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Reconfigurable Intelligent Computational Surfaces:
When Wave Propagation Control Meets Computing
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Abstract—The envisioned sixth-generation (6G) of wireless
networks will involve an intelligent integration of communications
and computing, thereby meeting the urgent demands of diverse
applications. To realize the concept of the smart radio environ-
ment, reconfigurable intelligent surfaces (RISs) are a promising
technology for offering programmable propagation of imping-
ing electromagnetic signals via external control. However, the
purely reflective nature of conventional RISs induces significant
challenges in supporting computation-based applications, e.g.,
wave-based calculation and signal processing. To fulfil future
communication and computing requirements, new materials are
needed to complement the existing technologies of metasurfaces,
enabling further diversification of electronics and their applica-
tions. In this event, we introduce the concept of reconfigurable
intelligent computational surface (RICS), which is composed of
two reconfigurable multifunctional layers: the ‘reconfigurable
beamforming layer’ which is responsible for tunable signal reflec-
tion, absorption, and refraction, and the ‘intelligence computation
layer’ that concentrates on metamaterials-based computing. By
exploring the recent trends on computational metamaterials,
RICSs have the potential to make joint communication and
computation a reality. We further demonstrate two typical
applications of RICSs for performing wireless spectrum sensing
and secrecy signal processing. Future research challenges arising
from the design and operation of RICSs are finally highlighted.

I. INTRODUCTION

As a key enabler for building smart wireless environments,
metamaterials, sometimes known as metasurfaces, are en-
gineered materials with promising artificial properties that
are not exhibited by natural materials. Recent advances in
the design of such materials offer exciting opportunities for
unprecedented control and manipulation of electromagnetic
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(EM) properties, thereby promoting the emergence of re-
configurable/programmable metasurfaces. In such a context,
reconfigurable intelligent surfaces (RISs) have the potential
to significantly improve the communication quality in the
sixth-generation (6G) of wireless networks, by intelligently
reconfiguring the wireless propagation of EM signals via low-
cost passive reflecting elements (meta-atoms) integrated into
planar surfaces. For example, in communication scenarios with
obstacles between the transmitter and receiver, virtual line-of-
sight links can be created through RIS reflections to improve
the desired received signal strength. In this case, the wireless
coverage is also extended. Additionally, by configuring the
reflection coefficients of RIS elements appropriately, the co-
channel/inter-cell interference can be suppressed, EM field
exposure can be tamed, and physical-layer security can be
further improved.

Although RISs constitute an emerging technology for cre-
ating an intelligent wireless radio environment, they are not
capable of meeting the demands of future advanced commu-
nications applications that involve both communications and
computation, such as integrated sensing and/or control with
communications. In contrast to existing efforts on RISs, in
this article, we elaborate on the following significant question:
“why and how can both intelligent wireless communication
and computation be achieved for future 6G?” Before answer-
ing this question, we describe a motivating example.

In the conventional RIS-empowered wireless communi-
cation systems, the interfering signals tend to dynamically
fluctuate and a conventional RIS ‘blindly’ reflects both the
desired and interfering signals. In this context, due to the
unpredictable nature of interfering signals, undesired reflec-
tions via RISs are becoming a critical challenge, which is
known to severely degrade the desired signal at the re-
ceiver [[1]]. In contrast, if the conventional RISs were to be
empowered with computational capabilities to perform active
sensing for interference estimation, such technical challenges
could be mitigated. For instance, a programmable artificial
intelligence machine structure has been recently proposed to
handle various deep learning tasks (such as wave sensing)
via manipulating the reflected or transmitted EM waves [2],
this can be achieved with the aid of field-programmable gate
arrays (FPGAs). Instead, by exploring the intrinsic potential of
metamaterial-based computing techniques, certain computing
operations, including mathematical functions (such as spa-
tial differentiation, integration, and convolution) and artificial
neural inference, can be achieved [3]. Such structures are
referred to as computational metamaterials, which specialize in
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Fig. 1: The architecture design of an RICS. It contains three layers: a reconfigurable beamforming layer, an intelligence computation layer, and a control
layer. In order to meet the diversification of computational tasks, the intelligence computation layer can be configured by different kind of metamaterials,
e.g., neuromorphic computing metamaterials for wireless spectrum learning (shown on the top-right [4]) or analog computing metamaterials for secrecy signal

processing (shown on the bottom-right [EI]).

processing computational tasks on signals or images through
neuromorphic computing and/or optical analog computing [4]],
(5. Inspired by the above, it is foreseen that the next gener-
ation of intelligent surfaces will integrate computation with
communications functions via computational metamaterials.

In this paper, we explore a new RIS structure that exploits
the natural superiority of computational metamaterials to si-
multaneous enable dynamically adjustable signal reflections
and computational tasks. In particular, we term these struc-
tures as ‘reconfigurable intelligent computational surfaces’,
and abbreviate them as ‘RICSs’. To realize RICSs, compu-
tational metamaterials are introduced and connected with the
conventional reflective surfaces, thereby attaining the goal of
computations and intelligent reflections.

II. FUNDAMENTALS OF RICS

Different from materials found in nature, the properties of
metamaterials (such as permittivity and permeability) stem
from the form of their meta-atom design. Recently, the in-
terest in analog computing was revived in the context of
metamaterials [6]]. In this context, the proposed RICS belongs
to a composite material, which is designed and optimized
to function as a tool to control the EM waves as well as
to perform computation tasks. As conceptually sketched in
Fig. [} an RICS is composed of a smart controller and three
layers: the reconfigurable beamforming layer, the intelligence
computation layer, and the control layer. The first two mul-
tifunctional layers interplay with each other and should be
jointly configured. The inner control layer is a control circuit
board which is triggered by a smart controller, which focuses
on adjusting the tunable parameters of the beamforming layer
and can be implemented by a field-programmable gate array.

In the following, we introduce the design of the first
two layers: the reconfigurable beamforming layer and the

reconfigurable computation layer. Then, we demonstrate the
architectural design of the RICS, which can be used to reflect
signals as well as perform computational operations.

A. Reconfigurable Beamforming Layer

The reconfigurable beamforming layer commonly com-
prises a number of tunable elements, which can be dynam-
ically configured to intelligently reflect, refract or absorb the
incident radio frequency (RF) signal. In particular, due to the
specific computation demand of applications, these tunable
elements can be designed to have four kinds of operations:

o Reflection. This operation indicates that the elements act
just like the conventional passive elements that reflect the
incident RF signal.

o Refraction. In this operation, the incident RF signal
can be simultaneously reflected and refracted towards
both sides of the reconfigurable beamforming layer. For
instance, by controlling the ON-OFF state of the positive-
intrinsic-negative (PIN) diode of each element [[7].

o Absorption. By enabling this operation, some portion of

the tunable elements work as receivers with reception RF

chains, thereby allowing to further process the received
signal in the digital domain.

Storage and retrieval. This operation enables the storage

and retrieval of the EM waves by exploiting the electro-

magnetically induced transparency effect [g].

Based on the configured operations of the tunable elements,
the operating mode of the reconfigurable beamforming layer
can be categorized into two modes:

o Reflection-absorption (RA) mode. This mode mainly
consists of two types of elements: the conventional re-
flecting elements and semi-active elements for incident
RF signal processing. Specifically, for the semi-active
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Fig. 2: The two kinds of design for RICSs, where the RICS-Design-A is shown on the left side and the RICS-Design-B is shown on the right side.

RICS elements, only RF front-end, analog-digital con-
verter, and down-conversion are required for obtaining the
Inphase-and-Quadrature (I/Q) sequences, thereby achiev-
ing some information from the incident wireless signals,
e.g., wireless spectrum occupation sensing. Since the
baseband processing unit such as signal decoding is not
necessary, the deterioration of the signal reflection will
not be an issue because only a very few of semi-active
elements is required for achieving I/Q samples.

+ Reflection-refraction (RR) mode. To simultaneously
realize reflection and refraction, the incident energy is
split into two parts: some energy is reflected while the
remaining of the energy is refracted to serve users located
on the opposite side.

B. Intelligence Computation Layer

Determined by the growing demands of computational
applications, the intelligence computation layer may consist
of different kinds of computational metamaterials, such as
neuromorphic computing metamaterials and analog computing
metamaterials.

1) Neuromorphic Computing Metamaterials: To realize ar-
tificial neural computing with faster speed and lower energy
consumption, optical neuromorphic computing was proposed,
especially for achieving multi-class classification, by leverag-
ing optical reflection through neuromorphic metamaterials [4]],
as shown in top-right of Fig.[T] For instance, the neuromorphic
computing metamaterial based intelligence computation layer
can consist of an array of TiOy pillars on top of a SiO,
substrate [9].

Principle: Emerging neuromorphic metamaterials generally
consist of multiple layers of nanostructures, which are com-
posed of an array of nanoribbons. By changing the size of
the ribbons, the amplitude and phase of scattered light can be
controlled. Similar to the training of traditional deep neural
networks, e.g., the convolutional neural networks, training the
neuromorphic metasurface is also a gradient descent process
that minimizes a loss function. The difference is that the
additional trainable parameters of neuromorphic metasurface
include the widths of the nanoribbons. After going through a

few layers of the appropriately trained neuromorphic metasur-
face, the output light becomes a focused beam, which points
towards a spatial location corresponding to the inferred class.

Operating mode: The operating mode of the intelligence
computation layer via neuromorphic computing metamaterials
is denoted as the neuromorphic-computing (NC) mode. For
the NC mode, the intelligence computation layer consists of
multiple tiers of nanostructures, which are composed of an
array of nanoribbons on top of a dielectric substrate. The well-
trained intelligence computation layer particularly serves the
purpose of classification problem via optical neuromorphic
computing. For instance, when a plane wave illuminates an
object and passes through the intelligence computation layer,
this layer then scatters the light in a way that is equivalent
to artificial neural computing. In general, the input of neuro-
morphic computing metamaterials is the light scattered by an
object, which is usually resized and converted into a digital
vector first.

2) Analog Computing Metamaterials: In recent years, the
study of analog computing through metamaterials has attracted
wide attention due to the advantages of parallel processing
with ultra-high speed. Different from the fresh literature of
intelligent surfaces design that conventionally uses digital units
(such as received RF chains and computational/storage) to
perform computing tasks, the intelligence computation layer
with analog computing metamaterials is able to perform com-
putation tasks (e.g., signal processing), as highlighted in the
bottom-right of Fig. [I] To replace circuits with computing
metamaterials, two approaches can be implemented by let-
ting EM waves propagate through metamaterials: the Green’s
function approach and the metasurface approach [6].

Principle: Owning to the powerful wave manipulation abil-
ities and subwavelength characteristics, the EM metamaterial
can perform mathematical operations, such as spatial integra-
tion, differentiation, and convolution. There exist two popular
approaches to achieve this functionality: 1) the metasurface
approach, and 2) the Green’s function (GF) approach, by
which the computation can be directly performed on an analog
signal. Specifically, the metasurface approach performs signal
processing in the Fourier domain based on suitably designed



metamaterial blocks that can perform mathematical operations.
Each metasurface block is composed of a layered structure of
two alternating materials, e.g., Aluminum-doped zinc oxide
and silicon. The metasurface approach consists of three sub-
blocks: two Fourier transformers via graded-index and lenses,
and an optical metasurface between the two graded-indexs for
realizing the mathematical operation of choice. By suitably
manipulating the impinging wave to propagate through the
metamaterial blocks, signal processing can be achieved ac-
cordingly. In the GF approach, the multi-layer structure is
composed of a stack of subwavelength metamaterial (e.g.,
dielectric) slabs. By optimizing the permittivity, permeability,
and thickness of each slab, it is feasible to carry out the
computation directly in a spatial domain without involving
additional Fourier lenses.

Operating mode: The working mode of the intelligence
computation layer via analog computing metamaterials is
denoted as the analog-computing (AC) mode. The AC
mode particularly serves the purpose of signal processing
via mathematical-based analog computing. In particular, the
intelligence computation layer that works in this mode consists
of multi-tiered dielectric slabs, thereby allowing the synthesis
of mathematical operations of interest by realizing the desired
GF. By optimizing the permittivity, permeability, and thickness
of each slab, the mathematical-operation layer can act as cer-
tain mathematical operations on the incident refracted signal
to match the considered transfer function without involving
additional Fourier lenses.

C. RICS Architecture Design

Based on the configurations of the reconfigurable beam-
forming layer and the intelligence computation layer, we
present two kinds of RICS designs:

e RICS-Design-A: RA+NC. This design is achieved via
neuromorphic computing metamaterials, as shown on the
left side of Fig. [2] Taking wireless spectrum sensing as an
example, to explore the potential of NC mode, data visu-
alization needs to be utilized to map the wireless spectrum
data into an unique image, which is, in turn, suitable
for the neuromorphic computing metamaterials [[10]. As
illustrated in Fig. [2| when the incident RF signal arrives
at the reconfigurable beamforming layer working at the
RA mode, the impinging signal is received via the semi-
active absorption elements, while the remaining reflection
elements reflect the signal in a conventional passive way.
The received signal is transferred to an I/Q vector, which
is then mapped into an image and further fed into the
intelligence computation layer working as the NC mode.
The final output indicates the class inferring the compo-
nents of the incident RF signal. Notably, different from
the RIS elements design for sensing and reflection [[11]],
semi-active elements are used and only a quadratic com-
putational complexity is involved for inference.

¢ RICS-Design-B: RR+AC. This design is achieved via
analog computing metamaterials, as shown on the right
side of Fig. |2} Different from the RICS-Design-A, when
the incident RF signal arrives at the reconfigurable beam-
forming layer, the incident energy is divided into two

parts. In this case, the reconfigurable beamforming layer
should be configured as the RR mode since the input of
the intelligence computation layer is the original analog
signal. In particular, some energy is used to reflect the im-
pinging signal and the rest of the energy is for refracting
the signal. Then the refracted signal is considered as the
input to the intelligence computation layer with the AC
mode. By performing analog computing, the output of the
intelligence computation layer demonstrates the specific
mathematical operation of the incident signal.

To demonstrate the potential of RICSs in wireless commu-
nications and how to apply the outcome of an RICS, in the fol-
lowing Section [[II] and Section [[V] we present two illustrative
applications of RICSs in wireless communications: intelligent
spectrum sensing and secure wireless communications.

III. INTEGRATED SENSING AND COMMUNICATION VIA
RICS-DESIGN-A

In this section, we present an RICS-Design-A application,
which takes advantage of the neuromorphic computing meta-
materials to enable wireless spectrum sensing and communi-
cation.

A. Motivation

In the context of ISAC, wireless spectrum sensing through
RF signals has become an important application in future 6G
wireless networks. Currently, RIS has been commonly used
to improve the quality of wireless links by appropriately re-
flecting the incident signals. Notably, due to the unpredictable
superposition of the wireless signals, undesired reflections
of both the desired and interfering signals become a critical
challenge, which may cause a deleterious effect on the receiver
via the conventional RIS. To address this challenge, it turns
out that exploring wireless environments via spectrum sensing
becomes beneficial, which, however, requires large amount of
computing resources and power. This motivates the necessity
to learn and infer the wireless spectrum via RICS-Design-A.

B. Procedure

Due to the uniqueness of the wireless signal, the wireless
spectrum sensing can be considered as a classification prob-
lem, which is addressed via a trained optical neural network
(ONN) model in the intelligence computation layer of an
RICS. With the inferred spectrum information at RICS, the BS
can improve the spectrum efficiency by allocating the wireless
resources intelligently for future 6G networks.

An illuminative example is illustrated in Fig. 3] where three
users (e.g., Uy, Uy and Us) communicate with a base station
(BS) via the RICS. The BS maintains a control link with a
controller of the RICS, where the RICS sets the configuration
as the RICS-Design-A. In such setups in Fig. |3} an 8-class
classification problem is described as below.

e Class 1 - ‘Idle’: noise only.

e Class 2 - ‘Uy’: user U; only.

e Class 3 - ‘Uy’: user Us only.

e Class 4 - ‘Us’: user Us only.
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Fig. 3: An illuminative example of RICS-aided intelligent spectrum sensing,
where three users transmit to a base station via the RICS-Design-A.

e Class 5 - ‘U;+Us’: users U; and Us.
e Class 6 - ‘U;+Us’: users Uy and Us.
o Class 7 - ‘Uy+Us’: users Us and Us.
e Class 8 - ‘U;+Us+Ug’: users Uy, Uy and Us.

To realize spectrum learning via RICS-Design-A, we first
train an ONN model in the intelligence computation layer.
Specifically, we collect RF traces by building a universal
software radio peripheral based testbed and store as 1/Q
sequences. With the collected I/Q data with different signal
combinations, the ONN model is trained offline via stochastic
gradient descent method, which is performed repeatedly until
the loss function converges.

After the ONN model is trained appropriately, wireless
spectrum sensing can be achieved via online inference at the
RICS. Specifically, once the incident RF signals arrive at the
reflection-absorption layer, a portion of elements reflect the
signal in a conventional way, the remaining elements vectorize
and process the signal. Note that before feeding the I/Q vector
to the trained intelligent computation layer, data preprocessing
(such as frequency adapting and data visualization [10]) is re-
quired. Then the spectrum information is output by performing
forward calculation via ONN inferencd!l

C. Illustrative Results

The considered simulation scenario for evaluating the RICS-
Design-A is shown in Fig. 3] where three users send data to the
BS from time to time using the transmit power 200 mW and
the data payload size of each user is 1000 bits. The distance
between the users and the RICS is 60 m, the distance between
the RICS and the BS is 80 m, the incident angle between the
users and the BS is 160°. Moreover, the noise power density
is —174 dBm/Hz, the wireless bandwidth is 10 MHz and the
power ratio of the reflected and refracted signals is 1.

We consider demonstrating the wireless spectrum sensing
that is achieved via the trained ONN model for classifica-
tion [12]. Specifically, we trained a 2-layer model and 4-layer

I Different from conventional RISs whose working bandwidth maybe very
limited due to their inherent implementation restricts, the RF signals impinging
at the RICS are encouraged to be mixed through the same frequency
bandwidth, so as to obtain the I/Q samples at the RF chain for further spectrum
sensing.
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Fig. 4: Achieved network throughput versus the number of elements.

model based on the collected RF dataset, which consists of
a total of 100 million I and Q samples indicating one of the
eight classes. After the models converge, the 2-layer model can
achieve 85% accuracy for spectrum sensing and the 4-layer
model can reach 90%. This demonstrates that the inference
accuracy can be improved when more layers are being used.

To evaluate throughput performance, we implement a time
division multiple access scheme for RICS and RIS, respec-
tively. Then we evaluate and compare the achieved network
throughput, as illustrated in Fig. [] Different from statistical
time slots allocation with the conventional RIS, we observe
that the RICS transmission schemes are always superior to the
conventional RIS scheme since the RICS can infer the incident
signal components, thereby enabling the BS to allocate time
slots for the active users intelligently. Reflected in Fig. [4]
we also note that the inference accuracy achieved by the
trained ONN model at the RICS affects the network throughput
significantly. In particular, compared to the RICS with 2-layer
model, the RICS with 4-layer model outperforms and the
performance gap becomes larger as the number of elements
increases.

IV. SECURE WIRELESS COMMUNICATIONS VIA
RICS-DESIGN-B

In this section, we present an RICS-Design-B application,
which takes advantage of the analog computing metamaterials
to achieve secure wireless communications.

A. Motivation

In recent years, physical layer security has attracted in-
creasing attention from research and industrial communities.
Suppose the existence of an eavesdropper in the network.
When the user transmits data to the legitimate receiver, the
information leakage issue may occur since the eavesdrop-
per also can receive the wireless signal that comes from
this considered user. To address this challenge, deploying a
conventional RIS for generating a tuned reflected signal has
become a recognized solution [13]]. However, the unavailability
of computational capability and prior information on the
eavesdroppers has become a stumbling block for reducing
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Fig. 5: An illustrative example of secure wireless communication, where an
intended interfering signal is generated via the RICS-Design-B to worsen the
quality of the signal at the eavesdroppers.

information leakage via the RIS in practice, especially when
the eavesdroppers located on the opposite-side of the RIS.
This motivates the necessity to process the incident signal via
RICS-Design-B, thereby suppressing the received signal-to-
interference-plus-noise at the eavesdroppers.

B. Procedure

With the implementation of an RICS, the incident signal
can be refracted at the reconfigurable beamforming layer and
adjusted appropriately by the intelligence computation layer.
Then the processed signal can be destructively added with
the non-reflected signal at the eavesdropper to neutralize the
leaked signal.

An illustrative example is shown in Fig. [5} where a sender
transmits data to a receiver and an eavesdropper is nearby.
We note that the wireless signal that comes from the sender
can also be received by the eavesdropper. Different from the
conventional RIS without computing capability, the RICS-
Design-B can be exploited to generate an intended interfering
signal to worsen the quality of the leakage of the signal at the
eavesdroppers. Specifically, when the incident signal arrives at
the reconfigurable beamforming layer of the RICS, the energy
of the incident signal is divided into two parts. Some of the
incident energy is reflected to serve the desired receiver located
on the same side as the sender, and the rest of the energy works
for impinging signal refractiorﬂ

Then, by feeding the refracted signal to the intelligence
computation layer that works in the AC mode, an intended in-
terfering signal can be appropriately generated by performing
the mathematical operation, e.g., frequency shifting, to worsen
the leaked signal at the eavesdroppers. Therefore, instead
of relying on higher-layer encryption, the RICS enables the
exchange of confidential messages over a wireless medium in
the presence of unauthorized eavesdroppers.

2Since the channel model of the reflected and refracted signals may not
be symmetric, the power ratio of the reflected and refracted signals in
the reconfigurable beamforming layer could be appropriately optimized (7],
thereby providing an extra degree of freedom for enhancing the RICS-aided
communication performance.
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Fig. 6: Achievable secrecy rate versus the number of elements.

C. Illustrative Results

The considered simulation scenario for evaluating the RICS-
Design-A is shown in Fig. f] where the distance between
the RICS and the eavesdropper is 50 m and other critical
parameters keep unchanged. The power ratio between the
reflected signal and the incident signal is denoted as «, the
power ratio of between the refracted signal and the incident
signal is denoted as (3, and a+ /3 = 1 holds in the simulations.
To demonstrate the performance of secure wireless commu-
nication via the RICS-Design-B, we evaluate the achievable
secrecy rate in bits/second/Hertz (bps/Hz), which can be
expressed as the achievable secrecy rate which is the difference
between the achievable rate of the legitimate link and the
eavesdropper link.

Fig. [6] compares the achievable secrecy rates of four
schemes. We observe that the achievable secrecy rate of the
three schemes that are based on the RICS is higher than
that of the scheme ‘Without RICS’, and the performance
gap increases as the number of RIS elements grows. This
indicates that with more reflecting elements, the reflect and
refract beamforming design of the RICS becomes more ef-
fective, thereby achieving higher gains of secrecy rate. We
also observe that the power ratio coefficients, « and /3, play a
significant impact on the achievable secrecy rate performance.
In particular, when the number of elements is small, e.g., less
than 60, a lower value of « brings a beneficial impact on the
RICS. As the number of RIS elements increases, the scheme
with a larger value of « outperforms. It is worth mentioning
that there exists an optimal trade-off between the reflected
power and the refracted power for a given number of elements
of the RICS.

V. RESEARCH CHALLENGES AND DIRECTIONS

Taking advantage of metasurface technologies, computa-
tional metamaterials provide potential solutions for the design
of next-generation intelligent surfaces in future 6G networks.
Despite the two motivating examples above, there exist more
promising application scenarios that integrate communication
with computing for the proposed RICSs, such as artificial
intelligence (AI) based localization with fingerprinting, in-
terference suppression for the cell edge users, and so on.



However, to meet urgent computing demands, the ability of
RICSs for carrying out computational tasks gives rise to
several research challenges.

A. Nonlinear Computing Design

Note that the analog computational metamaterials discussed
in the proposed RICS structure are usually related to linear
functionalities. With the emerging demands of complex appli-
cations, investigating the possibility of performing nonlinear
processing operations through computational metamaterials is
necessary. In this event, nonlinear signal processing tech-
nologies will become a potential player for improving the
performance of future 6G wireless system.

To address this challenge, the concept of metasurfaces is
undergoing transformation to the nonlinear regime for the
realization of nonlinear functionalities [6]. In such a context,
investigating the possibility of performing more complex cal-
culations and operations via RICSs with nonlinear-enabled
computational metamaterials becomes an attractive research
direction.

B. Multi-functional Computing Design

At the metamaterials level, computation efficiency of meta-
materials plays an important role, and enhancing the speed
of computation is important for the implementation of RICSs.
Compared to the single-task processing for analog computing
design, a promising trend in computational metamaterials
is multifunctional wave-based analog computing, in which
several computational tasks are performed simultaneously via
different independent processing channels [14]. As a result,
such multifunctional computing metamaterials can provide the
unique possibility of parallel processing of information and
enhance the computation efficiency substantially. Under this
trend, the development of parallel computational metamaterials
will open a new route for the future intelligent metasurfaces
design with accelerated signal processing capability.

C. Artificial Intelligence Driven Design

The RICS configurable profile (such as phase shift matri-
ces in the reconfigurable beamforming layer and settings of
the intelligence computation layer) has to be optimized for
enhancing the system performance. In practical deployments,
each RICS could be equipped with hundreds of meta-atoms.
Most of the existing contributions tend to rely on mathematical
model-based optimization methods, which generally require a
large number of iterations to find a near-optimal solution due
to the non-convex natures of the constraints and the objective
function.

With the development of Al technologies, investigating the
possibility of intelligent surface design by use of deep neural
networks or other machine learning structures is of interest.
Compared with the conventional optimization methods for
non-convex equation solving, deep learning could help to
quickly generate optimal solutions for the configurations of
intelligent surfaces with higher accuracy [15]. On the far hori-
zon, we may imagine combining computational metamaterials
with machine learning to enable the realization of Al-driven
RICS design.

VI. CONCLUSION

In this article, we have introduced a novel concept of RICSs
for meeting emerging demands on wireless communication
and computation. In contrast to purely reflective RISs, RICSs
are capable of reflecting and processing impinging signals
based on computational metamaterials. We have presented two
representative RICS designs and discussed their feasibility.
Preliminary results are shown to demonstrate the advanced
features of RICS. We finally highlight several research chal-
lenges, which pave the way for realizing the potential of RICSs
for future 6G wireless networks.
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