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Abstract—Internet of unmanned aerial vehicle (I-UAV)

networks promise to accomplish sensing and transmission

tasks quickly, robustly, and cost-efficiently via effective co-

operation among UAVs. To achieve the promising benefits,

the crucial I-UAV networking issue should be tackled. This

article argues that I-UAV networking can be classified into

three categories, quality-of-service (QoS) driven network-

ing, quality-of-experience (QoE) driven networking, and

situation aware networking. Each category of networking

poses emerging challenges which have severe effects on

the safe and efficient accomplishment of I-UAV missions.

This article elaborately analyzes these challenges and

expounds on the corresponding intelligent approaches to

tackle the I-UAV networking issue. Besides, considering

the uplifting effect of extending the scalability of I-UAV

networks through cooperating with high altitude platforms

(HAPs), this article gives an overview of the integrated

HAP and I-UAV networks and presents the corresponding

networking challenges and intelligent approaches.

I. INTRODUCTION

THE sixth generation (6G) wireless communi-

cation networks are desired to provide ubiq-

uitous and seamless geographical communication

coverage to meet diverse use cases in many sce-

narios including villages and motorways [1]. Obvi-

ously, it is difficult to achieve the above-mentioned

ambitious goal with terrestrial networks (TNs)

alone. For TNs, they are vulnerable to natural

disasters, severe ground disruption. As a result,

ground (mobile) users will experience communica-

tion interruptions. Since the interruptions are either

temporary or unexpected, it will be timely infeasible

to construct TNs to recover communications. In this

case, resorting to the assistance of non-terrestrial

networks (NTNs) is a promising selection in terms

of cost-effectively implementing the above goal.

Actually, in 6G era, the integration of TNs and

NTNs is a global consensus, and the demonstration

on the integration is initiated in many counties.

NTNs are composed of many heterogeneous in-

terconnected flying platforms deployed at different

altitudes ranging from tens of meters to tens of

thousands of kilometers, including satellites, high

altitude platforms (HAPs), and unmanned aerial

vehicles (UAVs). These platforms have advantages

and disadvantages concerning such aspects as cost,

persistence, responsiveness, vulnerability, footprint,

and overflight [2]. Owing to the unique advan-

tages in terms of cost, flexibility, responsiveness,

and communication latency, UAV-assisted wireless

communications have received extensive attention

from both academia and industry. UAVs mounted

with diverse devices have also been applied to

accommodate some typical use case demand, e.g.,

UAV-base station (BS) for ubiquitous coverage,

UAV-relay for distant users’ connection [3].

Despite the many promising advantages, the de-

sign of a single UAV network faces many tricky

challenges, for example, unreliable communica-

tion link, weak survivability, small footprint, long

mission completion time, size, weight, and power

(SWAP) constraints, and so on. To meet these chal-

lenges when accomplishing a mission, one needs

to construct an architecture of Internet of UAVs (I-

UAVs) involving many cooperative UAVs. Particu-

larly, through the I-UAVs, the mission completion

time can be decreased, the scalability (i.e., coverage

area) can be extended, the survivability can be

increased, the sensing ability can be enhanced, and

the detectability can be decreased [4].

Nevertheless, to achieve so many promising ben-

efits, one of the key issues of I-UAVs must be

solved, i.e., the networking of I-UAVs. The I-UAV

networking is defined as the deployment of many

cooperative UAVs to accomplish the sensing and

transmission tasks safely and efficiently. From the

viewpoint of diverse purposes, the I-UAV network-

ing can be classified into three categories, that is,

quality-of-service (QoS) driven I-UAV networking,

quality-of-experience (QoE) driven I-UAV network-

ing, and situation aware I-UAV networking. Further,

conducting the I-UAV networking poses many chal-
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lenges which have severe effects on the safe and

efficient accomplishment of I-UAV missions.

The primary task of the QoS-driven I-UAV net-

working is to guarantee the QoS of ground users,

which are usually characterized by users’ achiev-

able data rates. Because of the dynamic stochas-

tic deployment environment and user mobility, the

problem of I-UAV networking has to be formulated

as a sequence-decision problem, subject to multiple

physical and topology constraints (e.g., UAV en-

ergy consumption, UAV service ability, and outage

probability). This problem can be confirmed to be

non-deterministic polynomial (NP) hard, which is

difficult to be solved by some conventional opti-

mization approaches.

As reported by Cisco, mobile video traffic is

expected to occupy about 79% of global mobile

data traffic by 2022 [5]. Besides, 80% of the mobile

video traffic belongs to hotspot contents (e.g., FIFA

World Cup, American Super Bowl), the coverage of

which is one of the typical use cases of deploying

I-UAVs. Therefore, performing I-UAV networking

to deliver video streams for ground users will be

a key mission of I-UAV networks. However, how

to deploy I-UAVs to guarantee the QoE require-

ments of ground users is challenging. First, QoE

is an application layer indicator in the multimedia

transmission field, which is particularly subjective.

Thus, finding an appropriate QoE model which

can exactly correlate it with low-layer and con-

trollable resources is non-trivial. Second, reliable

and low-latency propagation links are desired for

video transmission. Yet, the intrinsic characteristic

of random channel fluctuations in I-UAV networks

may result in playback buffer starvations and then

video freezes.

Additionally, UAVs are deployed in complex and

shared three-dimensional (3D) airspace. Situation

information must be considered when performing

the I-UAV networking to ensure the safe flight of

UAVs and efficient video stream transmission and

so on. However, the investigation on the situation

aware I-UAV networking is difficult. First, the dy-

namic stochastic 3D environment where various

unexpected scenes may happen in burst will threat

the computing capability and safety of I-UAV net-

works. In this case, how to correctly sense and fuse

the local situation built by a UAV is challenging.

Second, there are many UAVs in I-UAV networks

following with many sensors, great sensing range

and large amount of situation information, then

how to share location situation and construct a

global situation field in I-UAV networks is difficult.

Third, owing to the existence of high-dimensional

multi-modality situation, conventional optimization

approaches will be not sufficient to solve the I-UAV

networking problem.

Summarily, the goal of this article is to present

an overview of the I-UAV networking. The basic

architecture of I-UAV network, intelligent model-

ing of channel gain of I-UAV network, emerging

challenges and intelligent approaches of I-UAV

networking, as well as potentials and challenges

of the networking of integrated HAP and I-UAV

networks are presented.

II. BASIC ARCHITECTURE OF I-UAV

NETWORKS

As shown in Figure 1, I-UAV networks consist

of multiple cooperative fixed-wing and rotary-wing

UAVs which are flying at altitudes of tens to hun-

dreds of meters. Depending on the roles of UAVs

in the network, the network can provide different

services. For instance, the UAVs in the network can

act as flying base stations (BSs) with BSs being

mounted on them. The I-UAV networks can then

be applied in several emergency communication

scenarios, such as flash crowd traffic offloading

from a congested ground BS and temporary events

(e.g., gathering and sport event). Assisted by I-

UAV networks, the communication coverage and

capacity of a ground cellular network can also be

quickly enhanced. Besides, the UAVs in the network

can act as flying access points (or relays) when

fronthaul/backhaul hubs are mounted on them. The

I-UAV networks can then form an airborne fron-

thaul/backhaul hub network, which collects fron-

thaul/backhaul traffic from ground BSs and forward

aggregated traffic back to a ground gateway.

Except for mounting a BS or a hub, each UAV

in the network can be equipped with multiple

types of sensors and computing and communi-

cation modules for stabilization, navigation, posi-

tioning, sensing, communication and so on. The

sensors include three-axis accelerometer, three-axis

gyroscope, magnetometer, barometer, GPS, distance

sensor, electro-optical pod and so on. For the com-

puting module, it is responsible for analyzing and

fusing sensed data, e.g., target detection and recog-

nition. The communication module will support two
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Fig. 1. Basic architecture of I-UAV networks.

types of communication links, i.e., control and non-

payload communication (CNPC) link and payload

communication link.

The CNPC link is established to ensure the safe

operation and efficient control of I-UAV networks.

To this aim, dedicated frequency band has been

allocated for the UAV CNPC link, i.e., 960–977

MHz at the L-band and 5030–5091 MHz at the

C-band [6]. As shown in Figure 1, in the I-UAV

networks, a CNPC link must be established between

a UAV and a ground control station (GCS). This

is because the human intervention of the UAV in

case of an emergency is clearly stipulated by the

law. Meanwhile, CNPC links need to be maintained

among UAVs for exchanging partial situation infor-

mation (e.g., safety and control information).

For the payload link, it is established for enabling

the mission-related (or payload) communications

of I-UAV networks. To support the payload trans-

mission, the frequency band 2.4-2.4835 GHz at

the S-band and 5.725-5.85 GHz at the C-band are

allocated for the payload link. As shown in Figure

1, the payload link will be established between a

UAV and a ground BS or a gateway for traffic

offloading and delivery. The payload link will also

be maintained by UAVs for data transmission (e.g.,

video stream) and local situation information (e.g.,

detected or tracked targets) exchanging.

III. INTELLIGENT MODELING OF CHANNEL

GAIN OF I-UAV NETWORKS

I-UAV networks consist of three types of commu-

nication channels, i.e., UAV-to-UAV (UtU) channel,

UAV-to-ground user (UtG) channel, and UAV-to-

base station (UtB) channel, as shown in Figure 1.

Compared to well-studied ground communication

channels, communication channels of I-UAV net-

works exist some unique characteristics, and one

needs to explore intelligent approaches to model

them accurately.

A. UAV-to-UAV channel

Owing to the high deployment altitude and flex-

ible mobility in 3D airspace, the signal among

UAVs is generally considered to propagate via line-

of-sight (LoS) links. Correspondingly, many UAV-

assisted communication works leverage LoS prop-

agation models (e.g., Friis transmission equation)

to characterize the UtU channel. Except for receiv-

ing LoS signal components, however, a UAV will

receive more complicated non-line-of-sight (NLoS)

signal components, for example, reflected signals

from terrains, high-rise buildings, scattered signals

from the atmosphere when the UAV works at the

S-band. Summarily, a UAV may receive both LoS

and complicated NLoS signal components, and all

of the received signal components should be con-

sidered when modeling the UtU channel such that

more accurate channel characteristics can be cap-

tured. Additionally, UtU channel may experience
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the Doppler frequency shift, the amount of which

is closely related to UAVs’ relative velocities. Nev-

ertheless, the consideration of complicated NLoS

components and the Doppler frequency shift as well

will significantly hinder the theoretical derivation of

a closed-form expression of the UtU channel and

may result in a channel expression intertwined with

many parameters. In this case, the subsequent prob-

lem of I-UAV networking may become theoretically

intractable.

To tackle this issue, deep neural networks

(DNNs) can be explored. DNNs have the well-

known powerful nonlinear approximation ability.

The universal approximation theorem asserts that

a neural network (NN) with one hidden layer and

enough hidden neurons is sufficient to approximate

a continuous mapping when proper activation func-

tions are selected [7]. Further, DNNs with deeper

layers can be leveraged to approximate more com-

plex continuous mappings. As a result, by training

DNNs using measured channel coefficients, the

complicated channel expression can be approxi-

mated by a relative simple one as a function of

UAVs’ relative velocities and the distance between

two UAVs.

Besides, most UAV-assisted communication

works solved a specific communication problem

based on a key assumption of a single transceiver

antenna. Although UAVs are energy constrained

and sensitive, it is possible to be equipped with

several antennas to significantly alleviate the impact

of channel fading and improve the transmit data

rate via a multi-antenna technique. Certainly, the

effective application of multiple input and multi-

ple output (MIMO) technique in I-UAV networks

needs to tackle many challenging issues (especially,

dynamic channel estimation and tracking). To this

aim, machine learning (ML) and artificial intelligent

(AI) approaches can be explored to predict and

approximate channels and incorporate the UAV-

related parameters (e.g., moving direction, deploy-

ment altitude, and antenna orientation) into the

dynamic UtU channel.

B. UAV-to-ground user channel

The investigation on the modeling of UtG chan-

nels is one of the most hot research topics in

UAV communications. Owing to the surrounding

complicated reflection, diffraction, and scattering

environments, ground users will receive signals

from a large number of propagation paths. Moti-

vated by this observation, geometry-based stochas-

tic channel model was developed by considering

the signal scatter and reflection on some standard

geometric shapes (e.g., cylinder, sphere, ellipsoid).

Yet, the mathematical expression of the channel

gain or channel impulse response (CIR) of this

type of channel model is rather complicated. To

simplify the theoretical expression of the UtG chan-

nel gain, statistical analysis methods (e.g., fitting

and estimation) were explored. Specifically, given

measured channel coefficients, statistical analysis

methods will derive a channel closed-form function

to approximate or average the coefficients. Nev-

ertheless, the statistical channel model is closely

related to the actual UAV deployment environment,

and one statistical channel model is not fit for

all UAV deployment environments. It is known

that the radio propagation environment is time-

varying and atmosphere will affect the attenuation

degree of radio propagation. Therefore, the statis-

tical channel model cannot effectively reflect the

attenuation characteristic of the time-varying UtG

channel. Using ML/AI approaches to approximate

the UtG channel dynamically will be a promising

solution for the UtG channel modeling. For exam-

ple, considering an urban area of size 1 × 1 km2

where buildings are generated by the International

Telecommunication Union (ITU) recommended lo-

cal building model with statistical parameters α =

0.3, β = 300 buildings/km2, γ being modeled

as a Rayleigh distribution with the mean value

δ = 30 m [8]. Generate the UtG path-loss using

the 3GPP specification # 36.777 path-loss model for

urban Macro given in Table B-2 of [9]. The small-

scale fading coefficient is added assuming Rayleigh

fading for the NLoS case and Rician fading with

15 dB Rician factor for the LoS case, where the

presence/absence of an LoS link between a UAV

and a mobile user can be determined based on

the building realization. In this way, the actual

UtG channel gain coefficients can be obtained.

To approximate them, a UAV can construct and

train a unique DNN to estimate UtG channel gain

coefficients between it and all mobile users. The

input of the DNN includes locations of the UAV

and the user connecting to it. Then, one can online

train the DNN using periodically measured channel

coefficients and leverage the trained DNN to predict
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UtG channel coefficients [10]. This is illustrated in

Figure 2(a) with the pre-training (or offline training)

duration being 736 time slots and the online training

duration being 500 time slots. For each DNN, its 1st

hidden layer has 512 neurons and the 2
nd hidden

layer has 256 neurons. Three UAVs are deployed

at a constant flight altitude H = 50 m, and the

system bandwidth is 10 MHz. It is observed from

Figure 2 that the estimation error is great initially,

but it quickly decreases with the increase of time

slots as more experience is accumulated. After

a number of time slots, DNNs for UtG channel

gain coefficient estimation can converge. Although

actual UtG channel gain coefficients vary fast due

to the movement of users and UAVs, the proposed

DNN-based method can achieve good estimation

results. For example, during the online training

period, the loss values of DNNs for UtG channel

gain coefficient estimation reach an order of less

than 1.5e-1. The obtained energy efficiency of the

proposed method is close to that of the perfect

channel state information (CSI) based method.
Considering the important role of UAVs in 6G

and the critical impact of UtG channel on I-UAV

networking, more attention is desirable to be paid

on the intelligent UtG channel modeling.

C. UAV-to-base station channel

In many researches on UAV-assisted ground cel-

lular networks, UtG channel gain models are di-

rectly adopted to model the UtB channel. This

is inappropriate as large antenna arrays can be

mounted on a ground BS while ground users are

usually equipped with one or several antennas. As

a result, the channel characteristics of UtB chan-

nels are significantly different from that of UtG

channels. Additionally, for a BS equipped with

full-dimensional large arrays, it can leverage the

massive MIMO technique to mitigate interference

and significantly enhance the network spectral effi-

ciency.
To benefit from this advanced technology, the

most important issue is the dynamic UtB channel

estimation and tracking in 3D airspace. Owing

to the highly dynamic movement of UAVs, UtB

channel phase varies rapidly over time, and the az-

imuth and elevation angles of UtB channels change

quickly. These characteristics will greatly affect the

timeliness and accuracy of the UtB channel esti-

mation and tracking. Besides, the UAV’s vibration

will impact the accuracy of the direction of arrival

(DoA) estimation. How to compensate the DoA

estimation error caused by UAV’s vibration is a

crucial while under-studied research topic. To esti-

mate the time-varying UAV azimuth and elevation

angles, some conventional methods was leveraged,

e.g., angular speed-based and Kalman filter-based

channel prediction methods. Yet, to further improve

the accuracy and robustness of channel tracking for

UAVs, ML/AI approaches should be explored. For

example, one can first simulate the law of UAV

machine vibration using ML/AI approaches and

then correct/compensate the DoA estimation error

with the simulated results.

IV. INTELLIGENT I-UAV NETWORKING

This section presents three types of I-UAV net-

working, i.e., QoS-driven I-UAV networking, QoE-

driven I-UAV networking, and situation aware I-

UAV networking. The emerging challenges of in-

vestigating these types of networking are elabo-

rately analyzed, and the corresponding intelligent

networking approaches are expounded.

A. QoS-driven Intelligent I-UAV networking

To satisfy the QoS requirement of ground users

is one of the most significant goals of I-UAV

networking. Generally, the QoS of a user is charac-

terized as its achievable data rate. During the past

five years, numerous works related to the I-UAV

networking in two-dimensional (2D) airspace were

published. Most of them propose to formulated

the I-UAV networking problem as a mathematical

programming problem. The primary objective of

the formulated problem is to accommodate users’

QoS, subject to computing, networking and storage

resource constraints. To this aim, some different

types of resources such as UAV caching, bandwidth

allocation, UtG association, UAV path planning,

UAV and user transmit power are optimized using

conventional optimization methods. The formulated

mathematical programming problem can be clas-

sified into a sequential-decision problem, where

the problem at each sequence is a mixed integer

nonlinear programming (MINLP) problem. Fortu-

nately, the Lyapunov technique can be explored

to decompose the sequential-decision problem, and

iterative and approximation schemes can then be

leveraged to solve the decomposed problem [10].
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Fig. 2. a) Mean squared error (MSE) of DNNs for UtG channel gain coefficient estimation versus time slot; b) comparison of the obtained

instantaneous energy efficiency by the proposed DNN-based method and perfect CSI-based method.

In practical application scenarios, UAVs can flex-

ibly fly in 3D airspace; thus, increasing attention has

been paid to study the case of I-UAV networking

in 3D airspace. Nevertheless, the formulated I-UAV

networking problem in 3D airspace is much more

challenging than that in 2D airspace. First, higher-

dimensional decision variables need to be optimized

in a 3D I-UAV networking problem. Second, 3D

locations of UAVs are complicatedly coupled in

the UtG channel model, which poses a challenge

to the theoretical tractability. In this case, it is

difficult (if it is possible) to solve the formulated

problem using conventional optimization methods.

Reinforcement learning (RL), which can effectively

eliminate the risk of combinatorial explosion, has

been demonstrated as an efficient way of handling

complex control problems in continuous and high

dimensional state spaces. As a result, many re-

searchers turn to leverage RL methods to solve the

3D I-UAV networking problem.

For example, in [11], we consider a commu-

nication scenario where I-UAV networks with J
UAVs are centrally controlled to continuously fly in

3D airspace to accomplish a mission of providing

energy-efficient and fair data delivery services for

a number of N quasi-stationary users. These users

are uniformly distributed in a geographical area of

2.5×2.5 km2. At each time slot, a UAV can connect

to at most one user, and a user can be served by at

most one UAV. The connection between a UAV-user

pair is considered to be established only if the user’s

QoS requirement is satisfied. Then, the continuous

movement control problem of I-UAV networks can

be formulated as a sequential-decision problem

aiming at maximizing the energy-efficient and fair

communication coverage, subject to constraints on

users’ QoS requirements, UAVs’ flight airspace, and

the connectivity of I-UAV networks. To solve this

problem, a new deep reinforcement learning (DRL)

method is developed, where all the actor and critic

networks are two-layer fully-connected feedforward

NNs. Besides, in this method, the action space

consists of UAVs’ moving distances, pitch and

yaw angles. The actions resulting in the airspace

boundary and the network connectivity constraints

will be penalized. Figure 3 illustrates the tendency

of the obtained energy efficiency and Jain’s fair-

ness index with a constant UAV transmit power

PD = 24 dBm and the number of users N = 100.

The 1
st and 2

nd hidden layers have 400 and 300

neurons, respectively. The minimum and maximum

allowable UAV deployment altitudes are 100 m and

800 m, respectively. It is observed from Figure 3

that the proposed DRL method can effectively solve

the UAV movement control problem although more

UAVs will make the problem more difficult to be

tackled. The proposed method can also significantly

enhance the fairness and improve the energy effi-

ciency of the communication coverage of I-UAV

networks.

B. QoE-driven Intelligent I-UAV networking

It is widely considered that providing high qual-

ity mobile video services for ground users is one

of the most significant goals of deploying I-UAV

networks. The quality of received videos by ground
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of UAVs by the proposed DRL method, a method of randomly
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movement that maximize the objective value.

users is quantified by QoE of users. From the

perspective of video transmission, the QoE of a user

is defined as its subjective measurement towards

perceived video streams, which is primarily affected

by network status (e.g., bandwidth, latency, and

throughput) and content configuration factors (e.g.,

coding, resolution, and sampling rate) [12].

On one hand, owing to the high flexibility and

controllable mobility, LoS UtG channels can be

easily established for I-UAV networks to improve

the quality of mobile video services. On the other

hand, the mobility of UAVs will lead to time-

varying I-UAV network status. In this case, it is dif-

ficult to accommodate QoE requirements of users.

For example, unreliable UtG links will dramatically

degrade video demodulation quality, and a single

packet loss may result in video freezes for several

seconds. Therefore, it is urgently required to solve

the highly challenging I-UAV networking problem

to guarantee the QoE requirements of users. To

tackle this problem, ML/AI approaches can be

explored. For instance, one can leverage ML/AI

approaches (e.g., echo state network (ESN), long

short-term memory (LSTM)) to predict stochastic

packet arrival processes. With the predicted results

as one of routing metrics, novel UAV routing proto-

cols can capture the packet accumulation situation

in each UAV and then balance network load and

relieve network congestion. For example, let us

imagine a communication scenario where I-UAV

networks with J UAVs are deployed to sense a dis-

aster area and transmit sensed video streams back

to a GCS for disaster analysis. To alleviate network
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Fig. 4. Comparison of the obtained average packet transmission

latency versus the number of UAVs by the proposed PAR prediction

method, a method with the queue backlog value being a routing

metric, and the shortest path routing method.

congestion, a typical UAV j will choose another

UAV k in its communication range as its video

delivering node (or called next hop node). Whether

UAV k will be selected or not is determined by its

queue backlog length lk, the transmission latency

dk between it and UAV j, and its minimum hop-

counts hk towards the GCS. Since the packet arrival

rate (PAR) determines the queue backlog length and

directly reflects packet arrival processes, an LSTM

approach is explored to predict future PARs and

the corresponding queue backlog length according

to historically observed PARs. Then, the UAV k
with the minimum weighted sum of normalized

lk, dk and hk will be UAV j’s next-hop node.

Meanwhile, if UAV k does not acknowledge (ACK)

packets from UAV j within T th ms, UAV j will

re-start the above-mentioned next-hop node selec-

tion mechanism. Obviously, compared to routing

methods without PAR prediction, the novel routing

method will significantly reduce the packet backlog.

This is illustrated in Figure 4 with a constant UAV

communication radius r = 10 m and the maximum

ACK waiting time T th
= 10 ms. Figure 4 shows

that the novel UAV routing protocol outperforms the

shortest path routing protocol and queue backlog

aware routing protocol in decreasing the average

packet transmission latency.

Additionally, the video transmission has the strin-

gent low transmission latency and high reliability

requirement. Owing to the movement of users and

the time cost of configuring I-UAV networks (in-

cluding network topology and resources), ML/AI

approaches can also be explored to realize the
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proactive I-UAV networking such that transmission

latency is reduced. To guarantee the transmission

reliability while reducing transmission latency, the

fountain code technique is recommended to be

adopted in the I-UAV networking. Besides, even

though the fountain code technique is explored,

dramatically changing network status (e.g., link

capacity) will lead to the video timeout and the lack

of playable videos in the video playback buffer and

then the appearance of video freezes. With the net-

work status being proactively obtained, the dynamic

adaptive streaming over HTTP (DASH) technique

can further be explored to change source coding

rates to adapt to the network status. Certainly, defin-

ing good behavior of a video service is particularly

subjective, and many factors will affect the quality

of video services, for example, the current video

quality level, the oscillation in quality levels during

the video playout and buffer starvations, leading to

video freezes [12]. Therefore, to enhance the QoE

of users, one should simultaneously consider these

factors when conducting the I-UAV networking,

which leads to a multi-objective decision problem.

In this case, resorting to AI approaches will be a

good choice to flexibly and dynamically learn the

best I-UAV network control actions of maximizing

the QoE according to the network environment.

C. Situation aware Intelligent I-UAV networking

UAVs are usually deployed in relatively low

altitude 3D airspace and will share the airspace

with other low altitude flying platforms. Owing the

existence of some obstacles such as high-rise build-

ings, mountains, and high-tension lines, as shown

in Figure 1, the low altitude airspace environment

is complex. As a result, it is essential to consider

live multi-domain situation on the entities in I-UAV

networks and on the environment when conducting

the I-UAV networking such that UAVs can complete

missions safely and efficiently.

The multi-domain situation is referred to as

of evolution status of entities in time, frequency,

spatial and network domains, including the UAV

network status (e.g., network congestion condition,

backbone nodes and links), UAV flight status, UAV

safety and threat status.

To guide the I-UAV networking with situation

information, the perception of situation information

and the dynamic construction of global situation

field are required. However, the accurate situa-

tion perception and the construction of situation

field are highly challenging. For instance, there

are some dangerous small objects with unobvious

characteristics (e.g. high-tension lines) in the low

altitude airspace, as shown in Figure 1. How to

accurately detect this type of objects is difficult.

One will encounter the issues of data explosion,

model explosion, and scene explosion when fusing

the sensed situation, which challenges the construc-

tion of situation field. Besides, the intrinsic strong

coupling feature of some flying objects in the time-

spatial domain poses a challenge to the deduction

of the global situation field.

One can leverage some learning and game meth-

ods to tackle these challenge issues. For example,

one can explore ML/AI approaches to effectively

extract features of sensed objects or make some

decisions based on the sensed objects. Next, lever-

aging AI approaches to realize the perception of

situation information by fusing these features or

decisions. A voting mechanism can be involved to

identify the same object, which may be simulta-

neously sensed by multiple coordinated UAVs. A

multi-agent dynamic evolution game strategy can be

leveraged to constitute the global dynamic situation

field from local perceived situation via situation

coordination and deduction. The emerging meta

learning method can also be explored to learn to

fuse multi-modality sensor data.

Additionally, constrained by the dynamic situa-

tion field, the solution of the I-UAV networking

is non-trivial. The dynamic and high-dimensional

constraints imply that one cannot leverage some

conventional optimization methods and heuristic

methods to mitigate the I-UAV networking prob-

lem. To this aim, some ML/AI approaches (e.g.,

Bayes network, reinforcement learning) should be

considered to make good decisions by dynamically

interacting with the situation field. It’s noteworthy

that the situation aware intelligent I-UAV network-

ing has significant application value in both military

and civilian fields. However, the research on it is

still in its infant.

V. NETWORKING OF AN AIRBORNE

COMMUNICATION NETWORK: CHALLENGES AND

INTELLIGENT APPROACHES

Compared to UAVs, HAPs have longer commu-

nication persistence, stronger service ability, and a
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larger footprint. For example, 16 HAPs with an

elevation angle of 10◦ is enough to cover Japan, and

Greece can be completely covered by eight HAPs

[13]. Meanwhile, compared to Satellites, HAPs

are much closer to UAVs, which can significantly

reduce the path loss and have shorter propagation

delay and lower cost while faster responsiveness

and higher flexibility. Therefore, it is essential to

build a collaboratively integrated airborne commu-

nication network (ACN) consisting of I-UAV net-

works and HAP networks to significantly boost the

communication coverage and enhance the service

robustness. Certainly, these networks can work in

conjunction with Satellite networks and terrestrial

networks.

The construction of a collaboratively integrated

ACN, however, is highly challenging, where at least

three critical issues should be tackled, i.e., channel

estimation and tracking, integrated networking, and

situation aware networking.

From the perspective of channel estimation and

tracking, the HAP-UAV wireless channel differs

from the UAV-UAV channel due to unique propaga-

tion environment and transceiver antenna configu-

ration. On one hand, the International Telecommu-

nication Union Radio communication Sector (ITU-

R) has allocated a number of frequency bands for

HAP communications such as those in the Ka band

(28-31 GHz and 47-48 GHz) [14]. Signals in the

Ka band are sensitive to time-varying atmospheric

conditions such as oxygen, rain, and turbulence

[14]. The HAP-UAV wireless channel traverses the

complex atmospheric propagation environment. Al-

though many statistical HAP-ground channel mod-

els has been developed [2], they cannot effectively

characterize the influence of time-varying climatic

conditions on the channel modeling. To address this

issue, on-line learning methods can be explored

to estimate and track the HAP-UAV channel by

approximating its path loss based on continuously

measured channel coefficients. On the other hand,

owing to the role of significantly increasing the

HAP-UAV link capacity, a massive antenna array

will be mounted on an HAP. The directivity and

channel sparsity of massive antenna array, however,

pose a great challenge to HAP-UAV channel es-

timation and tracking. Besides, owing to the long

distance propagation, the slight disturbance in the

flying posture of a HAP may cause the HAP-

UAV pair to be misaligned. To tackle these issues,

prediction joint with compress sensing methods

should be investigated to estimate and track HAP-

UAV channel.

In terms of the integrated networking, HAP net-

works (in order to provide broadband services)

and I-UAV networks may work at different fre-

quency bands and have non-universal protocol

stacks, which hinder the design of integrated ACN.

Observing that it is unnecessary for each UAV to

connect with an HAP. Thus, one can partition I-

UAV networks into multiple I-UAV subnetworks

(or called clusters) and explore learning methods

to dynamically recommend a cluster head which

will connect to an HAP. Next, one can utilize

prediction methods to construct a dynamic time-

spatial topology graph according to contact time

and probabilities among HAPs and UAV cluster

heads. With the dynamic topology graph in hand,

unified protocols (e.g., routing protocols) can then

be developed.

In view of the situation aware ACN networking,

it is more challenging than the situation aware I-

UAV networking. In contrast to UAVs, an HAP can

be deployed at an altitude between 17 km and 22

km, which indicates that the ACN network needs

to construct a situation field of bigger and more

complex airspace. In such airspace, the construction

of situation field encounters more serious data,

network and scene explosion issues. This is because

more data (especially videos, images and radar

data) in the airspace will be sensed and stored. To

accurately analyze and learn these data, more com-

plex and deeper NNs will be designed and trained.

Meanwhile, the scenes are prone to sudden changes

in such huge airspace, which poses a great challenge

to the accurate sensing. Further, these explosion

issues bring a strong pressure on the UAV and HAP

computing power. UAVs and HAPs cannot realize

efficient computing during a short period of time. In

this case, how to prioritize data (e.g., identify small

and critical data), fuse data, generate local situation

information and deduce the global situation field by

exploring intelligent approaches will be significant

and crucial issues for in-depth research in the future.

VI. CONCLUSION

An overview of the I-UAV networking was pre-

sented in this article. The basic network architecture

of I-UAV and the intelligent modeling of channel
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gain of I-UAV networks were discussed. More-

over, challenges of QoS-driven, QoE-driven and

situation aware I-UAV networking and the corre-

sponding intelligent approaches to meet these chal-

lenges were highlighted. Nevertheless, some key

technological breakthroughs regarding responsive

and exact situation sensing and the global situation

field construction should be made before the critical

situation aware I-UAV networking can contribute

to intelligent I-UAV networking standards. Lastly,

potentials and challenges of future intelligent ACN

networking were introduced. Further, we hoped that

the discussion on the intelligent I-UAV and ACN

networking in this article will inspire researchers’

interest in the I-UAV and ACN networking and pave

the way for them to design and build I-UAV and

ACN networks in the future.
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