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Abstract—With the development of innovative applications
that demand accurate environment information, e.g., autonomous
driving, sensing becomes an important requirement for future
wireless networks. To this end, integrated sensing and commu-
nication (ISAC) provides a promising platform to exploit the
synergy between sensing and communication, where perceptive
mobile networks (PMNs) were proposed to add accurate sensing
capability to existing wireless networks. The well-developed cel-
lular networks offer exciting opportunities for sensing, including
large coverage, strong computation and communication power,
and most importantly networked sensing, where the perspectives
from multiple sensing nodes can be collaboratively utilized for
sensing the same target. However, PMNs also face big challenges
such as the inherent interference between sensing and communi-
cation, the complex sensing environment, and the tracking of
high-speed targets by cellular networks. This paper provides
a comprehensive review on the design of PMNs, covering the
popular network architectures, sensing protocols, standing re-
search problems, and available solutions. Several future research
directions that are critical for the development of PMNs are also
discussed.

Index Terms—Integrated sensing and communication, per-
ceptive mobile networks, interference management, networked
sensing, environment estimation.

I. INTRODUCTION

After several generations of development, wireless com-
munications has evolved from a system with only com-
munication services to an intelligent network that not only
moves data but also performs edge-computing and distributed
learning/inference tasks [1]. The advancement of innovative
applications such as autonomous driving and environment
monitoring further requires accurate sensing capability from
future wireless networks. To this end, the recently proposed
integrated sensing and communication (ISAC) framework of-
fers a promising way to integrate sensing and communication
with possible hardware and software reuse, especially after
millimeter wave (mmWave) was adopted for 5G and beyond
systems. Perceptive mobile networks (PMNs) are a special
type of ISAC system that focuses on adding sensing capability
to the cellular networks [2].
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There are many favorable properties of cellular networks
that can facilitate sensing. First, the well-developed mobile
network with high-density base stations (BSs) can provide
large sensing coverage. The high-density nodes are very
important because mmWave experiences severe pathloss and
is thus not suitable for long-range sensing tasks. Second,
the large number of distributed and connected sensing nodes
enables networked sensing, where multiple perspectives from
different sensing nodes can be exploited to sense the same
target. Finally, the strong computation and communication
power of PMNs create a good platform for large-scale envi-
ronment estimation and mapping, which will not only benefit
sensing but also enhance communication in terms of channel
estimation, resource allocation, beam tracking, and more.

However, there are also challenges faced by the design of
PMNs [2]. Since PMNs integrate sensing and communication
in one system, interference management is one of the most
important issues to tackle. In particular, there exist three
types of interference. First, if the same node, e.g., a BS, is
utilized for transmitting sensing/communication signals and
receiving radar echoes at the same time, there will be self-
interference (SI) [3]. Second, given both communication and
sensing users are served in the same frequency band, there
will be interference between the two sub-systems. Finally,
prior information about the environment is critical for sensing
and normally obtained by environment training (estimation).
In conventional radar systems, the transmitted signal in the
environment training and target sensing periods is the same,
thus guaranteeing the same covariance structure for the clutter.
However, due to the high pathloss of mmWave, directional
signals are utilized for probing a target in the sensing period,
but not in the training stage. As a result, the sensing signal
may cause different clutter covariance between the training and
sensing periods, which can be regarded as the interference to
environment estimation.

Besides interference management, the implementation of
networked sensing and environment estimation algorithms also
faces several obstacles. On the one hand, although networked
sensing can take advantage of the multiple perspectives from
several sensing nodes, the collaborative sensing algorithm
must be computation and communication efficient due to the
strict latency requirement. On the other hand, the environment
for networked sensing is much more complex than traditional
radar systems because the communication users, the target and
even the clutter patches in the environment may move. This
makes environment estimation very challenging, especially
with distributed sensing nodes. Furthermore, the stringent
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Fig. 1. Illustration of the PMN-TMT architecture.

TABLE I
COMPARISON OF EXISTING ISAC NETWORKS.

Sensing Transmitter Sensing Receiver Full-Duplex Synchronization
Mono-static DFRC BS BS Required Not Required

PMN-RRU RRU RRU Not Required Required
PMN-TMT BS TMT Not Required Required

latency constraint precludes estimation algorithms that require
large amount of training data and heavy computation.

This article aims to provide a comprehensive overview on
the design of PMNs. For that purpose, we will first intro-
duce and compare several existing network architectures and
sensing protocols. In-depth discussions about the key research
problems will then be given, revealing the key design opportu-
nities and challenges in interference management, networked
sensing and environment estimation. Future research directions
that are critical for the development of PMNs and their service
to other applications will also be covered. Different from the
existing reviews about ISAC [3]–[6], this paper mainly focuses
on PMNs especially the benefits of the networked sensing.

II. NETWORK ARCHITECTURE AND SENSING PROTOCOL

Network architecture and sensing protocol are the two most
fundamental frameworks for integrating sensing into current
cellular networks.

A. Network Architecture Design

There are three main network architectures proposed for
PMNs in the literature. In traditional cellular networks, inter-
connected BSs will serve mobile user terminals (UEs). It is
thus natural to select the BSs as the transmitter for the sensing
signal and the receiver for the echo signal [7]. This is referred
to as the mono-static dual-function radar and communication
(DFRC) system, where the BSs are required to work in full-
duplex (FD) mode for transmitting and receiving signals at the
same time. Another architecture [2] integrates sensing into the
cloud radio access network (C-RAN) where remote radio units
(RRUs) are densely distributed. To address the full-duplex
issue, some RRUs are selected to be the dedicated receivers in

the downlink sensing time, such that the sensing transmitter
and receiver are separated to be different RRUs. We will refer
to this scheme as the PMN-RRU architecture.

A new PMN architecture was proposed in [8] where an-
other layer of passive target monitoring terminals (TMTs) are
added to the conventional cellular networks. TMTs are nodes
designed for internet of things (IoT) applications with only
passive sensing functionalities, such as radar and vision [9].
They are distributed in a target area and connected with the
BSs through low latency links. Given that TMTs will serve
as dedicated radar receivers, BSs only need to serve as the
transmitter for sensing signals, thus saving the need for full-
duplex operation. We will refer to this design as the PMN-
TMT architecture.

Both PMN-RRU and PMN-TMT avoid the full-duplex
operation at the cost of network synchronization. Compared
with RRUs, TMTs are low cost IoT devices with only passive
sensing functions that can also be utilized for other types
of IoT services. Fig. 1 shows an illustrative example of the
PMN-TMT scheme and Table I compares between the three
architectures. Note that all three architectures may perform
collaborative or networked sensing but with different sensing
nodes, i.e., BSs, RRUs, and TMTs, respectively. In the fol-
lowing, we will simply use TMTs as the sensing nodes and
all discussions apply to the other two architectures.

B. Protocol Design

ISAC systems have inherent interference issues and proper
protocols play the key role in interference management and
resource allocation between sensing and communication [5]. In
[4], the authors proposed a three-stage protocol to coordinate
communication and sensing modules for a DFRC system.
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Fig. 2. Frame structure for the two-stage sensing and communication protocol [11].

In Stage 1, the BS utilizes the omni-directional beam to
search the sensing targets and scatterers, and receives the
uplink pilot from the UEs. In Stage 2, the BS transmits the
directional communication and sensing signals to the UEs
and the sensing target, respectively, where the transmission
directions are estimated in Stage 1. In Stage 3, the BS receives
the radar echoes and the uplink signals from the UEs for target
detection and tracking. A two-stage protocol was proposed in
[10] to achieve joint target detection and channel estimation.
In the initial stage, the BS sends omni-directional downlink
pilots to search for the target, where the channel estimation is
performed based on uplink pilots from the UEs. Based on the
initial results about the target and communication scatterers
obtained in the first stage, the BS sends directional downlink
pilots in the second stage for refined target detection and
channel estimation.

To handle target sensing in complex environment with
the presence of clutter, the authors of [11] proposed a two-
stage sensing protocol where the communication signals are
utilized to estimate the environment and sense the target in
two consecutive periods as illustrated in Fig. 2. In particular,
the downlink transmission time is divided into two periods,
namely, the environment estimation (EE) period and the target
sensing (TS) period. In the EE period, the BS transmits
communication signals to serve the UEs, whose echoes from
the environment will be captured by the TMTs to estimate the
clutter covariance matrix. In the TS period, the BS transmits
the designed ISAC signal to serve the UEs and probe a target
simultaneously1. TMTs receive the sensing echo (SE) reflected
by the target and clutter patches, and perform target sensing,
where the clutter is suppressed by exploiting the clutter
covariance matrix estimated in the EE period. Note that there
are two interference management issues with this protocol: 1)
the interference between sensing and communication; 2) the
ISAC signal should not make the clutter covariance matrix in
the TS period different from that in the EE period. See next
section for more details.

1The sensing signal is absent in the EE period and thus may change the
environment statistics.

III. KEY RESEARCH PROBLEMS: OPPORTUNITIES AND
CHALLENGES

The design of PMN is still in its infancy. In the following,
we identify several key research problems and discuss the
design challenges, opportunities, and existing solutions.

A. Interference Management

There are three types of interference in PMNs.
• In DFRC, the BS needs to transmit and receive at the

same time, causing SI.
• As a special type of ISAC system, there is inherent inter-

ference between sensing and communication in PMNs.
• Due to the use of narrow beams in mmWave band, sens-

ing signal toward a target may change the environment
statistics, and this can be regarded as interference to
environment estimation.

In the following, we discuss existing solutions for managing
the above-mentioned interference.

1) Self Interference: Conventional pulse radar works in a
half-duplex mode to avoid SI. In each pulse repetition period,
antennas will utilize a long time to receive the potential
echoes after transmitting the sensing signal. However, half-
duplex mode will not work for PMNs because BSs need to
transmit communication signals all the time. Among the three
architectures mentioned above, the DFRC scheme requires
the BS to work in full-duplex mode to transmit and receive
signals at the same time. Under such circumstances, the SI
is mitigated by self-interference cancellation technique [12],
which unfortunately is not very mature. On the other hand,
the PMN-RRU and PMN-TMT architectures naturally avoid
SI.

2) Interference between Sensing and Communication:
There are several unique features about sensing and com-
munication signals in PMNs: a) the sensing signals will
interfere with the UEs and may degrade the communication
performance; b) the communication signals reflected by the
target can be utilized to probe the target as they are known
by the BSs [7]; c) the communication signals reflected by the
environment will cause clutter for sensing. Depending on the
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Fig. 3. Comparison of the beam patterns for AO, B-syn and ZF.

design objective, different approaches have been proposed to
manage the interference between sensing and communication.

There are works that consider both sensing and com-
munication performance. Along this line, spectrum sharing
between sensing and communication was investigated in [13]
by dynamic spectrum access and mutual interference mitiga-
tion. In [8], the authors maximized the weighted average of
sensing and communication performance by jointly designing
the transmitter and receiver, where the sensing metric is
selected as the signal-to-clutter-plus-noise ratio (SCNR) and
the communication metric is the signal-to-interference-plus-
noise ratio (SINR). An alternating optimization (AO) based
framework is proposed to iteratively update the transmit and
receive beamformers. There are also works that prioritize one
side of the ISAC system. For example, the communication
performance was maximized in [14] by treating radar signals
as interference.

In terms of the transceiver design, besides the AO-based
method that jointly optimizes the transmitter and receiver,
linear transceivers have also been considered to reduce the
computation complexity. For example, zero-forcing (ZF) and
beam synthesis (B-syn) transmitter, and the minimum variance
distortionless response (MVDR) receiver were investigated in
[8]. These linear transceivers not only reduce the computation
complexity but also provide interesting physical insights. For
example, “leaking” energy from communication signals to the
sensing target (ST)2 is more efficient than forming a dedicated
sensing signal, and the amount of energy leaked from one
UE to the ST depends on their channel correlation, which is
determined by their locations.

AO, B-syn and ZF represent three different ways to tackle
interference between sensing and communication. In partic-
ular, AO allows interference between sensing and commu-
nication and handles it by joint transceiver design, B-syn
only allows interference from communication to sensing and
utilizes communication signals as the sensing signal, while
ZF eliminates all interference between sensing and communi-

2Here, leaking energy from communication signals means to revise the
beamformer for the UEs so that part of the communication signals will also
be sent toward the ST.

cation by designing a dedicated sensing signal that will not
interfere with the UEs. The beam patterns of AO, B-syn, and
ZF are illustrated in Fig. 3 where the interference between
sensing and communication is also illustrated.

Fig. 4 compares the sensing performance of the three trans-
mitters with high and low CR, respectively. It can be observed
that, under both circumstances, the performance of AO is the
best, and B-syn outperforms ZF. Note that different transceiver
structures have different tolerance for interference, and the
stronger the orthogonality constraint (ZF>B-syn>AO), the
worse the sensing performance. Furthermore, when the CR
is high, the gap between the three schemes is smaller. This is
partially due to the less energy left for sensing when the CR is
high. On the other hand, when the CR is low, high interference
is acceptable to the UEs, thus it is not necessary to completely
eliminate the interference from sensing to communication.
However, high CR forces AO to avoid the interference from
sensing to communication like what B-syn does. Therefore,
the gap between AO and B-syn becomes smaller. When their
performance is comparable, B-syn is preferred because its
computational complexity is much lower than AO.

3) Interference to Environment Estimation: Besides the
interference between sensing and communication, the sensing
signal may also create interference for environment estimation.
In particular, the transmitted signal in the TS period is different
from that in the EE period, which may change the covariance
structure of the clutter. To tackle this issue, the sensing signal
in the TS period must be designed to avoid generating any
echoes from the clutter patches, such that the covariance of
the clutter received by TMTs will be the same as that in the
EE period. For that purpose, the idea of B-syn can be adopted
such that the sensing signal has no energy toward the clutter
patches.

B. Networked Sensing
Networked sensing is one of the most exciting opportunities

for PMN, where the multiple perspectives from different
TMTs can be collaboratively utilized to improve sensing
performance. The biggest advantage of networked sensing
comes from the macro-diversity of multiple TMTs. Note that,
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similar to wireless communications, the macro-diversity gain
improves the reliability of target detection, because the chance
that all the perspectives from different TMTs are blocked is
very low. However, the impact of the multiple antennas at
one TMT on sensing is totally different from that for wireless
communication. The influence of both the number of TMTs
and the number of antennas per TMT was analyzed in [11]
with some interesting observations.

1) Contribution of One Multi-antenna TMT: The contribu-
tion of a single multi-antenna TMT has several aspects. First,
the distance between the ST and the TMT affects the receive
SNR exponentially due to pathloss. Second, one TMT has its
unique perspectives (AODs) toward the target and the clutter
patches in the environment. The relation between those AODs
dictates how easy it is for the TMT to separate the target
from the clutter patches. Finally, the number of antennas at
one TMT affects sensing in two aspects. On the one hand,
the receive SNR at the TMT is directly proportional to the
number of antennas, which is referred to as the antenna array
gain. On the other hand, the number of antennas determines
the array resolution, which indicates the TMT’s ability to
extract the target echo from the clutter. In particular, arrays
with larger number of antennas can separate closer target and
clutter patches.

However, multiple antennas no longer provide diversity
gain for sensing. Note that multi-antenna receivers achieve
diversity gain in wireless communications because the channel
coefficients of different transmitter-receiver antenna pairs are
not fully correlated or even independent. However, in sensing,
only the line-of-sight (LoS) component is considered, and all
non-LoS components are regarded as part of the clutter. As
a result, the channel between the ST and the TMT becomes
deterministic and no diversity can be achieved by the multiple
antennas of one TMT.

2) Macro-diversity and TMT selection: Due to the different
perspectives and independent reflecting coefficients, the chan-
nels between the ST and different TMTs are normally indepen-
dent. As a result, multiple TMTs will provide macro-diversity
gain for sensing. But, this doesnot mean that we should include
as many TMTs as possible, because the detection probability
is not a monotonic increasing function of the number of
TMTs. This phenomenon was analyzed and discussed in
[11]. Assume there are already L TMTs participating in the
networked sensing. A new TMT, i.e., the (L+1)-th TMT, will
change the distributions of the decision statistic under both
the target-absence (TA) and target-presence (TP) hypotheses.
Consider an extreme case where the new target-TMT link is
blocked. Under such circumstances, the (L+1)-th TMT will
only contribute noise under both hypotheses, and thus cause
worse performance. As a result, it is unnecessary and even
harmful to activate all TMTs to sense one target, making TMT
selection a critical task. In [11], a sufficient condition for the
contribution of one more TMT to be positive was derived, with
which a TMT selection algorithm was proposed.

C. Environment Estimation

Another challenge for PMNs is EE. To achieve good sensing
performance in the presence of clutter, PMNs need to suppress
the clutter by utilizing the prior information about the environ-
ment obtained by EE. The performance of clutter suppression
will degrade if the clutter component of the signal-under-
test during the TS period has different statistical structure
from that of the EE period. A compressed sensing (CS)-
based method was proposed in [15] to estimate the spatial
parameters and Doppler shift of the clutter. Unfortunately, the
computational cost of the CS-based method can be extremely
high, due to the continuous and rapidly-changing environment
parameters in the space and Doppler domains. This issue
will be more serious when multiple distributed TMTs are
involved in the networked sensing where information sharing
between different TMTs is necessary. Thus, a computation and
communication efficient EE algorithm is desired.

To reduce the computation and communication workload for
EE, the authors of [11] proposed a distributed clutter covari-
ance estimation algorithm where the estimation is performed
at TMTs. The low rank clutter in the mmWave band [13]
makes it possible to estimate the clutter covariance by using
partial samples of the received signal. However, the estimated
covariance matrix may be ill-conditioned due to the limited
data samples. To this end, the EM-Net algorithm was proposed
by unfolding the expectation-maximization (EM) detector with
several learnable parameters, which achieves accurate estima-
tion with less data samples than existing methods.

Fig. 5 shows that EM-Net outperforms both the EM ap-
proach and the conventional sample covariance matrix (SCM)
based method, and the detection performance will improve as
the batch size for EE increases. However, the performance
improvement is achieved at the cost of larger latency and
higher computation workload.
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IV. FUTURE RESEARCH DIRECTIONS

In this section, we list several future research directions for
the development of PMNs.

A. Target Tracking

A big challenge for networked sensing is to track a moving
target. This is because, different from traditional radar, the
coverage of one TMT is very limited. Thus, the sensing task
needs to be smoothly handed over to another TMT when the
target is moving. The situation is even worse for networked
sensing where the handover is not from one TMT to another
TMT, but from one group of TMTs to another group with
overlapping between two groups. Note that handover is not a
new problem, as it is also required for wireless communication
services. However, the problem is not the same for sensing due
to several reasons. First, the synchronization requirement for
networked sensing makes the problem much more difficult.
Second, the handover criteria are more complex. Specifically,
besides the signal strength which is normally the criterion for
handover in communication, angles (AOA/AOD) and moving
direction also matter a lot for sensing. Finally, if the target
is moving fast, the narrow sensing beams may have difficulty
following the target so that “predictive” sensing beams may
be required.

To this end, besides the Kalman filter (KF) based method,
machine learning or data-driven approaches may play a more
important role due to several reasons. On the one hand, the
physical environment, e.g., the roads, for fast moving target is
relatively fixed, making it easier to extract useful information
from history data. On the other hand, the strong computation
and communication power of PMNs make it possible to build
a map of the environment, i.e., Simultaneous Localization
and Mapping (SLAM). Furthermore, graph neural networks
(GNNs) have been shown effective to handle wireless network
design problems, such as traffic prediction, resource allocation

and data detection, and the handover problem can also be
formulated as a graph optimization problem.

B. Joint Networked and Individual Sensing

Networked sensing can be utilized to facilitate the design of
many smart applications. For example, in autonomous driving,
a key task for the vehicle is to understand the environment,
including the road, other vehicles, pedestrians, etc. Currently,
this is mainly achieved by many sensors installed on the
vehicle, such as vision, lidar, and radar. We will refer to
this as individual sensing. Networked sensing by PMNs can
help measure the position and velocity of a moving vehicle.
Due to latency requirement, such results can not be directly
utilized to control the vehicle. However, networked sensing
may provide useful complement for individual sensing in
autonomous driving applications.

There are several promising research directions. First, net-
worked sensing is able to reduce the workload of individual
sensing. For example, networked sensing can build up and
keep updating a map about the static environment, saving the
need for individual sensing to construct such a map. Second,
networked sensing will be able to monitor the changing
environment, e.g., other moving vehicles, to provide assistant
information for individual sensing. Finally, many long-term
tasks such as routing and traffic management can be taken
over by networked sensing.

C. Intelligent Reflecting Surfaces (IRS)-aided Sensing

Compared with the sub-6GHz band, mmWave experiences
high pathloss which makes directional transmission by spatial
beamforming inevitable. As a result, both mmWave sensing
and communication rely heavily on the LoS link, which
unfortunately can be easily blocked. Intelligent reflecting
surfaces (IRSs) have been proposed to create an alternative
link between the transmitter and receiver, and attracted much
attention in wireless communication design. The ability IRSs
in creating semi-LoS links can be utilized to facilitate several
aspects of PMN design including interference management,
networked sensing, and velocity estimation. In particular, due
to the complex environment, it is possible that the sensing
target has the same AoA/AoD as some UEs with respect to
one TMT. Under such circumstance, IRSs will be able to
create another link and avoid the interference between sensing
and communication users. The same idea can be utilized for
networked sensing, when one TMT’s perspective to the target
is blocked. In fact, with proper phase-shift design, one IRS
can help multiple TMTs.

The application of IRS in sensing is not limited to creating
alternative paths. The additional perspective can also help
improve velocity estimation. For example, with the conven-
tional mono-static radar, only the radial projection of the
true velocity can be estimated due to the nature of Doppler
effect. As a result, if the target is moving on the direction
perpendicular to the line connecting the target and one TMT,
the velocity estimation will not be accurate. The additional
path provided by the IRS can provide another perspective to
observe the target, which is useful to recover the true velocity.
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D. Joint Active and Passive Sensing

The above discussions considered networked sensing in an
active manner, i.e., the BS actively transmits the sensing signal
and TMTs perform the detection based on the echoes. The
active mode works for any targets. However, if the PMN wants
to locate the UEs which also use the communication service,
there is another mode of passive sensing. In particular, the
UEs will transmit signals in the uplink period, which can also
be used for radar detection. For targets with weak electro-
magnetic wave reflection characteristics, e.g., pedestrians, the
passive method can provide a good detection performance.
The passive mode is also more power-efficient as there is no
transmission overhead. However, it loses several advantages of
active sensing, such as the well-designed waveform, flexible
transmitting beam, higher detection range, etc. As a result,
it may not be sufficient to only utilize the passive mode to
achieve accurate sensing performance. A joint design between
active and passive sensing in PMNs is an interesting direction
to investigate, which is especially useful for sensing-aided
communication.

E. Sensing-aided Communication

By far, we have been focusing on the design of PMNs to
achieve sensing by exploiting the well-developed communica-
tion network. On the other hand, sensing can also be utilized to
assist communication especially in the mmWave band where
highly directional signals are transmitted in a sparse channel.

1) Sensing-aided Channel Estimation: The transmission of
highly directional beams over a sparse channel creates chal-
lenging problems for channel estimation, because of the very
large searching space in the angular domain plus the limited
measurements. Among other solutions, the CS-based methods
were widely studied to exploit the sparse structure, but they
suffer from high computational complexity and are not robust
to noise, hardware-led errors in array response, and the off-
grid issues. To this end, the sensing results by PMNs can be of
great assistance. In particular, the sparse channel is composed
of several main scatterers whose locations can be obtained by
sensing. As a result, sensing results can significantly reduce
the searching space for channel estimation and improve the
performance with limited measurements.

2) Sensing-aided Beam Tracking: Beam alignment is a
fundamental issue in mmWave communication. The narrow
mmWave beams are very sensitive to the change of envi-
ronment, e.g., the movement of the UEs. As a result, beam
alignment becomes more difficult in highly mobile scenarios,
as the state of a UE can change before beam training has
been completed. Thus, under certain circumstance, “predic-
tive” beams are required to maintain good communication
performance. To this end, the powerful capability of sensing
in location and velocity estimation will be able to help for
tracking the moving UE and forming communication beams.

V. CONCLUSION

Networked sensing brings unprecedented opportunities to
exploit the well-developed infrastructure of cellular networks
for sensing purposes, but at the same time faces serious

challenges in interference management and environment es-
timation. Joint processing among distributed nodes over the
network also incurs difficulties in designing communication
and computation-efficient algorithms. Existing network ar-
chitectures, sensing protocols, and transceiver design could
tackle some of the challenges while achieving favorable results
such as the macro-diversity from multiple sensing nodes, the
array gain by multiple receive antennas, and the efficient
environment estimation with data-driven methods. However,
the development of ISAC/PMNs is in its infancy and there are
still many obstacles to conquer before we can fully enjoy the
synergy between sensing and communication to support more
innovative applications.
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