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A Generalized Semantic Communication System:
from Sources to Channels

Zhijin Qin, Feifei Gao, Bo Lin, Xiaoming Tao, Guangyi Liu, and Chengkang Pan

Abstract—Semantic communication is regarded as the break-
through beyond the Shannon paradigm, which transmits the
semantic information only to improve the communication effi-
ciency significantly. This article first introduces a framework for
the generalized semantic communication system, which exploits
the semantic information in both the multimodal source and the
wireless channel environment. Subsequently, the deep learning
enabled end-to-end semantic communications and the environ-
ment semantics aided wireless communications are demonstrated
through two user cases. The article is concluded with several re-
search challenges to boost the development of such a generalized
semantic communication system.

I. INTRODUCTION

The concept of semantic communications could be traced
to 1940s, when Shannon and Weaver categorised communica-
tions into three levels [1]. The typical communication system
is designed for the level one communication to address the suc-
cessful transmission of symbols with the bit-error rate (BER)
or symbol-error rate (SER) as performance metrics. Semantic
communication, categorized as the level two communication,
focuses on the successful transmission of semantic meaning.
Ever since the concept of semantic communication was pro-
posed, various paths have been investigated. However, a well-
defined semantic communication theory is yet to develop.

Inspired by the boom of intelligent communications, deep
learning (DL) has shown its overwhelming privilege in seman-
tic representation, compression, and transmission [2], which
relaxes the requirements on general mathematical models
for constructing the semantic theory. Different from typical
communications, semantic communications introduce a new
domain, i.e., semantic domain, to process and transmit in-
formation, in which only the essential information useful for
serving intelligent tasks at the receiver is transmitted. By doing
so, the size of the transmit data will be reduced significantly
and the network could be tailed for serving different tasks at
the receiver. Such characteristics of semantic communications
make them naturally fulfill the requirements of future networks
in terms of coordination, intelligence, and personalizing, which
shows the great potential for supporting various applications,
such as video conferencing, mixed reality (MR), and meta-
verse.
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Most existing semantic communications focus on the se-
mantic information processing conveyed in the source by
treating wireless channels the same as that in typical com-
munications. However, the semantic information conveyed in
wireless channel environment could also be utilized to reduce
the cost of acquiring channel state information (CSI), which
is essential to implement the communication system in a
highly efficient manner. Due to the increasing demand for
data transmission, the number of antennas proliferates, and
thus the size of the channel matrix becomes larger. Hence,
the pilot sequences required for channel estimation become
longer, which consumes more spectrum resource and increase
the latency of the transmission. Channel semantics opens a
new dimension to acquire CSI and the corresponding study is
on timely demand.

In this article, we propose a generalized semantic commu-
nications to exploit semantics in both sources and channels,
which takes a different view from existing works on semantic
communications. The rest of this article is organized as fol-
lows. We first introduce the generalized semantic communica-
tion framework in Section II. To support such a framework, the
DL-enabled end-to-end semantic communication techniques
for multimodal source are presented in Section III, while
the environment semantics aided communication systems are
detailed in Section IV. The final section concludes this article
with several identified research challenges.

II. A GENERALIZED SEMANTIC COMMUNICATIONS

For a simple wireless communication system, the received
signal can be expressed as

Y = Hx+ n, (1)

where H represents the channel gain, x is the transmission
signal, and n is the channel noise. In the past several decades,
we have witnessed the boom of wireless communications and
their applications. Great efforts have been made to address the
challenges in estimating H with lower costs and recovering x.

As shown in Fig. 1, for the source transmission, various
techniques, such as source coding, channel coding, and mod-
ulation have been developed. Particularly, Shannon channel
capacity provides the achievable upper bound for a point-to-
point communication system. Thanks to the dedicated efforts
made by researchers in the past several decades, the current
communication system is approaching to its limit. As we
can easily see from Shannon theorem, typical methods to
improve the transmission rate include increasing transmit
power, adopting wider bandwidth, e.g., using millimeter wave
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Fig. 1: The proposed framework for generalized semantic
communications.

(mmWave) or even terahertz (THz) frequency, and introducing
more antennas. However, the existing communication system
still faces some critical challenges, such as spectrum shortage
and heavy power consumption. It is desired to explore the
semantic domain, in addition to the time, space, and frequency
domain, to significantly improve communication efficiency.

Though the concept of semantic communication has been
proposed long ago, its development has been rather limited
in the past decades due to the lack of mathematical tools to
handle semantic processing. With the aid of artificial intelli-
gence (AI) techniques and high performance computing de-
vices, semantic communication systems have been developed
recently by using a deep neural network (DNN) to represent
the transmitter and the receiver, respectively.

On the other side, the channel, another very important com-
ponent in (1), is characterised by the distribution of scatters
and the electromagnetic propagation paths. Specifically, the
parameters of each electromagnetic propagation path between
the base station (BS) and the user are generated according
to Maxwell’s equations. Acquiring a precise channel is the
prerequisite for high performance signal transmission. Many
high-accuracy channel estimation methods have been devel-
oped, such as pilot aided linear minimum mean-squared error
(MMSE) method, orthogonal matching pursuit method, angle
domain channel reconstruction method, and DL-based channel
extraction techniques. With the unremitting efforts, the channel
estimation accuracy is approaching the Cramer-Rao Bound
(CRB). However, existing channel estimation techniques often
requires long pilot sequences, especially in massive multi-
input multi-output (MIMO) systems, which also leads high
costs for providing the CSI feedback. The resources in space,
time, and frequency domain are almost exhausted, and new
dimensions are urgently needed for channel estimation.

In fact, channel estimation can be regarded as environment
sensing, which makes the environment visible. Similar as that
for source transmission, the power of AI and high performance
computing devices make it possible to perform the integrated
sensing and communications. With further aids of radars, cam-

Fig. 2: Characteristics of semantics in the source.

eras, and sensors, we are able to ‘see’ wireless channels, which
does not require the complicated channel estimation process
any more. Overall, the generalized semantic communication
exploits the semantic domain in both sources and channels to
reduce the network traffic significantly without degrading the
system performance and lower CSI acquisition cost greatly.

A. Source Semantics

Semantic communications for source transmission mainly
include semantic representation, semantic coding, and seman-
tic transmission. As shown in Fig. 2, source semantics depend
on the source types as discussed subsequently.

1) Semantic Communications for Text: The semantic in-
formation of text refers to grammatical information, word
meanings, and logical expressions among words, etc. Thanks
to the booming of natural language processing (NLP) and
DL, the text information can be represented at the semantic
level instead of the bit level, which advances the system
to extract semantic information from source text. The goal
of semantic communications is to recover these semantic
information by minimizing the semantic error. According to
a semantic knowledge base shared by the transmitter and
the receiver, the semantic representations can be achieved by
a DL-enabled joint semantic-channel coding scheme before
transmitting over physical channels, which could provide high
robustness to both channel impairment and semantic noise.

Different from the Shannon paradigm that utilizes strict
bit alignment to measure the system performance, seman-
tic communications require the source information and the
recovered information containing the same meaning, which
reduces the system accuracy requirement by only focusing
semantic information. Moreover, the advancements on NLP
facilitates the development of joint semantic-channel coding
for text. Nevertheless, the concern of DL-enabled semantic
communications for text is the complexity that comes with
the DNN training and the computational process significantly
increases the transmission latency, which runs counter to the
needs of real-time communications.

In addition to the word-error-rate (WER), new performance
metrics to measure the semantic similarity of text are neces-
sary. The bilingual evaluation understudy (BLEU) score is a
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typical metric in the machine translation to measure the quality
of the translated text, which has been utilized to measure
semantic errors in semantic communication systems for text
transmission [3]. Moreover, a new metric, named sentence
similarity [3], has been designed to measure the similarity
of two sentences at the semantic level by mapping and then
comparing them in the semantic vector space provided by
the Bidirectional Encoder Representations from Transformers
(BERT) model.

2) Semantic Communications for Speech: The semantic
representation of speech is usually more complex than that of
text due to the characteristics of speech signals, e.g., the voice
of speaker, speech delay, and background noise, etc. Therefore,
to exploit the semantic information in speech signals, it is
typically processed into a low-dimensional semantic represen-
tation. For example, for the speech recognition task, the voice
characteristics of speech signals are omitted while the text-
related information is leveraged to recognize the correct text
sequence. According to the intelligent tasks at the receiver,
the corresponding semantic representation of speech signals
is extracted by a DL-enabled joint semantic-channel coding
scheme [4].

Similar to the semantic communications for text, the system
performance of semantic communications for speech can be
measured at the semantic level. Moreover, in contrast to trans-
mit global speech signal in the typical communication system,
the task-specific speech semantic communication system can
be developed by representing input speech sequences into
low-dimensional semantics and only transmitting task-related
semantic features, which enhance the system robustness as
well as significantly reduces the network traffic without task
performance degradation. However, the computational burden
and DNN training complexity are still the bottlenecks for such
a task-specific model.

The performance evaluation could include objective metrics
and subjective assessments. For speech recognition task, the
system target is to recover the correct text from the input
speech signals. Character error-rate (CER) and WER are
effective to indicate accuracy of the recognized text. For
speech synthesis task, unconditional Frechet deep speech dis-
tance (FDSD) and unconditional kernel deep speech distance
(KDSD) are utilized to measure the similarity of the input
and the synthesized speech. However, the relationship between
human perception of speech signals and these objective metrics
is not straightforward. Therefore, a dataset has been built to
match these performance metric scores with different levels of
satisfaction [4].

3) Semantic Communications for Image and Video: For the
image and video transmission in a semantic manner, the key
is to find their structured representations. Different methods
have been developed to trace objectives and their relationships
in the image and video so as to represent them in a well-
structured way. With visual processing methods, such as target
acquisition, target detection, and semantic segmentation, and
DL tools, we are able to obtain the relationship between
different objectives in the image and video, as well as to
perform the further relationship inference. By using such a
way to abstract and utilize the semantic information, the source
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Fig. 3: Characteristics of semantics in channel environment.

could be compressed to a much smaller size. The structured
semantic representation could be adaptive for severing various
intelligent tasks at the receiver in a better way while suffering
from the high computational complexity.

Note that for task-oriented semantic coding or joint
semantic-channel coding schemes, the model is trained specif-
ically for one task. Once the task is changed, the model should
be retrained, which causes extra cost for model update. Some
general models have been developed to generalize the model
so that it is capable of dealing with a group of tasks. Particu-
larly, a unified model has been developed to be applicable for
various tasks, which adopts an adaptive structure to allow the
receiver exit the model when the current task is executed at a
satisfactory level. Such a model is only capable of proceeding
a group of tasks. A more general model is more than required
to find a good tradeoff between the generalization and system
performance.

In comparison to the typical image and video processing
methods at the pixel level, such a semantic coding method
requires higher computational complexity while training the
model and the reconstruction accuracy may not guaranteed
when measured at the pixel level. However, the assessment
of such an image and video semantic communication system
should be redesigned as the typical metrics, i.e., mean-squared
error (MSE) and peak signal-to-noise ratio (PSNR), may not
reflect the human perception properly. Therefore, quality of
experience (QoE) should be considered when measuring the
image and video reconstruction quality at the receiver. Par-
ticularly, the brain-inspired QoE assessment method provides
a good way to find the relationship between the electroen-
cephalogram (EEG) and the subjective perception of recon-
structed images and videos [5].

B. Channel Environment Semantics

As shown in Fig. 3, the channel semantics contain two
levels: parameter semantics and environment semantics.

1) Parameter Semantics: Parameter semantics refer to pa-
rameters that constitute the channel, such as angle of depar-
ture (AOD) φD, angle of arrival (AOA), number of paths,
and Doppler frequency offset. Parameter semantics can be
obtained by sensing sensors, such as radar, GPS, and WiFi.
In [6], a radar aided channel reconstruction scheme has
been proposed for the multiuser MIMO vehicle to everything
(V2X) communication, where the radar is used for AOD/AOAs
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estimation while DL-based algorithm is adopted for channel
gain prediction. Another way to calculate parameter semantics
is utilizing signal processing algorithm, such as compressed
sensing and angle domain channel decompose techniques, to
estimate parameters from partial CSI. In [7], the AOD of a
channel is estimated with antenna array theory according to
the partial channel matrix. Once the parameter semantics are
obtained, the channel can be quickly reconstructed according
to the channel model. Under the guidance of the deterministic
model, the channel reconstruction using parameter semantics
only requires low computational complexity. The advantages
of parameter semantics are low storage space occupation, low
computational complexity and low delay. However, due to
limited amount of information acquired by sensors, obtaining
complete parameter semantics requires a large number of
sensors. In order to avoid mutual interference between radar
and communication signals, the frequency band used by the
radar should be different from that for communications. In
addition, the parameter semantics of different users vary with
the frequency although the communication environment is the
same.

2) Environment Semantics: Environment semantics refer to
semantic information of environment images, e.g., the layout,
shape, and category of the objects in the images. Environment
semantics can be captured through RGB cameras and semantic
segmentation techniques. The location and categories of vari-
ous scatterers can be obtained by semantic segmentation tech-
niques. With the electromagnetic computing theory, parameter
semantics can be calculated from environment semantics, and
then the channel matrix can be reconstructed.

Another tool for channel reconstruction is DNN, an effi-
cient means for fitting complex mappings. We can feed the
environment semantics into a DNN, then the DNN generates
the reconstructed channel through a series of feedforward
operations. More significantly, the goal of acquiring CSI
benefits the channel-related downstream tasks. Since there
is a mapping relationship between environment semantics
and channels, there is also a mapping relationship between
environment semantics and the channel-related tasks. In [8],
semantic information is used for cooperative object identifi-
cation in a multiuser communication system. Compared with
directly using RGB images, utilizing environment semantics
to calculate the channel matrix could protect users’ privacy as
well as save transmission resources. This is because that only
the categories and layout information of users and scatterers
are preserved in environment semantics. It is noted that envi-
ronment semantics are frequency-independent. However, due
to lack of deterministic models, the complexity of acquiring
environment semantics is extremely high, which consumes
huge computing resources. Although adopting DNN reduces
huge computational complexity compared to electromagnetic
computing methods, the feedforward operations still require
a large number of computing units. Hence, devices using
environment semantics are usually equipped with efficient
graphics processing units (GPUs).
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Fig. 4: Schematic of the DL-enabled end-to-end semantic
communication system.

C. Correlation between Source Semantics and Channel Se-
mantics

Note that some techniques for processing source semantics
could also be used for channel semantics, especially for en-
vironment semantics. For example, the deep learning enabled
image processing and semantic segmentation techniques are
useful for both source semantics and environment semantics
processing. Meanwhile, by considering channel semantics, the
channel environment could be estimated in a much efficient
way. Based on the estimated channel environment, the abstrac-
tion of source semantics could be adjusted to fit the current
channel condition. For example, if the channel condition is
poor, only the most important semantics will be abstracted
from the source so as to minimize the size of the transmitted
data.

III. DEEP LEARNING ENABLED END-TO-END SEMANTIC
COMMUNICATIONS

Based on the generalized semantic communication system
developed in Section II, we first introduce the DL-enabled
semantic communication framework in this section. Subse-
quently, a case study is provided for the speech semantic
communication system.

A. Deep Learning Enabled Semantic Communication Frame-
work

The ultimate motivation of semantic communications is
to represent the source information at the semantic level to
serve the tasks at the receiver while omits the task-irrelevant
information [2]. By doing so, the bandwidth consumption
and the transmission latency can be reduced significantly. A
DL-enabled semantic communication system for multimodal
data transmission is shown in Fig. 4. From the figure, a
neural network extracts semantic features from the source,
relevant to tasks at the receiver, which could be either source
reconstruction or intelligent task execution. Such a framework
could be used to serve the transmission of text, speech, images,
and videos, which is detailed as below.

1) Text: Based on the DL-enabled semantic communication
framework in Fig. 4, Xie et al. [3] designed a transformer-
powered semantic communication system for text transmis-
sion, named DeepSC, by minimizing the semantic difference
between the transmitted sentence and the received sentence as
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well as maximizing the transmission rate. Subsequently, a vari-
ant of DeepSC has been proposed in [9] to further reduce the
transmission error by leveraging the hybrid automatic repeat
request to improve the reliability of semantic transmission.
More recently, a method to quantify the semantic noise and
its affects to the semantic communication system has been
found.

2) Speech: The complexity of semantic representation for
speech increases the difficulty to extract semantic features
from input speech. Based on DeepSC, Weng et al. [4] proposed
a semantic communication system for speech recognition
and speech synthesis, named DeepSC-ST. Particularly, the
text-related semantic features are extracted from the input
speech and transmitted over physical channel, which serves to
recognize the text information and synthesis the speech at the
receiver. Inspired by DeepSC-ST, a semantic communication
system to fulfill the speech recognition task at the sub-
word level has been developed [10]. Moreover, to achieve
high accuracy audio transmission with a small amount of
data, federated learning is utilized to allow multiple devices
contribute to the semantic information abstraction [11].

3) Image and Video: Due to the thriving of computer
vision, the semantic communications for image have witnessed
a rapid development and tackled many challenges beyond
human limits. Particularly, based on DeepSC, a semantic
communication system for image retrieval has been developed
to identify the most similar images stored at the receiver in
comparison to the request image [12]. Following the point-to-
point semantic communications for transmitting data with dif-
ferent modalities, Xie et al. [12] further extended it to a multi-
user case. Moreover, an adaptive semantic coding scheme has
been developed to abstract semantic features by considering
the rate-semantic-perceptual relationship in [13]. Meanwhile,
a semantic communication system has been further developed
to support video conference [14].

B. Case Study: Semantic Communications for Speech

The system model of semantic communications for speech
recognition and speech synthesis was developed in [4], named
DeepSC-ST. The input speech is converted into the low-
dimensional text-related semantic representation to be trans-
mitted over physical channels, which is achieved by leveraging
a joint semantic-channel coding scheme at the transmitter.
The receiver includes the channel decoder and the feature
decoder to recover the text-related semantic representation and
recognize the text information as close to the correct text as
possible, respectively. The speech synthesis module processes
and converts the output of the feature decoder into the speech
sample sequence, which dedicates to reconstruct the clear input
speech.

To verify the superiority of DeepSC-ST, we provide the
following two benchmarks. The detailed simulation settings
of DeepSC-ST could be found in [4].

• Benchmark 1: we adopts the convectional communica-
tion system with adaptive multi-rate wideband (AMR-
WB) coding and polar coding to transmit speech signals,
named speech transceiver as shown in Fig. 5. The speech

input is transmitted and recovered at the receiver, then the
text transcription is obtained from the recovered speech
by a speech recognition model, called Deep Speech 2.

• Benchmark 2: This benchmark is named text transceiver
as shown in Fig. 5. Particularly, the speech input is
converted into text by Deep Speech 2 before feeding
into a conventional communication system with Huffman
coding and polar coding to transmit text. In addition,
the recovered text sequence is passed through a speech
synthesis model, Tacotron 2, to reconstruct the speech.

Fig. 5a compares the WER of the DeepSC-ST and two
benchmarks under Rayleigh channels, where the ground truth
is the result obtained by directly feeding the speech sample
sequence into the Deep Speech 2 model without transmitting
them through wireless channels. From the figure, DeepSC-ST
achieves lower WER than the two benchmarks and performs
steadily with SNR>0 dB, which verifies the superiority of
DeepSC-ST. Moreover, Fig. 5b compares the FDSD scores,
where the ground truth is that computed by directly feeding
the plain text sequence into the speech synthesis model.
From the figure, DeepSC-ST significantly outperforms the
two benchmarks in terms of FDSD scores, which proves the
superiority of DeepSC-ST, especially in the low SNR regime.

IV. ENVIRONMENT SEMANTICS AIDED COMMUNICATIONS

This section first introduces the environment semantics
aided communication paradigm. Then a case study is provided
for the environment semantics aided downlink precoding.

A. Environment Semantics Aided Architecture

Environment images have been utilized to assist various
channel related downstream tasks in some lasted vision aided
studies. However, directly using the environment images to
aid wireless communication would violate users’ privacy.
The environment semantics aided communications (ESAC)
extract semantic information from environment images. Such
semantic information eliminates the surfaces of scatters and
preserves only the category and the distribution information,
which naturally protects user privacy.

The goal of ESAC is to extract channel semantics from
sensors’ data, and then use them to predict communication
parameter, such as beam index, beamforming vector, blockage
state, channel covariance matrix, etc. Fig. 6a presents the
paradigm of environment semantics aided communication. The
ESAC contains four modules: environment semantics extrac-
tion module, feature selection module, task-oriented encoder
module, and decision module.

1) Environment Semantics Extraction Module: The sen-
sors’ data is a set of multimodal observations, including the
environment images. Semantic features are extracted from
multimodal data as input to the ESAC. For example, features
from environment images can be extracted by semantic seg-
mentation network.

2) Feature Selection Module: In fact, not all features are
beneficial for communication tasks. Redundant features will
increase the complexity of the network or even make the
performance worse. Specifically, the environment semantics



6

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0

-8
 

-6
 

-4
 

-2
 

0 
 

2 
 

4 
 

6 
 

8 
 

10
 

12
 

14
 

16
 

18
 

20
 

SNR (dB)

0  

0.2

0.4

0.6

0.8

1  

1.2

1.4

1.6

1.8

2  
W

E
R

Ground truth
Speech transceiver
Text transceiver
DeepSC-ST

(a) WER score versus SNR

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0

-8
 

-6
 

-4
 

-2
 

0 
 

2 
 

4 
 

6 
 

8 
 

10
 

12
 

14
 

16
 

18
 

20
 

SNR (dB)

0 

5 

10

15

20

25

30

35

F
D

S
D

Ground truth
Speech transceiver
Text transceiver
DeepSC-ST

(b) FDSD score versus SNR

Fig. 5: Performance of DeepSC-ST for speech transmission [4].

contain the class and distribution information of all scatterers
in the environment. However, the features of some objects
have little or no effect on the electromagnetic propagation path
among the BS and the user. Moreover, although some features
have great influences on the wireless channel, there may be
strong correlations between these features. Reserving one of
them is enough. Hence, feature selection is needed to select the
optimal set of features, which is the minimum set of features
required for the channel related task. Typical feature selection
algorithm includes the wrapper methods, the filter methods,
and the embedded methods. Wrapper methods is based on
a specific machine learning algorithm. It follows a greedy
search approach by evaluating all the possible combinations
of features against the evaluation criterion. In filter methods,
features are selected on the basis of their scores in various
statistical tests for their correlation with the outcome variable.
Embedded methods combine the advantageous aspects of both
Wrapper and Filter methods. In embedded methods, feature
selection is embedded in the learning or the model building
phase. Feature selection is done by observing each iteration
of model training phase.

3) Task-Oriented Encoder Module: Task-oriented encoder
module aims to save the system overhead by encoding the
selected features into a compressed one. The task-oriented
encoder compress the features as much as possible while loss
the key information as little as possible. In other words, the
accuracy of predicting parameter from encoded features and
from selected features should be as close as possible. From a
mathematical point of view, the role of task-oriented encoder
module is to fit the mapping function such that the number
of bits required to store the encoded features is as small as
possible while the mutual information between the encoded
features and the parameter is as close as possible to that
between the selected features and the parameter. A DNN can
be used to realize the mapping function by techniques, such
as network pruning, regularization, and model quantization.

4) Decision Module: Decision module predicts the com-
munication parameter from the encoded features. It is usually

implemented by neural networks of different structures ac-
cording to the output parameter. For example, for the channel
estimation problem, which is a regulation problem, the output
parameter is the channel matrix. The FCN is often utilized
as the relization network and the NMSE or MSE function
is adopted as the loss function. For the analogy beam index
prediction problem, which is a classification problem, the
output parameter is the predicted beam index. The commonly
used networks are FCN and CNN. The activation function is
the softmax function, and the loss function is the cross entropy.

B. Case Study: Environment Semantics Aided MmWave Pre-
coding

Consider a multi-user mmwave massive MIMO system
where each channel is equipped with one RF-chain. In or-
der to resist the attenuation of mmwaves and interference
between users, the BS needs to perform downlink precoding.
In traditional ways, the BS sends different pilots to different
users, then the users perform channel estimation at the receiver
end, and then the users feed back the downlink channel
to the BS. Finally, the BS optimizes the precoding matrix
according to the users’ channels. However, these methods
consume huge training and feedback overhead. It has been
found that mmWave channels usually have a sparse structure
associated with the parameters, such as pass loss, AOA, AOD,
and delays, etc. These parameters can be regarded as the pa-
rameter semantics. From an intrinsical perspective, channel is
determined by the key scatters in the propagation environment.
Hence, environment semantics are suitable for implementing
the multiuser downlink precoding, which is a channel related
task. The goal of this study is to predict the users’ downlink
precoding matrices directly from the environment semantics.

Suppose that the BS is equipped with multiple antennas and
the users are equipped with single antenna. A camera installed
on the BS can capture RGB images to assist the BS on channel
related task. The image is processed by semantic segmentation
technology to obtain the environment semantics on the one



7

Environment Semantics Extraction

Road VehiclesSky Feature Selection

... ... Task-oriented
Encoder

Road

Location

Vehicles

Decision Network

Feature n

Feature 1

Feature 2

...

Communication
Parameter

(a) The structure of environment semantics aided communication.

0 10 20 30 40 50 60 70 80 90 100

Epoch

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 A
ch

ie
va

bl
e 

R
at

e

Conventional Method With Full Channel
Environment Semantics Aided Communication
Directly Using RGB Image

(b) Rate of ESAC versus epoch.

Fig. 6: The paradigm and performance of environment semantics aided communications.

hand and protect the user privacy on the other hand. The se-
mantic information includes sky, vehicles, roads, traffic lights,
buildings, and lawn. Using the wrapper method, the semantic
features are sorted by importance on the multiuser precoding
task. Then an ODE-inspired network based decision module is
designed to predict the multiuser downlink precoding matrix.
Moreover, a user identification network is proposed for user
matching by utilizing miltimodal information from the sensing
devices. To increase the system rate, the loss function is the
inverse of the average achievable rate of all users in the system.
The achievable rate curves of ESAC network and the network
directly using RGB images is shown in the Fig. 6b. From the
figure using environment can achieve higher system rate than
using images directly. Moreover, at SNR=25 dB, performance
of the ESAC can approach the traditional BD algorithm while
the training and feedback overhead is reduced to ‘0’.

V. CHALLENGES AND CONCLUSIONS

This article proposes a framework for generalized seman-
tic communications to fully utilize semantic information in
multimodal source data and wireless channel environment.
Though various techniques have been developed as detailed in
this article to support the generalized semantic communication
system, the following challenges should be addressed:

1) Semantic information transmission techniques: Most
works on semantic communications focus on semantic
representation, semantic coding, and its joint design with
channel coding. New transmission techniques for seman-
tic features are yet to develop. The existing transmis-
sion techniques map bit sequences into symbols without
considering the importance of information behind them.
To support semantic feature transmission, we need to
design novel schemes on semantic-aware modulation and
multiple access to combat semantic noise and channel
impairment to maximize the transmission efficiency.

2) Unified standard dataset: Collection of the dataset for
environment semantic aided communication is compli-
cated. Although there have been specialized datasets for
semantic segmentation in the field of image processing,
such as Pascal VOC and ADE20K, linking them with
wireless communication channel is a challenging work.
In [15], the vision aided communication dataset has
been generated through the cooperative work of three

softwares (SUMO, CARLA, Wireless Insite). However,
building such a dataset is complex and time-consuming.A
convenient user-oriented dataset is urgently needed to
speed up the development of ESAC.

3) Generalizability in the number of users: Environment
semantics contain the semantic information of all scatters
and users in the area. However, in a multiuser commu-
nication system, the number of users served by the BS
changes dynamically. Therefore, for different numbers
of users, we need to train different neural networks
to perform channel estimation or channel related tasks,
which consumes vast computation and storage resources.
Investigating more generalized ESAC structures can be
an interesting direction for future work.

4) Generalizability in channel semantics: The general-
izability of the channel semantics is guaranteed by the
unified feature extraction and feature selection crite-
ria.The sensing data from different sensors has different
forms and dimensions. Through feature extraction and
feature selection steps, different types of raw data can be
converted into standard features, such as the distribution,
categories, and velocities of scatterers. However, there
are scenes where the number of sensors is insufficient or
sometimes the sensors are malfunctioning. How to utilize
the insufficient information to compute channel semantics
remains to be studied.
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