig. 1. Overall architecture of the defined resource management scheme.

for resource management such as graph learning, federated

learning, transfer learning, etc. Furthermore, we introduce

an AI-enabled knowledge transfer and reuse-based resource

management (AKRM) scheme. AKRM is designed to transfer

the knowledge of source tasks and reuse them for target

tasks. In particular, we apply transfer learning to digest the

experience of expert agents, which will be further utilized by

learners to reduce the algorithm training efforts. Compared

with our former work [8], here we give a more systematic

roadmap of using transfer learning that includes multiple

experts and learners simultaneously.

The contributions of this work are two-fold: first, we present

an up-to-date survey of AI/ML algorithms and their applica-

tions on resource management; second, we define an AKRM

scheme that enables knowledge transfer and reuse for network

management problems. In addition, we introduce transfer deep

reinforcement learning (TDRL) and transfer learning-based

neural networks as examples to better explain how to reuse the

prior knowledge. Finally, we provide a case study of TDRL-

based resource management in RAN slicing, which proves the

superiority of AI-enabled knowledge transfer.

The remainder of this article is organized as follows. Sec-

tion II provides background on resource management in 5G,

and Section III surveys relevant AI techniques. Section IV

defines the AKRM scheme, and Section V introduces transfer

learning-based knowledge reuse. Section VI shows the case

study, and Section VII concludes this paper.

II. BACKGROUND ON RESOURCE MANAGEMENT FOR

NETWORK SLICING IN 5G

Network slicing presents demanding requirements for re-

source management, especially at the edge and radio domains.

Tight network resources are allocated concurrently between

multiple slices in a very short timescale, to satisfy different

service level agreements. Although managing one single re-

source has been widely studied in the literature, the evolving

network architecture requires the holistic management of mul-

tiple network resources. For example, in the multiple-access

edge computing (MEC)-enabled 5G RAN, the computation

offloading and bandwidth allocation must be jointly considered

to guarantee the network performance. Furthermore, end-to-

end network slicing calls for cross-domain resource allocation

that includes RAN, edge, transmission, and core networks [9].

Thus a unified architecture is needed to include all the cross-

domain resources in a systematic view.

Fig.1 shows our defined resource management architecture,

including the physical layer, virtual network resource layer,

and management layer. First, the physical layer consists of

physical network devices that can be split into different

network slices. For instance, slices 1 and 2 in Fig.1 may

require multiple network resources simultaneously, and one

single physical device can be shared by both slices. Then,

by monitoring the status of the physical layer, we define a

virtual network resource layer to aggregate the resources of

different network elements. For example, the baseband unit

pool in Fig.1 includes power, cache, computation resources,

while the remote radio head mainly includes bandwidth and

power as manageable resources. Finally, the management layer

works as a control plane to manage virtual resources, and

these resources will be allocated to slices to fulfill their

requirements. The management layer details will be introduced

in Section IV.

Meanwhile, we summarize diverse network resources in

Table I, including the features, applications, and management

objectives. Note that the computation resource allocation is
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TABLE I
SUMMARY OF NETWORK RESOURCES IN 5G NETWORKS.

Domains Resources Features Applications Typical management objectives

RAN
and
edge

Radio
Spectrum requires careful allocation, such that
transmission requirements of various slices are

satisfied using this very scarce resource.
Spectrum allocation

Maximizing throughput or minimizing the
delay; improving spectrum efficiency.

Power
Power is a key resource in RAN. Power control can
mitigate interference and improve energy efficiency

for network devices.

Power allocation for
interference
management

Minimizing interference and energy cost;
maximizing network throughput.

Cache
Edge caching can significantly reduce the network
delay by storing popular contents in the edge, and

caching capacity is a limited resource.

Content replacement
and delivery in
network edge.

Maximizing hit ratio in a cache for better
network performance (lower delay) or

economic metrics.

Computation

Computation capacity is a key resource in the edge,
where computationally intensive tasks from user

devices (UEs) or IoT devices can be processed in
the network edge instead of the cloud.

MEC offloading
between UEs, MEC

server and cloud.

Minimizing processing delay or
computation cost.

VNFs,
VMs,

containers

VMs or containers are required when VNFs are
deployed in the mobile edge, and thus they become

important resources to run VNFs.

VMs and VNF
placement.

Minimizing response time, energy cost and
hardware usage.

Transport

Fronthaul
Connections between remote radio heads and
baseband unit pool in the edge cloud RAN.

The connection capacity is considered as

critical transmission constraints. Pricing models

can be applied to maximize the profit by managing

the transmission capacity allocation.Backhaul
Connections from RAN to the core network, or

from edge (base stations or baseband unit pools) to
the core network.

Core

VMs and
VNFs

Compared with mobile edge, core network is
capable of instantiating a higher number of VMs to

implement VNFs. The number of deployed VMs
determines the service capability of a single

network node.

VMs and VNF
placement.

Minimizing cost or energy consumption;
guaranteeing network performance and

reliability.

Computation
In the core network, available computation

resources of physical hosts in network nodes
should be allocated to VNFs to process tasks.

CPU allocation; work
load assignment.

Minimizing computation delay or cost.

involved in both edge and core networks. The network edge

devices usually have limited computation capacity, which

makes the computation task offloading a critical concept. On

the contrary, the core network has more abundant computation

capacities, and more computationally intense tasks without

real-time requirements can be processed. Virtual machines

(VMs) can also be deployed in both edge and core networks

to implement virtual network functions (VNFs), but the edge

side has limited hardware resources to support the VMs or

containers. Table I implies that resource management of RAN

and edge is more complicated than transport and core networks

due to limited available resources, more dynamic conditions,

and the need for actions on a shorter timescale.

To support the applications shown in Table I, an effi-

cient control system is expected to process a wide variety

of resource management tasks for network slicing, and the

flourishing AI/ML methods offer promising solutions, which

will be introduced in the next section.

III. OVERVIEW OF AI/ML TECHNIQUES FOR RESOURCE

MANAGEMENT IN WIRELESS NETWORKS

This section will briefly review the latest AI/ML techniques

for resource management applications1. Table II summarizes

1Note that the main goal of this work is not to review all the AI/ML
techniques on wireless networks but serves as a compressed taxonomy for
new techniques [5].

the algorithms, main features, difficulties, and typical applica-

tions of each learning method.

A. Supervised and Unsupervised Learning

Supervised learning algorithms are designed to map input

data to labeled output data for classification or prediction.

Well-known algorithms and neural networks include artificial

neural networks, recurrent neural networks (RNN), long short-

term memory (LSTM) networks, support vector machines,

decision trees, and so on. Supervised learning can be used

to predict the network load of each slice, which will improve

the resource allocation between slices. However, supervised

learning suffers from the fact that network training is too

much dependent on hyperparameter tuning and the difficulty

in obtaining labeled data. Insufficient data may prevent the

application of supervised learning on network slicing.

By contrast, unsupervised learning intends to analyze and

cluster unlabeled data. Well-known approaches include k-

means and Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm. The deep belief network

can also be used for unsupervised learning to extract the

features of unlabeled data. These techniques discover hidden

similarities and differences of unlabeled data. Nevertheless,

the long training time and high computational complexity

are potential issues for unsupervised learning. Meanwhile, the

output results are hard to validate due to the unlabeled data set.
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TABLE II
SUMMARY OF AI TECHNIQUES FOR 5G RESOURCE MANAGEMENT.

Learning
methods

Typical
algorithms

Main features Difficulties Typical applications

Supervised
learning

Artificial
neural

network,
RNN, LSTM,
support vector
machine, etc.

Training the algorithm to best map inputs to
outputs in a dataset, and thus labeled data is

required for training. Note that each algorithm
has its features, e.g., LSTM can better handle

the long-term dependencies of data.

Algorithm training relies heavily
on fine-grained datasets, which
may be inaccessible in practice.

Network training can be
time-consuming due to

hyperparameter tunings such as
learning rate and the number of

hidden layers or units.

Traffic load prediction
and classification for

slices.

Unsupervised
learning

K-means,
DBSCAN

Discovering hidden patterns or similarities in
unlabeled datasets.

High computation complexity;
noisy results.

User clustering to create
new slices.

Reinforcement
learning

Q-learning
Agent interacts with an environment to

maximize the expected reward. A Q-table is
used to record state-action values in Q-learning.

Requiring long convergence time,
especially for problems with large

state-action space.
RL is the most generally
applied AI technique for
the resource management

and optimization
wireless networks,
e.g., minimizing

network delay or energy
consumption, maximizing

network throughput or
revenue. For example,

multi-agent reinforcement
learning may be used
for resource allocation

of slices.

Actor-critic
learning

The actor is considered as a policy structure to
select actions, and the critic will estimate the

value function for the actions of the actor.

Long convergence time; instability
caused by the interplay between

actor and critic.

Deep
reinforcement

learning

Combining neural networks with RL
framework to predict state-action values instead

of using Q-tables. DRL can be applied to
address the large state-action space problem.

Time-consuming network training;
tedious hyperparameter tuning;

network training stability;
low sample efficiency.

Double deep
Q-learning

Decoupling the action selection and evaluation
of deep Q-learning to prevent overestimation

and provide a better Q-value estimation.

Multi-agent
reinforcement

learning

Each agent implements the RL or DRL
independently to achieve its goal or optimize

an overall objective.

The coordination mechanism of
multiple agents requires dedicated

design.

Federated
learning

Federated
deep learning,
federated DRL

Training models by distributed datasets of
multiple learners, then feeding back global
model parameters to local learners for their
use. Private and sensitive data can be well

protected with federated learning.

Communication overhead for
updating local models; systems
heterogeneity caused by diverse
local devices such as different

storage and computation capacity.

Each slice can train a
local model, and the

central controller
produces a global model

for coordination.

Graph
learning

Graph neural
networks,

graph
convolutional

networks

Graph learning maps the feature of a graph to
the vectors without projecting the graph into a
low dimensional space, which can be used for
classification, link prediction, and matching.

Scalability issue; generative graph
learning; dynamic graph.

GNN-based digital twin
for network slicing.

Transfer
learning

Supervised
transfer
learning

Improving generalization capability by reusing
the pre-trained model such as neural networks

of source tasks to related target tasks.

Task mapping function definition;
negative knowledge transfer.

Classification and
prediction for resource
management and RAN

slicing.

Transfer
reinforcement

learning

Utilizing knowledge of experts to improve
learner’s performance within the context of
MDP, which aims at faster convergence and

higher average reward.

The knowledge transfer function
requires dedicated design.

Optimization of network
resource management and
RAN slicing with fewer

training samples and
faster convergence.

Unsupervised learning can cluster users with various service

requirements as different slices, creating new slices based on

real-time user demands.

B. Reinforcement Learning

RL has been widely used for resource management opti-

mizations such as physical resource block allocation, power

allocation, and so on. RL algorithms include Q-learning, actor-

critic learning, deep reinforcement learning (DRL), etc 2. In

RL, the agent aims to maximize the long-term expected reward

2There are many versions of RL techniques in the literature. Summarizing
all is out of the scope of this paper. We provide examples of the most widely
used algorithms.

within the MDP. Q-learning is the most widely used algorithm

due to its simplicity, however it suffers from a long conver-

gence time issue, especially for problems with large state-

action space. Meanwhile, actor-critic learning defines an actor

for action selection and a critic for action evaluation, which

uses the value function as a baseline for policy gradients. DRL

has been proposed to overcome the slow convergence problem

of Q-learning and also the challenge of storing a large Q-table.

Instead of deploying huge Q-tables, the state-action values in

DRL are predicted by neural networks, and thus it can better

handle large state-action space problems.

RL methods have been used in many resource manage-

ment and network slicing problems. For example, DRL can
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overcome the huge state-action space issue caused by the in-

creasing number of network slices and user devices. Different

slices with heterogeneous requirements can also be considered

independent agents to make autonomous decisions, which can

be solved by multi-agent reinforcement learning techniques.

Nevertheless, RL algorithms demand plenty of samples for

training, and the trained algorithm can only handle specific

problems with poor generalization capability. Therefore, the

slow convergence may hamper the resource management effi-

ciency of network slicing.

C. Federated Learning

Federated learning is one of the state-of-the-art ML methods

applied in wireless networks. Federated learning algorithms

are trained across multiple decentralized local datasets without

sharing training data, where only the local model parameters

are sent back to a central server for global model aggregation.

Then, well-trained global model parameters are fed back to

local learners to update local models. As an example in

wireless communications, each slice can train a federated

learning model using local data, and then the central controller

can form a global model and send it back to slices as in

[10]. Federated learning addresses data privacy and security

issues, since each learner can keep its training data on board.

However, the learners still need to exchange the parameters

of the trained models. As such, the communication overhead

becomes a critical issue for federated learning, especially

considering that multiple slices may need to exchange param-

eters with the central controller simultaneously. Meanwhile,

considering various storage, computation, and communication

capabilities of local devices, system heterogeneity can be

another challenge for applying federated learning on wireless

networks.

D. Graph Learning

Graphs are widely used to represent the network architec-

ture, and graph learning refers to ML algorithms on graphs.

In particular, graph learning is designed to extract the main

features of graphs, such as node and edge connections, to

vectors with the same dimensions in the embedding space.

For instance, graph neural networks aim to learn a state

embedding that contains the neighborhood information of each

node, and the graph data is directly mapped to the output

of the neural network without projecting the graph into a

low-dimensional space. Graph learning has been successfully

applied in node classification, graph classification, link pre-

dictions, and so on, which shows superior performance than

other existing approaches. Considering the graph nature of

wireless networks, graph learning shows significant potential

for resource management and network slicing. For instance,

[11] proposed a graph neural network (GNN)-based digital

twin for network slicing, in which the GNN is trained to

simulate the behaviors of slices. Meanwhile, graph learning

still faces many challenges, e.g., dynamic graph, scalability

issues, and generative graph learning. For example, users with

high mobility may lead to dynamic graph structures, but graph

learning architectures cannot change adaptively if edges and

nodes appear or disappear frequently.

E. Transfer learning

Although various ML methods have been introduced before,

it is worth noting that: i) most algorithms require a large

number of training samples to explore the target task; ii) these

algorithms are designed for specific tasks with very limited

generalization capability. As a result, even though similar tasks

have been completed before, the algorithms still need to be

retrained for new problems. To this end, transfer learning

aims to reuse the knowledge and models of existing tasks.

Specifically, a model developed for one task is reused as the

starting point for other related tasks. Indeed, humans can apply

their knowledge from previous work to solve new works more

rapidly. This reduces the need for a large number of training

samples, which is a common issue in ML. As an example, the

central controller can transfer the pre-trained neural network

models to slices to initialize local model training, achieving

a faster convergence [12]. Despite the potential advantages,

the knowledge may exist in different forms in ML algorithms,

and knowledge transfer methods vary between different tasks.

Meanwhile, since each slice may have different requirements,

the mapping functions require sophisticated designs to make

prior knowledge digestible for learners [8].

IV. AI-ENABLED KNOWLEDGE TRANSFER AND

REUSE-BASED RESOURCE MANAGEMENT

A. AI-driven Resource Control Module

This section introduces the AKRM-based resource manage-

ment layer as Fig.2, which consists of an AI-driven resource

control module and a knowledge reuse module.

First, the slice resource managers (shown by the blocks on

the top of Fig.2) will submit their requests to the management

layer, and then an algorithm is selected for task processing.

The task represents resource management demands from slices

to optimize specific network metrics, e.g., allocating radio

resources between slices to maximize the throughput and min-

imize the delay. Given the selected algorithm, the knowledge

reuse module extracts relevant knowledge of past tasks and

reuses the knowledge to improve current algorithm designs,

e.g., reward function definition and exploration strategy.

As an example, we assume the target task is Q-learning-

based joint radio and computation resources allocation. Then

we analyze the task similarities and algorithm features by

comparing the target task with existing tasks. Task 1 (Q-

learning-based radio resource allocation) in the task library

is considered an ideal expert agent after evaluation. Con-

sequently, the experience of task 1 can be used as prior

knowledge to design a new Q-learning algorithm for joint radio

and computation resource allocation. Finally, the designed Q-

learning is trained, and the optimization results will be sent

back to slice resource managers. On the other hand, new

learning experiences generated by the current task is saved

in the task library, which may be used for future tasks.
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Fig. 2. Proposed AKRM architecture for the resource management layer.3

B. Knowledge Reuse Module

The knowledge reuse module is inspired by the knowledge

management system (KMS), a well-known technique in both

academia and industry [13]. Combined with AI techniques,

here we define the knowledge reuse module to manage the

knowledge generated by ML algorithms. In particular, this

module captures and preserves the learning experience of

AI algorithms and reuses the knowledge in the future. With

transfer learning, it can extract the experience of experts and

feed prior knowledge to the learner agent. Moreover, the new

learning experience of completed tasks will be saved in the

task library for future use (shown by the block at the bottom

of Fig.2). By updating this library, AKRM can constantly

learn from the latest tasks and decisions. Unlike the algorithm-

level intelligence in most existing works, the AKRM enables

a system-level intelligence that learns from past experience

and reuses previous knowledge on current works. In addition,

each algorithm is considered a replaceable sub-module in the

algorithm library, enabling higher flexibility. Finally, noting

that experts are defined in various ways, including former ex-

ecution experience, neighboring nodes with mature strategies,

etc. The transfer learning methods can be pre-trained for each

target domain, such as RL or supervised learning.

C. Complexity and Compatibility Analyses

In this section, we use MANO as an example to ana-

lyze the compatibility of AKRM with existing schemes. The

3The task library has two functions: 1) providing candidate experts for
current tasks; and 2) saving the experience of current tasks, which may be
used as new experts in the future.

MANO defined by ETSI mainly includes the network function

virtualization orchestrator (NFVO), virtual network function

manager (VNFM), and virtual infrastructure manager (VIM).

The virtual network resources layer defined in Fig.1 can be

deployed in the VIM, and the required resource monitoring

function can be offered by the VIM. The AKRM can be

included in NFVO or VNFM, depending on the required

functions. In particular, the NFVO is responsible for global

resource management and operation, and the algorithm library

in AKRM can be customized to focus on DRL, since the global

optimization may lead to a large state-action space.

Compared with the conventional one-size-fits-all scheme,

the proposed AKRM scheme enables much higher flexibility

for algorithm selection, design, and training. In addition, many

existing techniques can be embedded to reduce the complexity.

For instance, a recommender system may be deployed to select

algorithms and experts, and we assume KMS is used for

knowledge management in the task library module. Applying

these mature techniques can significantly lower the complexity

of the AKRM scheme.

V. TRANSFER LEARNING-BASED KNOWLEDGE REUSE FOR

RESOURCE MANAGEMENT

Knowledge transfer is a critical feature of the proposed

AKRM scheme. However, considering different algorithm

settings such as various action and reward function definitions,

prior knowledge cannot be directly used by learners. To this

end, transfer learning is deployed to map the prior knowl-

edge to current algorithms. This section will introduce two

examples, namely TDRL and transfer learning-based neural

6



(a) Transfer deep reinforcement learning

(b) Transfer learning-assisted neural networks

Fig. 3. Transfer learning-based knowledge reuse

networks, to better explain the knowledge transfer between

different tasks.

In TDRL, the agent can utilize the knowledge from mul-

tiple experts to improve its performance on target tasks. As

shown by Fig.3 (a), two Q-learning-based expert agents have

the knowledge of radio and computation resource allocation,

respectively. Then their knowledge of a single task can be

used by the DRL-based learner agent for joint radio and

computation resource allocation. Note that the prior knowledge

may exist in various forms such as Q-values, action selection

choices, and exploration methods, and mapping functions are

required to digest the existing knowledge and feed it to learn-

ers. We introduce two mapping functions: action selection-

based and Q-value-based methods as examples.

For the action selection-based mapping function, the actions

that bring higher rewards for experts will consist a new state-

action space for the learner agent. The reason is that we

believe optimal actions with higher rewards in experts can

also bring good benefits for the learner by finding similar

actions. Then a reduced action space will be applied to the

learner agent, which will improve the exploration efficiency

(indicated by the dark blue line in Fig.3 (a)). Note that the

proposed mapping function can be easily applied to multi-

expert scenarios by defining a weight or priority for each

expert. Therefore, diverse knowledge from different experts

can be comprehensively utilized by the learner.

The Q-value-based mapping function includes Q-values as

prior knowledge (shown by the pink line in Fig.3 (a)). To map

the Q-values of expert agents to learner agent Ql(sl, al), the

state and action mapping functions should be first designed.

The objective of the state mapping function is to find specific

se,1 and se,2 that are the closest to sl, where se,1 and se,2 are

the state of expert 1 and 2, respectively. The action mapping

function is defined similarly by finding the closest ae,1 and

ae,2 for a given al. With state and action mapping functions,

we can always observe corresponding Qe,1(se,1, ae,1) and

Qe,2(se,2, ae,2) for any Ql(sl, al). Then Qe,1(se,1, ae,1) and

Qe,2(se,2, ae,2) can be used as extra rewards when updating

Ql(sl, al), which will further guide the action selection of

learner. The idea is that we assume states and actions with

higher Q-values in experts are very likely to bring higher

rewards to learners too. With the guidance of experts, the

learner is expected to achieve better performance on the target

task, such as obtaining higher rewards or faster convergence.
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Similarly, transfer learning can also be used for neural

network training as shown by Fig.3 (b). The learner network

may combine the weights of expert networks to initialize its

weight, which will bring a jump-start for the network training.

Finally, it is worth noting that the transfer learning scheme

shown by Fig.3 (a) and (b) can be easily generalized to other

AI algorithms without loss of generality. For instance, the

neural network transfer scheme shown in Fig.3 (b) can be used

by federated learning to reduce the efforts of hyperparameter

tunings and network training.

Although knowledge transfer can reduce the training com-

plexity of learners, it still requires algorithm training experi-

ence and dataset samples of experts. The learner is expected

to deploy similar model architectures with experts to achieve

a smooth knowledge transfer. In addition, it is known that

transfer learning is vulnerable to perturbation-based attacks

caused by maliciously designed adversarial samples. There-

fore, how to prevent the negative transfer or over-fitting is a

critical issue, indicating that the learner may need to verify

the prior knowledge before using it in practice.

VI. TRANSFER REINFORCEMENT LEARNING-BASED

RESOURCE ALLOCATION SIMULATION

In this section, we provide a case study of resource allo-

cation for RAN slicing, which serves as an example of using

the AI-enabled knowledge transfer scheme in 5G networks.

Here we investigate the joint radio and computation resources

allocation for RAN slicing in MEC-enabled 5G networks. We

consider two typical eMBB and URLLC slices. For radio re-

sources, the resource blocks are considered the smallest time-

frequency resources that can be allocated. For the computation

resource, we assume the BSs have limited edge computing

capacity (indicated by CPU cycles per second), which will

be allocated between two slices to process their computation

tasks. The simulation includes 3 BSs with 500 m inter-site

distance, and every BS includes one URLLC slice that contains

10 UEs, and one eMBB slice that contains 5 UEs. We deploy

two LSTM networks with 30 nodes as hidden layers for the

main and target networks. The simulation has 3000 TTIs,

including an exploration phase for the first 1000 TTIs, and

an exploitation phase for the last 2000 TTIs. It is repeated for

10 runs in MATLAB with 95% confidence intervals.

• Allocation strategies:

i) Q-value transfer-based deep reinforcement learning

(QTDRL) for joint resource allocation :

The QTDRL is illustrated by Fig.3 (a). Two Q-learning-

based single-task experts have knowledge of radio

and computation resource allocation, respectively. The

QTDRL-based learner agent is expected to handle the

joint radio and computation resource allocation based on

the single-task knowledge of two experts. The learner

agent can leverage the Q-values of experts as extra

rewards to update its Q-values, which will guide its action

selection on the target task.

ii) Action selection transfer-based deep reinforcement

learning (ATDRL) for joint resource allocation:

Here we define another transfer learning-based method,

namely ATDRL, for joint resource allocation. Compared

with QTDRL, the only difference lies in the mapping

function definition. The action selection-based mapping

function in deployed in ATDRL for knowledge transfer

(indicated by left bottom blocks in Fig.3 (a)). By reducing

the action space, we aim to enhance the exploration

efficiency of the learner.

iii) Deep Q-learning-based joint resource allocation:

DQN is considered as a baseline here. DQN agent has no

prior knowledge about the environment, and it explores

the joint radio and computation resource allocation from

scratch.

iv) Priority proportional fairness algorithm (PPF):

PPF is a standard resource allocation method that bal-

ances the overall throughput with user fairness. PPF is

considered a model-based baseline algorithm.

Fig.4(a) shows the complementary cumulative distribution

function (CCDF) of network delay under various traffic loads.

The results show that packets in QTDRL and ATDRL have

a lower probability of experiencing high delay, which is

indicated by a lower CDDF curve in Fig.4(a). With 2 Mbps

URLLC load, the probabilities that URLLC delay is higher

than 1 ms is 5.4% and 6.8% for QTDRL and ATDRL, while

the corresponding probabilities for DQN and PPF are 12.3%

and 16.6%, respectively. Meanwhile, the average URLLC

delay and eMBB throughput per cell are given in Fig.4(b),

where QTDRL and ATDRL achieve lower delay for the

URLLC slice and higher throughput for the eMBB slice than

the two baseline algorithms. Moreover, we investigate the

network performance under various MEC server capacities,

which is given in Fig.4(c). It is observed that all algorithms

benefit from the increasing MEC capacity, which is indicated

by lower URLLC delay and higher eMBB throughput. The

proposed ADTRL and QDTRL still outperform model-free

DQN and model-based PFF algorithms in terms of average

latency and throughput. In addition, convergence is a critical

metric for ML techniques, and we compare the convergence

performance in Fig.4(d). The figure shows that QTDRL and

ATDRL have faster convergence and higher average rewards

than DQN.

The simulations show that ATDRL and QTDRL achieve

comparable network performance, but ATDRL has a better

convergence, which can be explained by the reduced action

space and higher exploration efficiency. In QTDRL, however,

although the transferred Q-values can guide the action se-

lection, the learner agent still needs to try a large number

of action combinations, which may lower the exploration

efficiency. Finally, in DQN, the agent explores the environment

from scratch, and the low exploration efficiency leads to

worse network performance. To summarize, transfer learning-

based methods show more promising results than model-free

DQN and model-based PPF algorithms, demonstrating the

superiority of knowledge reuse techniques.
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(a) CCDF of URLLC delay under 2 Mbps URLLC load. (b) URLLC delay and eMBB throughput various URLLC load.

(c) Average URLLC delay and eMBB throughput against MEC
server capacity.

(d) Comparison of convergence performance.

Fig. 4. Network delay and throughput, and convergence comparisons

VII. CONCLUSION

AI/ML techniques offer significant opportunities for re-

source management of 5G and 6G networks. In this article,

we have first provided background on resource management

for network slicing, and surveyed related AI/ML techniques

used in resource management in wireless networks. Then,

we defined the AI-enabled knowledge transfer and reuse-

based resource management framework, and investigated the

transfer learning architectures for knowledge reuse. Our sim-

ulations showed that the proposed transfer learning-based

resource allocation schemes had better network performance

and significantly faster convergence than conventional deep

reinforcement learning.
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