
1

The Promise and Challenges of Computation
Deduplication and Reuse at the Network Edge

Md Washik Al Azad and Spyridon Mastorakis

Abstract—In edge computing deployments, where devices may
be in close proximity to each other, these devices may offload
similar computational tasks (i.e., tasks with similar input data
for the same edge computing service or for services of the same
nature). This results in the execution of duplicate (redundant)
computation, which may become a pressing issue for future edge
computing environments, since such deployments are envisioned
to consist of small-scale data-centers at the edge. To tackle this
issue, in this paper, we highlight the importance of paradigms
for the deduplication and reuse of computation at the network
edge. Such paradigms have the potential to significantly reduce
the completion times for offloaded tasks, accommodating more
users, devices, and tasks with the same volume of deployed edge
computing resources, however, they come with their own technical
challenges. Finally, we present a multi-layer architecture to
enable computation deduplication and reuse at the network edge
and discuss open challenges and future research directions.

I. INTRODUCTION

Edge computing has emerged as a paradigm to bring com-
puting resources physically close to end-users in an effort
to address the increasing needs of applications for the low-
latency processing of data generated by user devices, such
as mobile phones, Augmented Reality (AR) headsets, and
Internet of Things (IoT) [1]. Edge computing deployments are
envisioned to consist of small-scale data-centers at the edge
of the network [2]. At the same time, such deployments may
target large-scale use-cases (e.g., smart cities with hundreds
of thousands or millions of residents). In such use-cases,
several devices may be in close proximity to each other,
offloading tasks for “similar” computation (i.e., tasks with
similar input data for the same edge computing service or
services of the same nature) to the edge [3]. This can result
in the execution of massive amounts of duplicate (redundant)
computation, limiting the number of devices and tasks that can
be accommodated by edge computing deployments. Overall,
we expect the execution of duplicate computation to become
a pressing issue for future edge computing deployments given
the expected small scales of edge data-centers and the need to
accommodate large-scale use-cases.

In this paper, we highlight the promise of paradigms for
the deduplication and reuse of computation at the network
edge. In such paradigms, the results of previously executed
tasks are stored with the goal to be reused and satisfy similar
offloaded tasks, instead of executing similar tasks from scratch.
The process of deduplication provides the means to infer

Md Washik Al Azad and Spyridon Mastorakis (corresponding author) are
with the University of Nebraska at Omaha, USA.

whether reuse is possible by determining whether tasks similar
to the offloaded ones have been previously executed and stored
at the edge. As a result, such paradigms essentially “trade”
storage for computing resources, having the potential to: (i)
significantly reduce the completion time of offloaded tasks;
and (ii) accommodate more users, devices, and tasks with
the same volumes of deployed edge computing resources.
However, such paradigms come with their own technical
challenges, which need to be addressed for their realization.

Our contribution in this paper is two-fold: (i) we highlight
the promise that computation deduplication and reuse holds for
edge computing environments and the need for paradigms for
deduplication and reuse that consider the distributed nature
of such environments, a key observation that prior research
has overlooked; and (ii) we present a multi-layer architecture
to enable the pervasive computation deduplication and reuse
at the network edge along with promising proof-of-concept
evaluation results.

The rest of this paper is organized as follows: in Section II,
we discuss the importance of computation deduplication and
reuse for edge computing deployments. In Section III, we
present the design of a multi-layer architecture for computation
deduplication and reuse. In Section IV, we present open
challenges and future research directions, and, in Section V,
we conclude our work.

II. WHY COMPUTATION DEDUPLICATION AND REUSE AT
THE EDGE ARE IMPORTANT?

With the projected growth of the number of IoT, mobile,
and other devices at the edge, several devices may be in
close proximity to each other. In such environments, redundant
computation may occur, since temporal, spatial, and semantic
correlation may exist between the input data of offloaded
tasks. Devices may request the execution of the same ser-
vices/processing functions offered at the edge with similar data
as the inputs of these services/functions. In addition, available
edge services may have processing components in common.

For example, a cognitive assistance application may be used
on mobile phones or AR headsets to recognize the environment
in the captured camera snapshots or AR scenes. In this context,
visitors of famous sights all around the world may use this
application to capture pictures/scenes of a sight with their
mobile phones or AR headsets. These pictures/scenes are
offloaded to a nearby edge server where a cognitive assistance
service (Figure 1) identifies the depicted sight and returns
information and content about the identified sight to visitors
(e.g., podcasts and videos related to the sight, the story behind

a

aThis manuscript has been accepted for publication by the IEEE Wireless Communications Magazine © 2022 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

ar
X

iv
:2

10
9.

01
60

8v
2

 [
cs

.N
I]

 1
 A

pr
 2

02
2

2

the sight). In this scenario, visitors may request the same
computation with similar inputs (e.g., pictures of the same
sight from different angles or distances), thus resulting in the
same output (the received information and content about the
same sight). At the same time, this edge service may share pro-
cessing components (e.g., object recognition as illustrated in
Figure 1) with other edge services. Such services may include:
(i) a service that estimates the volume of vehicle traffic based
on snapshots captured by Closed-Circuit TeleVision (CCTV)
cameras. Since such cameras may capture multiple snapshots
every second, consecutive snapshots (e.g., snapshots 𝑛 − 1
and 𝑛 in Figure 2) may be highly similar; and (ii) a service
used by an application that renders virtual furniture at certain
positions to visualize furnished spaces [4]. Subsequently, an
application for indoor navigation may render a virtual map to
help users navigate buildings or stores. As a result, an edge
service to process camera snapshots in this context may have a
3D graphics rendering component in common with the virtual
furniture rendering service. Finally, in smart homes equipped
with IoT devices, users can control these devices through voice
commands. In such cases, residents of the same or nearby
homes may invoke semantically similar commands that result
in the same action (e.g., turning on the light in a room). To this
end, the results of the corresponding edge service (Figure 1)
can be shared/reused among multiple users.

Object
recognition

Indoor navigation
service

calibrated view

identified sight
Camera
snapshot

Common parts of
service pipeline

Cognitive assistance
service

Object
recognition

Information
retrieval

Object
recognition

3D graphics
rendering

Space
tracking

3D graphics
rendering

Camera
snapshot

Motion sensor

identified positionsCamera
snapshot

Virtual furniture
rendering service

Common parts of
service pipeline

Smart home
control service

identified commandSpeech
identification

Send
command to
IoT device

Voice
command

Camera
snapshot identified vehicle

Traffic monitoring
service

Traffic
volume

estimation

Common parts of
service pipeline

Fig. 1: Processing pipelines for four applications.

At the same time, given that next-generation applications
may require ultra-low response times (e.g., AR may require
response times less than 10ms), the deduplication and reuse
of computation can speed up the execution of tasks offloaded
by user devices, since the execution results of previous similar
tasks can be reused instead of executing computation-intensive
tasks from scratch. This also ensures that the available edge
computing resources are effectively utilized given their poten-
tially limited scale by essentially trading storage for computing
resources (i.e., to store and reuse previously executed tasks
and their results). As a result, the reuse of computation has

the potential to increase the capacity of edge computing
deployments in terms of being able to accommodate more
tasks, users, and devices with a fixed amount of physical edge
computing resources.

A. Computation Deduplication and Reuse: Making the Net-
work Part of the Solution

The nature of edge computing deployments is distributed
in the sense that they consist of several edge servers for fault
tolerance, scalability, and load balancing purposes. As a result,
each computing service at the edge (e.g., object detection,
face recognition) may be offered by multiple edge servers. In
the scenario illustrated in Figure 2, if consecutive snapshots
captured by a CCTV camera are offloaded to different edge
servers for processing (e.g., snapshot 𝑛−1 is offloaded to server
A, while snapshot 𝑛 is offloaded to server B), then computation
deduplication and reuse will not be possible.

In other words, in realistic edge computing deployments,
where each computing service may be offered by multiple
edge servers, it is vital that the edge network infrastructure
can facilitate the reuse of computation. To achieve that, the
edge network infrastructure needs to forward computational
tasks for the same computing service and with similar input
data to the same edge server. Essentially, the network needs to
identify and forward tasks with similar input data with minimal
overhead and performance penalty, calling for solutions that
expose data similarity semantics at the network layer in a light-
weight manner.

In Table I, we present representative studies that have
explored computation deduplication and reuse in edge comput-
ing deployments. Cachier [5] proposed optimizations of edge
server caches leveraging the spatiotemporal locality of user
requests for computation. Potluck [4] proposed the dedupli-
cation and reuse of computation across different applications
running on the same user device, while FoggyCache [3]
explored the reuse of computation at edge servers across
different user devices. Coterie [6] exploited the similarity
among background environment frames in multi-player Virtual
Reality applications, so that headsets can cache and reuse
similar frames. However, all these approaches did not consider
the challenges stemming from the distributed nature of edge
computing deployments. ICedge [7] proposed a preliminary
design to facilitate computation reuse with the assistance of
the edge network infrastructure in distributed edge computing
deployments. However, in ICedge, computation deduplication
and reuse are unlikely to happen directly in the network, while
each application may expose different computation reuse se-
mantics to the network, making task forwarding complicated.
To this end, there is a need for solutions that allow the edge
network infrastructure to forward tasks from different applica-
tions based on the same semantics while facilitating pervasive
computation deduplication and reuse—at user devices, within
the edge network infrastructure, and at edge servers.

B. Goals and Technical Challenges

The fundamental goal to be achieved by solutions for per-
vasive reuse of computation at the edge is imposing minimal

3

TABLE I: Studies on computation deduplication and reuse in edge computing environments.

Solution [5] [4] [3] [6] [7] Our approach

Are Deduplication
and Reuse Possible?

Partially–at
edge servers

Yes–at user
devices

Yes–at edge
servers

Yes–at user
devices

Yes–at edge
servers

Yes–at user devices,
edge network

infrastructure, and
edge servers

Focus
Optimizations of

edge servers’
caches

Optimizations of
user devices’

caches

Cross-device
deduplication

Exploit inter-frame
similarity in Virtual

Reality

Network
architecture

Multi-layer
architecture for

deduplication & reuse
Considers Distributed

Edge Computing
Deployments?

No No No No Partially Yes

overheads on (potentially resource-constrained) user devices,
the edge network infrastructure, and the edge servers so that
users and edge computing providers can receive the substantial
benefits of computation reuse. These benefits feature improved
response times and the ability to accommodate increased
numbers of tasks, users, and devices with a fixed amount of
physical edge computing resources. Based on our analysis in
the prior parts of this section, we can conclude that solutions
for computation deduplication and reuse at the edge need to
tackle the following challenges:

• Impose minimal overheads on users, their devices, and
the network for the identification and forwarding of tasks
with similar input data to the same edge server for
processing and reuse. At the same time, edge servers must
efficiently search for similar previously executed tasks
and execute incoming tasks only if previously executed
tasks cannot be reused.

• Reuse previous tasks and their results accurately. In other
words, the execution of an incoming task 𝑡 and a reused
task 𝑡𝑟𝑒𝑢𝑠𝑒𝑑 with similar input data must yield the same
execution results, so that the operation of applications and
the user-perceived quality of experience are not negatively
impacted. This also applies to cases of edge services
that have processing components in common, so that
the results of these common components (intermediate
results) can be shared among multiple edge services
(partial reuse).

III. A MULTI-LAYER ARCHITECTURE FOR COMPUTATION
DEDUPLICATION AND REUSE

In this section, we present a hierarchical architecture for
the deduplication and reuse of computation at the network
edge (Figure 2). The first layer of the architecture consists
of user devices, which can cache the results of previously
offloaded tasks depending on the availability and capacity
of their resources. The second layer consists of the edge
network infrastructure, which identifies and forwards similar
tasks to edge servers that can reuse previous computation, as
well as features repositories for caching previous tasks and
their execution results directly in the network. The third layer
consists of edge servers, which receive offloaded tasks, search
for previously executed tasks to reuse, and execute and store
the results of incoming tasks when reuse is not possible.

In the example of Figure 2, snapshot 𝑛 − 1 captured by a
CCTV camera is offloaded by the camera and is forwarded
by the edge network infrastructure to edge server A for the

detection of the number of vehicles in the snapshot. Snapshot
𝑛 captured by the CCTV camera will first have an opportunity
to reuse the results of previous tasks stored in the computation
cache of the CCTV camera itself (if the camera has adequate
resources to do so). If this is not possible, the snapshot is
offloaded to the edge, where it can reuse the results of previous
tasks from in-network computation caches/storage. If this is
not possible, the snapshot will be forwarded by the edge
network infrastructure to the same edge server as snapshot
𝑛−1 (server A), where the execution results of the processing
of snapshot 𝑛 − 1 may be reused.

WiFi Router

3rd Layer

2nd Layer

1st Layer

CCTV Camera

Edge Service Input Data Hash Results

Car Detection 11234 <result-1>

Car Detection 32890 <result-2>

...

Car Detection 55687 <result-n>

Computation Cache

Edge Service Input Data Hash Results

Car Detection 11234 <result-1>

Object Detection 45092 <result-2>

...

Sight Recognition 36781 <result-n>

In-Network Computation
Cache/Storage

Hash Value Range Server ID

0-21845 A

21846-43690 B

43691-65535 C

Reuse Information Table

Computation Cache/Storage

Edge Service Input Data Hash Results

Sight Recognition 10900 <result-1>

Car Detection 11234 <result-2>

...

Object Detection 48967 <result-n>

Edge
Router

Edge
Router

Edge
Router

Server A Server B Server C

Edge Network
Infrastructure

User Devices

Edge Servers

Snapshot n-1 Snapshot n
Hash Value: 10 Hash value: 10

Car detection
execution for
snapshot n-1

Car detection
execution for
snapshot n

Car Detection Service

Fig. 2: A CCTV camera capturing snapshots of vehicle traffic,
which are offloaded to the edge, so that the number of cars in
each snapshot is detected and the volume of traffic is estimated.
Consecutive snapshots may be similar, thus yielding the same output
once processed through a car detection service at edge servers
and resulting in the execution of duplicate computation. To enable
pervasive computation deduplication and reuse at the network edge,
we propose a multi-layer architectural design (Section III).

A. Layer 1: User Devices

The first layer of our architecture consists of user devices.
Each device may run one or more applications and offload
computational tasks to edge servers. Before offloading a task,
each device needs to create a notion of how similar the task
may be compared to previous tasks, essentially aiding all the
layers of our architecture to find previous tasks that can be
reused in a light-weight manner. This can happen through

4

fast and space-efficient mechanisms, such as Locality Sensitive
Hashing (LSH) and Feature Hashing (FH). LSH is a technique
that allows to search for the nearest neighbor of a data item 𝑖

by applying a hash function ℎ to 𝑖 and using the resulting
hash ℎ(𝑖) as the index of a bucket of a hash table to be
searched for the nearest neighbor(s) of 𝑖. Furthermore, FH
enables the vectorization of features extracted from data items
(by applying a hash function ℎ to the extracted features), while
the resulting vector can be further hashed through LSH to
cluster data items with similar feature values.

Through the application of such hashing techniques on the
input data (e.g., images, videos, voice commands) of tasks: (i)
tasks with similar input data will likely be assigned the same
hash value; and (ii) fast similarity-based search operations
will be enabled, so that previous tasks with similar input data
can be found and reused (no execution from scratch will be
needed). In the example of Figure 2, snapshots 𝑛 − 1 and 𝑛

may have the same hash values given that they are highly
similar. A minimum similarity threshold may be selected by
each application, so that a task 𝑡 can reuse a task 𝑡𝑟𝑒𝑢𝑠𝑒𝑑 only if
the similarity between the input data of 𝑡 and 𝑡𝑟𝑒𝑢𝑠𝑒𝑑 is higher
than this threshold. This offers flexibility and enables different
applications to set different similarity thresholds that may be
acceptable based on their requirements. Different forms of
similarity can also be applied between 𝑡 and 𝑡𝑟𝑒𝑢𝑠𝑒𝑑 , such as
structural similarity or cosine similarity.

Depending on the available resources, devices can cache
offloaded tasks and the results of their execution (once received
by edge servers). This can act as a first layer of computa-
tion reuse before new tasks are offloaded to the edge. For
example, multiple applications may run on an AR headset,
requiring the detection of objects in scenes captured by the
headset (e.g., a driving assistance application that identifies
potential accident conditions and informs drivers, and a smart
navigation application that provides instructions to drivers on
how to reach their final destinations) [4]. Such applications can
essentially share and reuse the results of the tasks they offload.
If deduplication and reuse are not possible at the device level
(no similar previous tasks were found or no resources are
available on devices to store previously executed tasks and
their results), a task along with the hash of its input data
and the desired similarity threshold are sent towards the edge
network infrastructure. If a user device does not have adequate
computing power to produce a hash of the task input data, the
first edge router that receives the task can generate the hash.
This router will attach the generated hash to the task, so that
edge routers and servers that subsequently receive this task do
not need to generate the hash again.

B. Layer 2: Edge Network Infrastructure

The primary goal of the edge network infrastructure is to
forward tasks for the same service (or services with common
components) and with similar input data to the edge server
(among the available edge servers) that can maximize the
chances of reusing previous computation. At the same time,
in-network storage resources may be available to cache/store
previously executed tasks and their execution results as they

transit through the edge network infrastructure. When an
offloaded task is received by a router, the router may search for
previously executed similar tasks, if local storage resources are
available. This similarity search process will take place based
on the locality sensitive or feature hash that has been attached
by user devices to the offloaded task. If no previously executed
task that can be reused is found, a router will forward a task
based on its hash to an edge server. The space of the potential
hash values is divided among the available edge servers, so
that each edge server is responsible for the execution of tasks
with input data that falls under the range of the hash values
assigned to this server. For example, in Figure 2, each hash
has a size of 4 bytes. To this end, the potential hash values
will be between 0 and 65,535, while these values are equally
divided among the available edge servers.

C. Layer 3: Edge Servers

Edge servers receive offloaded tasks and perform a nearest
neighbor search to identify previously executed stored tasks
that could be reused. Once the nearest neighbor of an incoming
task 𝑡 is found, an edge server will check whether the similarity
between the input data of 𝑡 and the nearest neighbor of 𝑡

exceeds the minimum similarity threshold selected by the
application that offloaded 𝑡. If this is the case, the found nearest
neighbor task will be reused and its results will be returned to
the user in response to 𝑡. Otherwise, the server will execute 𝑡

and store 𝑡 and its execution results for potential reuse in the
future. Each edge server maintains one or more hash tables,
which index previously executed stored tasks based on the
hashes of the tasks’ input data. Overall, the edge servers trade
storage for computing to reduce response times for users and
increase the number of users, devices, and tasks that can be
simultaneously accommodated.

D. Practicality Check: Could Such An Architecture Work?

We implemented and evaluated such an architecture based
on a topology that consists of two user devices, two edge
routers, and two edge servers. Each device and edge router
is equipped with an Intel Core i5-4250U CPU @1.30GHz
and 8GB of memory, while each edge server is equipped
with an Intel Core i5-9600K CPU @3.70GHz and 64GB of
memory. Each user device is connected to an edge router,
while each edge router is connected to both edge servers.
Each user device offloads tasks that are received by an edge
router and are forwarded to one of the edge servers (each
router has connections to both servers). The Round Trip Time
(RTT) between devices and servers ranges between 12-16 ms.
We have created Application Programming Interfaces (APIs)
to realize the LSH semantics (hashing and nearest neighbor
search) using the FALCONN library as our basis [8]. The
edge servers run tensorflow machine learning models offering
an image annotation service, while images are offloaded from
user devices to edge servers. Routers forward tasks towards
edge servers as determined in Section III-B and store pre-
viously executed tasks directly in the network. We used the
following image datasets as the input data of tasks:

5

• The Modified National Institute of Standards and Tech-
nology (MNIST) dataset consisting of 70K images of
handwritten digits [9].

• The Pandaset dataset consisting of 48K images taken
from cameras on-board autonomous vehicles in Califor-
nia, USA [10].

• A dataset of mobile AR consisting of 1K object images
published by Stanford University [11].

• A dataset of 10K snapshots of vehicle traffic that we
captured through CCTV cameras monitoring traffic in
Omaha, Nebraska, USA.

Our evaluation results indicate that a low-end computer
(equipped with a dual core processor and 8GBs of RAM) can
generate a locality sensitive hash for an image in less than
1.8ms. A nearest neighbor search can also be performed in
less than 1ms for up to 100K stored images once a locality
sensitive hash has been generated. We have also quantified the
overhead of storing a task and its execution results for different
edge services (an object detection service, a voice command
service for the control of smart home IoT devices, and a
3D graphics rendering service). Our results demonstrate that
0.0023-0.06MB of storage space is needed per task depending
on the type of the service, and the size of the input data
and execution results. Techniques, such as compression and
downsampling, can be applied to achieve the low end of the
presented range. In Table II, we present the completion time of
offloaded tasks (i.e., the time elapsed between the generation
of a task by a device and the retrieval of the task’s execution
results by this device) for all datasets. Our results indicate that
on average the deduplication and reuse of computation resulted
in 5.67-16.05× lower task completion times than cases where
computation deduplication and reuse are not applied.

As we present in Table III, the percentage of tasks that can
be reused relies on the similarity between the input data of
tasks and decreases as we increase the minimum similarity
threshold. Our results show that the proposed architecture
can accommodate tasks with input data that exhibits high
degrees of similarity (e.g., CCTV dataset), moderate degrees of
similarity (e.g., Mobile AR dataset), as well as lower degrees
of similarity (e.g., Pandaset and MNIST datasets). The reuse
accuracy (i.e., the percentage of offloaded tasks, which reused
tasks with results that were the same as the results that their
own execution would have produced) improves as we increase
the minimum similarity threshold. The reuse accuracy finally
reaches 95-100% among all datasets for a similarity threshold
of 90%. Finally, in Figure 3, we present the usage of the CPU
and memory resources of an edge server during the execution
of 40K offloaded tasks. The results demonstrate that the usage
percentage drops as the percentage of reuse increases. The
resources of the edge server are also occupied for smaller
amounts of time as the reuse percentage increases, since the
execution of tasks is completed sooner as compared to cases
without reuse.

E. Shortcomings and Limitations

In its current form, our proposed architecture could cause
load imbalances among edge servers, since large amounts of

TABLE II: Task completion times when reuse occurs: (i) at user
devices and within the edge network infrastructure; and (ii) at edge
servers.

Average Task Completion Time (ms)

Dataset No reuse Reuse (Edge
Servers)

Reuse (Devices and
Edge Network)

MNIST 120.42 21.23 8.82
Pandaset 116.65 19.52 7.26

Mobile AR 106.64 18.32 6.68
CCTV 115.68 17.80 7.67

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (%

)

Memory and CPU usage
memory usage for 0% reuse
CPU usage for 0% reuse
memory usage for 30% reuse
CPU usage for 30% reuse
memory usage for 50% reuse
CPU usage for 50% reuse

Fig. 3: Percentage of CPU and memory usage of an edge
server during the execution of 40K offloaded tasks (markers
do not represent actual data points, but are used for better
readability).

similar tasks may be forwarded to the same edge server(s), thus
increasing the load of certain servers and leaving others under-
utilized. In addition, mechanisms are needed to dynamically
distribute the hash value space among edge servers. Our
architecture could also benefit from techniques to optimize the
usage of storage resources by storing tasks that are likely to be
reused in the future, while discarding ones that are not likely to
be reused. Finally, the reuse of computation could be exploited
by attackers to discover if tasks with similar data and/or for the
same edge service have been previously executed. We further
discuss these open issues and propose possible solutions in
Section IV.

IV. OPEN CHALLENGES AND FUTURE DIRECTIONS

Computation deduplication and reuse show promise for
edge computing environments, having the potential to improve
response times. However, there are still open challenges to be
addressed leading to several directions of future research.
The “curse” of dimensionality: Through hashing, high-
dimensional data is converted to a fixed-size value. This pro-
cess may require a large space of features for FH and a family
of hash functions for LSH to be applied to the task input data
in order to maintain satisfactory reuse accuracy. Large feature
spaces and LSH function families may result in longer hashing
and search times and increase the memory requirements for
user devices, edge routers, and servers. Mechanisms, such as
hierarchical feature hashing [12] and multi-probe LSH [13],

6

TABLE III: Percentage of reused tasks and accuracy of reuse for all datasets and varying similarity thresholds.

Percentage of reuse (%) Reuse accuracy (%)
Similarity

threshold (%) MNIST Pandaset Mobile AR CCTV MNIST Pandaset Mobile AR CCTV

60 45.54 29.06 33.43 91.17 84.44 72.57 95.43 84.37
70 41.11 24.44 31.36 90.08 88.76 77.05 98.92 86.37
80 35.4 20.78 28.41 87.54 90.60 86.10 100 89.41
90 33.58 20.17 24.25 80.76 95.01 95.03 100 96.91

to keep the size of the feature space and the number of LSH
functions manageable should be further explored.
Distribution of hash value space among edge servers:
The hash value space needs to be divided and distributed
among the available edge servers. To achieve that, mecha-
nisms of different nature (distributed and centralized) should
be explored. Distributed mechanisms can enable servers to
essentially form a multicast communication group. In the
context of this group, servers communicate directly to reach
a consensus on how to divide the hash value space and
which server will be responsible for which range of the hash
value space. Logically centralized mechanisms may utilize
Software-Defined Networking (SDN) controllers, which act
as coordination points for the distribution of the hash value
space among servers. SDN controllers can inform edge routers
about the distribution of the hash value space among servers,
populating the reuse information table of routers. Initially, the
hash value space can be equally distributed among servers and
it can be dynamically redistributed to balance the load among
servers as we describe below.
Balancing the load among edge servers: As the space of
potential hash values is divided among edge servers, load
imbalances may occur. For example, if large amounts of tasks
with similar input data are generated, all the tasks may be
forwarded to the same server(s), increasing the load of certain
servers, while leaving other servers under-utilized. This calls
for mechanisms to achieve load balancing and reuse at the
same time. For example, SDN controllers can monitor the
computation reuse performance, the overhead among servers,
and the load of servers, and redistribute parts of the hash value
space from one server to another to balance the load.
Predicting the likelihood of reuse: The storage resources of
user devices, edge routers, and servers may have a limited
capacity. In environments that offer computation reuse, the
different layers of the architecture may not be able to store
the results of all executed tasks. To increase the impact and
benefits of reuse, mechanisms to estimate/predict the chances
of an executed task being reused in the future need to be
explored. As a result, tasks not likely to be reused in the future
may not be stored after execution, offering available storage
space to tasks, which are likely to be reused. Such mechanisms
may also be essential in cases of tasks that consist of multiple
sub-tasks (e.g., tasks that are formulated as a computation
graph) to determine which sub-tasks to store and which ones
to discard across the different layers of the architecture.
Security and privacy implications: Attackers can probe the
edge architecture to discover if tasks for the same service
and/or with similar input data have been previously executed.
For example, attackers can offload tasks with images to be

processed by an object detection edge service, while knowing
that such tasks may need several tens or even hundreds of
milliseconds to be executed. As a result, if the execution
results are received much sooner, attackers can infer that a
task with similar input data was reused. In addition, given
that the execution results of tasks offloaded by different users
can be shared/reused, solutions to isolate private results but
share non-private results in multi-tenant (multi-user) edge
environments should be explored [14]. Attackers could also
infer the locations of the devices that offload tasks [15].
The implications of reuse on the security and privacy of
computations, the associated input data, and the location of
devices should be further investigated.
Scalability: Given the projected growth of devices and the
wide spectrum of next-generation applications, scalability be-
comes a major challenge for computation deduplication and
reuse architectures. Techniques to optimize the performance of
hashing and nearest neighbor search operations can contribute
to scaling up the number of tasks that can be handled. The
scalability of computation reuse architectures can be further
enhanced by performing reuse not only on the basis of indi-
vidual applications, but for groups of applications that require
the same type of data processing. For example, applications
that need the detection of objects in images may invoke
different services of the same type/nature deployed at the
edge. Such services essentially provide the same type of data
processing (i.e., detection of objects in images), however, they
may achieve that through different object detection algorithms.

V. CONCLUSION

In this paper, we presented the promise and challenges
of computation deduplication and reuse in edge computing
deployments. We first presented use-cases, which computa-
tion reuse can benefit, and we then discussed the technical
challenges of realizing solutions for the reuse of computation.
Moreover, we presented the design of a multi-layer architec-
ture for computation reuse and several open challenges and
research directions. We believe that the effective management
of the massive computation volumes projected to be produced
at the edge will become a pressing issue, thus reusing compu-
tation among devices, users, and applications will become a
key mechanism to improve response times and accommodate
additional users, devices, and tasks.

ACKNOWLEDGEMENTS

This work is partially supported by NIH
(NIGMS/P20GM109090), NSF under awards CNS-2016714
and CNS-2104700, the Nebraska University Collaboration
Initiative, and the Nebraska Tobacco Settlement Biomedical
Research Development Funds.

7

REFERENCES

[1] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet
of things journal, vol. 3, no. 5, pp. 637–646, 2016.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[3] P. Guo et al., “Foggycache: Cross-device approximate computation
reuse,” in Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking, 2018, pp. 19–34.

[4] P. Guo and W. Hu, “Potluck: Cross-application approximate deduplica-
tion for computation-intensive mobile applications,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp. 271–284.

[5] U. Drolia et al., “Cachier: Edge-caching for recognition applications,”
in 2017 IEEE 37th international conference on distributed computing
systems (ICDCS). IEEE, 2017, pp. 276–286.

[6] J. Meng et al., “Coterie: Exploiting frame similarity to enable high-
quality multiplayer vr on commodity mobile devices,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 923–
937.

[7] S. Mastorakis et al., “ICedge: when edge computing meets information-
centric networking,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4203–4217, 2020.

[8] A. Andoni et al., “Practical and optimal lsh for angular distance,” arXiv
preprint arXiv:1509.02897, 2015.

[9] Y. LeCun, “The mnist database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/, Accessed on March 10, 2021,
1998.

[10] “Pandaset by hesai and scale ai,” https://pandaset.org, Accessed on
March 10, 2021.

[11] M. Makar et al., “Interframe coding of canonical patches for low
bit-rate mobile augmented reality,” International Journal of Semantic
Computing, vol. 7, pp. 5–24, 2013.

[12] B. Zhao et al., “Hierarchical feature hashing for fast dimensionality
reduction,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2014, pp. 2043–2050.

[13] Q. Lv et al., “Multi-probe lsh: efficient indexing for high-dimensional
similarity search,” in 33rd International Conference on Very Large Data
Bases, VLDB 2007. Association for Computing Machinery, Inc, 2007,
pp. 950–961.

[14] L. Chen, J. Li, R. Ma, H. Guan, and H.-A. Jacobsen, “Enclavecache: A
secure and scalable key-value cache in multi-tenant clouds using intel
sgx,” in Proceedings of the 20th International Middleware Conference,
2019, pp. 14–27.

[15] Z. Tian, Y. Wang, Y. Sun, and J. Qiu, “Location privacy challenges in
mobile edge computing: classification and exploration,” IEEE Network,
vol. 34, no. 2, pp. 52–56, 2020.

BIOGRAPHIES

Md Washik Al Azad (malazad@unomaha.edu) is a Ph.D. student at the
University of Nebraska Omaha. He received his B.S. in Electronics and
Telecommunication Engineering from the Rajshahi University of Engineering
& Technology, Bangladesh in 2017. His interests include edge computing and
security.

Spyridon Mastorakis (smastorakis@unomaha.edu) is an Assistant Professor
in Computer Science at the University of Nebraska Omaha. He received his
Ph.D. in Computer Science from the University of California, Los Angeles in
2019. His research interests include network systems and architectures, edge
computing, and security.

	I Introduction
	II Why Computation Deduplication and Reuse at the Edge Are Important?
	II-A Computation Deduplication and Reuse: Making the Network Part of the Solution
	II-B Goals and Technical Challenges

	III A Multi-Layer Architecture for Computation Deduplication and Reuse
	III-A Layer 1: User Devices
	III-B Layer 2: Edge Network Infrastructure
	III-C Layer 3: Edge Servers
	III-D Practicality Check: Could Such An Architecture Work?
	III-E blackShortcomings and Limitations

	IV Open Challenges and Future Directions
	V Conclusion
	References
	Biographies
	Md Washik Al Azad
	Spyridon Mastorakis

