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WIRELESS CO M M U N I C AT I O N S I N NE T W O R K E D RO B O T I C S

INTRODUCTION
This article presents a 2D and 3D radio fre-
quency (RF) fading measurement campaign
and an analysis of these results that illustrates
the potential benefit of RF-Mobility Gain (RF-
MG). Lockheed-Martin’s Advanced Technolo-
gy Laboratory and the University of
Pennsylvania exploit the data set to demon-
strate that motion is a useful degree of freedom
in optimizing communications systems. Exam-
ples of strategies are presented to achieve this
mobility gain inherent in a setting, using robots
or mobile antennae for improved connectivity
and persistence. Mobility gain can be multi-
plicative over a network of relay nodes, and
can be combined with other modern radio
techniques such as multiple-input multiple-out-
put (MIMO) [1] and antenna diversity tech-
niques [2] to form an ad hoc network of nodes
that shares desirable characteristics of both
mobile ad hoc networks (MANETs) and fixed
infrastructures.

THE CHALLENGE OF COMPLEX
RF ENVIRONMENTS

Indoor and urban environments [3] are challeng-
ing for communications systems due to the com-
bination of interference from many RF energy
sources, the density of users wanting access to
the scarce RF spectrum, and the complexity of
propagation of RF waves through multiple
objects [4–6]. Building materials [7] create atten-
uation losses, and at the same time may intro-
duce geometric phenomena such as multipath
through their surface reflectivity. These losses
are affected by both position and frequency, and
can have a severe effect on closing the link in a
communications system.

DEFINITION OF RF-MG
We define mobility gain as the RF gain achieved
by moving from an inferior position (the base-
line to which the gain is referenced) to a superi-
or position. Figures 1, 2, and 3 illustrate this
potential gain in the large power variations expe-
rienced over small areas in indoor and urban
environments. Noticeable features are the spatial
correlation patterns, and the combinations of RF
fading peaks and troughs with 30 dB variations.
With proper coordination and mobility strategy,
a network of mobile radio nodes can achieve sig-
nificant mobility gain, as shown later.

RF-MG EXPLOITATION
Spatial diversity and multiple antenna systems
are already in use for optimizing wireless chan-
nel capacities, but, as of now, the degree of spa-
tial diversity they offer can be thought of as a
discrete and limited sampling (subset) of the full
RF map. Mobility gain greatly expands the sam-
ple space, targeting the full capacity offered by
the channel, because the sampling of the RF
fading map can be made continuous. Systems
used to implement RF-MG must exploit the
continuum of the RF environmental conditions;
thus, the key is how the sampling is performed
in RF-MG systems, and how the network of RF-
MG radios is coordinated/controlled to maxi-
mize the potential gain.
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The most attractive RF-MG strategy is to
attempt to control the impact of small-scale fad-
ing experienced on the link. Several measure-
ments performed in urban environments and
indoor environments indicate that the power
fluctuations due to small-scale fading decorrelate
rapidly over less than half of a wavelength [8].
Small moves can create large gains. Of course,
the relative fading experienced by two ends of a
link can be adjusted by moving the antennas
without moving the radio.

The goal of RF-MG is to provide a mobility-
based solution to optimize the link quality for
either capacity improvement or power savings;
any power saved by minimizing path loss on the
RF link reduces the depletion rate of the partici-
pating nodes’ energy stores while maintaining
the same baud rate. Optimizing position to limit
shadowing is another approach, but it requires
site-specific approaches that require costly sam-
pling strategies, whereas optimization of small-
scale fading only requires local sampling of the
fades to find the Rician fading distribution. On
average, small-scale fading optimization for RF-
MG will outperform shadow fading mitigation
strategies.

COORDINATION AND NETWORK ROUTING
UNDER AN RF-MG SCENARIO

OPTIMIZATION VIA COORDINATION

Global optimization of the ad hoc topology
demands at least local cooperation, where a
node uses its own local RF sensing capability
and its multihop network connection to non-
neighboring nodes to optimize the RF mesh for
the “common good.” This is driven by the fact
that the RF fading maps are constant only if the
other node is fixed, as shown in Fig. 2.

Communication among the robots provides
the opportunity for coordinating and optimizing

the search strategy. The shared knowledge among
cooperating nodes is used to prevent a “solitary”
node from improving its mobility gain at the
expense of other nodes. The distributed control
algorithms necessary to build a scalable robotic
mesh of nodes with a network-wide improvement
in mobility gain are a major research challenge,
requiring novel strategies. There are many possi-
ble strategies to exploit RF-MG. One strategy is
“get out of the dips,” which requires little move-
ment from either the transmitter or receiver to
significantly improve the peer-to-peer link, as
seen in Fig. 4. This is a simplistic 1D search for a
single peer-to-peer link.

Another basic strategy is to optimize the link
quality over multiple point-to-multipoint radio
links that form a network topology. One exam-
ple of this strategy is From-Trunk-To-Leaves
(FTTL), where the inertial weight for a node is
proportional to its number of single-hop neigh-
bors. Therefore, the node with the most single-
hop neighbors or the node that participates in
the most multihop routes has the lowest proba-
bility of moving since it is firmly established as a
hub node in the network. This maximally con-
nected node is referred to as the trunk in this
algorithm. As the number of neighboring nodes
is reduced, the node is more likely to engage in
exploration toward optimization of the MG with
the node with the most weight (i.e., the new
trunk). This tree analogy is carried forward to
the leaf nodes that have the highest degree of
edge mobility. The optimization radiates out-
ward from the trunk to branches to leaves. This
type of strategy is currently under investigation,
and the results will be reported separately.

A second optimization example is Altruistic
Power, Equalization, and Exploration (APEX),
where the routes established by the network are
weighted with respect to usage and power con-
sumption over the hops. This measure of Watt-
hour or route pure energy cost (RPEC) to the
network is based on requirements combining

n Figure 1. Network level perspective of RF-Mobility Gain enabled ad hoc network.
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duty cycle of the route, quality of service (QoS),
and aggregated transmit power over the hops.
RPEC is a weighted linear or nonlinear combi-
nation of these parameters. Once the routes are
weighted across the network, the algorithm opti-
mizes the routes with the highest energy need
while maintaining the QoS using the same prin-
ciples as FTTL. After each move, the relative
weighting of the routes is reassessed and the
algorithm repeats.

IMPACT OF RF-MG OPTIMIZATION ON
NETWORK ROUTING PROTOCOLS

It is possible to use a traditional ad hoc routing
protocol as the network layer in an RF-MG
enhanced radio network, although the degree of
global mobility gain may be reduced. Figure 4
depicts the physical laydown and topology of four
nodes that form an ad hoc network. The nodes
are shown superimposed over their 2D RF fading
maps. If the links are all non-line of sight
(NLOS), and the central node moves at least a
half wavelength, it is possible that the depicted
RF fading surfaces for the other three nodes will
completely decorrelate and become unknown.
The arrows that connect the nodes are the cur-
rent topology of the ad hoc network and indicate

the existing next-hop routes. This network topol-
ogy has converged to a star network where the
central node is the root of the tree and would
benefit from the FTTL coordination behavior
discussed in the previous section. The varying
levels of interaction and communication between
the RF-MG coordinator and the network routing
protocol give rise to some interesting situations.
If an RF-MG coordination controller service is
aware of the routing topology, it could use the
route information to modify its strategy to move
nodes relative to each other while minimizing
damage to links that are part of currently utilized
routes. Conversely, if the routing algorithm is
aware of the strategy and capabilities of the RF-
MG coordination controller, it may select certain
routes based on cross-layer information like the
Rician K-factor of each single-hop link, the prob-
ability of improving each link based on the
observed fading map, and other relevant physical
layer attributes.

IMPACT OF MG ON THE AODV AND
OLSR AD HOC ROUTING ALGORITHMS

Ad Hoc On Demand Vector (AODV) and Opti-
mum Link State Routing (OLSR) are two well-
known wireless ad hoc routing protocols that are

n Figure 2. 2.44 GHz fading samples for: a) original transmit location; b) 10 minutes later; c) 24 hours
later; and d) transmitter is immediately moved by one wavelength (map is 1 m2).
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based on reactive and proactive routing proto-
cols, respectively. A reactive routing protocol
does not maintain its routes and needs to flood
the network with discovery packets when trans-
mitting information to a node that is more than
one hop away. As the RF-MG coordination
behavior executes to establish, reinforce, or
erase one-hop links, the routes have to dynami-
cally adapt to these changes. Unless the RF-MG
controller is aware of the current utilization of
each of its single-hop links, it may inadvertently
break some of its single-hop links while it moves
a node through an RF fading surface, thereby
forcing the ad hoc routing protocol to dynami-
cally find a new route through the collection of
connected nodes. Under this scenario, it is
apparent that a proactive routing protocol like
OLSR will be at a disadvantage because it con-
tinuously burns power to maintain routes by
periodically transmitting routing control mes-
sages. These carefully maintained routes are
then possibly broken by the RF-MG coordinator
as it runs its per-link optimization behavior.
Avoiding this destructive cycle is a good motiva-
tion for establishing cross-layer/cross-protocol
communication between the RF-MG coordina-
tor and any ad hoc routing protocol.

2D MEASUREMENTS

Tests were performed outdoors to capture the
effect of NLOS propagation with many multi-
path components to measure the stability of the
2D fading map over time and location. A trans-
mitter-receiver radio pair was set up under
NLOS conditions by placing them on opposite
sides of a corner of a six-story office building
surrounded by a parking lot full of automobiles.
The map was obtained by allowing a robot
equipped with a radio to wind itself in a tight
spiral pattern with a highly reproducible 1/10-
wavelength accuracy to create a repeatable spa-
tial 2D sampling of RF space on the ground.
The position of the robot was tracked using
infrared (IR) sensor detection markings along
the spiral track. The transmitter placed on the
other side of the building spanned several loca-
tions, including an origin location used for all
test frequencies and another frequency-depen-
dent location placed one wavelength further
along the side of the building and away from the
corner separating the radios. Several measure-
ments were performed at carrier frequencies of
2440, 420, 120, and 60 MHz spanning 20 MHz
channel bandwidths.

Frequency measurements were performed
four times, as follows:
1 Perform a full spiral sampling for the frequen-

cy of interest.
2 Wait 10 min and perform another full spiral

sampling with no change in the transmitter or
receiver location.

3 Move the transmitter one wavelength away
from its original position and keep the receiv-
er assembly at the same location.

4 Repeat measurements one day later with trans-
mitter at its original location.
The results in Fig. 2 at 2.44 GHz show that

the small-scale fading maps are repeatable over
a timeframe of minutes, meaning that the

dynamics of the process that drives the changes
in the multipath is slower than tens of minutes.
Over 24 hours, the map shows a large decorrela-
tion indicating that the spatial multipath distri-
bution has changed as the car positions in the
parking lot change.

Analysis of the 20 MHz wide channels span-
ning 60 MHz to 2.44 GHz showed that it is often
better to select a new carrier frequency at low
carrier frequencies (in the case of relatively
short channels and the resulting frequency selec-
tive fading) rather than relying on mobility to
decrease fading since physically moving the node
to a better fading regime at low wavelengths
expends more energy than negotiating a new
unoccupied frequency. The network coordina-
tion required for this dynamic tuning is similar
to the coordination used to obtain mobility gain,
and one technique for dynamic spectral tuning is
presented. However, at frequencies above 400
MHz the maps are largely spatially decorrelated,
and significant gains can be achieved via small
moves.

INDOOR 3D MEASUREMENTS

We next performed extensive tests and measure-
ments to demonstrate that small antenna move-
ments can achieve large gains in power saving
for radio operation due to the low spatial corre-
lation of NLOS wireless channels.

Multiple measurement campaigns were con-
ducted to capture the RF fading for typical
indoor and outdoor urban wireless channels.
The measurements were conducted using a
National Instruments 5600 software defined
radio (SDR) to transmit and receive a 20 MHz
wideband waveform. The received power is
arithmetically averaged across the receiver’s
band for each location and is considered repre-
sentative of the integrated received power expe-
rienced by an IEEE 802.11 radio. Figure 3 is a
3D depiction of the received signal strength in a

n Figure 3. Indoor 3D NLOS fading map at 2.44 GHz.
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NLOS channel obtained in a cluttered laborato-
ry at various heights. Each color change repre-
sents a 3 dB relative difference in received power
with its neighboring power levels. This shows
that within a small cylindrical volume of 1 m
diameter and 0.5 m height, there are several RF
hot spots with potential gains up to 20 dB. For
this measurement the wireless channel is time
dispersive due to the presence of nearby metal
desks, chairs, and cabinets.

The Rician probability density function (PDF)
of the signal amplitude was estimated at four
heights above floor level using a 3D version of
the 2D spiral measurement rig. The Rician
PDF’s K-factor was found to be –5.4, –2, –1.2,
and 1.3 dB for 6, 15.5, 25.5, and 35.5 cm heights,
respectively. This result matches the well-known
concept of spatial correlation as a function of
height evident when one end of an RF link is
located above ground-level scattering objects
(e.g., a cellular antenna on a mast in an urban
environment). In our case all measurement
points experience some degree of NLOS, but the
strength of the specular path generally increases
as the height of the antenna increases.

THE USE OF MOTION TO OBTAIN
MOBILITY GAIN

MOBILITY GAIN PRINCIPLE

Urban cell phone users are familiar with trying
to find a good location for communications. This
is an example of the search process discussed
previously, and the boundaries of the search
might be given by walls or user intangibles such
as patience. A typical search method is moving
and observing signal strength indications such as
the number of “bars” in the cell phone display.
Once an acceptable location is found (where a

call can be placed or received), the user stays in
this position and the “search” terminates.

Let us first consider the case of optimizing
link quality via motion for a simple peer-to-peer
case where two RF-MG radio nodes can do the
following: communicate, collaborate, transmit on
demand, and receive/measure that transmission
while keeping track of its current location. At
least one of the two nodes is capable of mobility
or its antenna can move. Even though the varia-
tions in RF strength are stochastic, the model
parameters can easily be derived based on a
Rician PDF using the second and fourth order
moments of the received signal amplitude. The
radio can search its surrounding space for a
more benign fading condition at the cost of
coordination, channel sounding, and processing.
For example, a gain of 10 dB on the link (mov-
ing from a blue area to a red area in Fig. 2)
results in an equivalent capacity gain. The
improvement may be traded for reduced trans-
mit power or increased throughput, depending
on the application, while maintaining the same
level of QoS.

MOBILITY STRATEGIES
Automation of the mobility gain principle would
consist of a search strategy, a search goal, and a
termination criterion. Example strategies might
include random walks, bounded linear motions,
and spirals. A strategy can be evaluated by the
amount of motion required to locate the “goal” of
improved mobility gain. The search will be bound-
ed by the travel required to apply the search strat-
egy in a constrained area. The distance traveled in
the strategy can also serve as a bound, in which
case the efficiency with which the search of the
volume can be achieved is important.

To illustrate this, a mobility strategy study
was performed on a 2D fading map collected at
1.2 GHz obtained under NLOS conditions in an

n Figure 4. a) Measured 2D indoor NLOS RF power reception map; b) simulated RF-MG results for various paths through the
2D fading map.
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office building. Figure 4a shows the RF fading
map for the CW at 1.254 GHz along with four
mobility strategies used to sample the map.

There is a large dB variation over the map
(in excess of 20 dB — the color map is over a 30
dB dynamic range), and the fading statistics are
Rayleigh. In these maps we also show a series of
mobility strategies: random walk, linear motion,
circular motion and spiral motion of the mobile
antenna. In this study a node is allowed to move
across the map while the transmit node stays
fixed using any one of the four motion types. A
Monte Carlo study was performed for each
motion type, randomizing the start position in
the map and the direction of motion. All motions
use the same speed. The measure of the fraction
of nodes reaching 3 dB improvement on the link
is shown in Fig. 4b’s top panel. The bottom
panel of Fig. 4b shows the cumulative density
function of the mobility gain and shows that for
the spiral mobility, 50 percent of the nodes
reach 3 dB or better in less than 0.2 m motion
distance along the spiral path. It is interesting to
note that the random walk performs poorly, and
the circular and linear motions are comparable
to each other. This optimization approach only
works for a single peer-to-peer link.

Exploitation of the relative spatial RF fading
variations is challenging because first, the peer-
to-peer maps are only valid while one of the
nodes stays in a fixed position. This implies that
mobility must be coordinated between partici-
pating nodes, which makes optimization of mul-
tiple links in a network a challenging problem.
The signal space exploration can, however, be
guided via statistical means since the distribution
of RF fading may be estimated, and used to rate
the quality and the probability of getting a better
link. As a result, the mobile radio nodes are able
to dynamically navigate inside the signal map
while intelligently trading power spent on loco-
motion for potential radio link gain.

Another important aspect of small-scale fad-
ing optimization is that, as seen in the measure-
ments, there is no preferred orientation since
the map is random. Therefore, what matters is
not where to move, but to move and register. This
move/register strategy can yield good returns, as
seen next.

QUANTIFYING MOBILITY GAIN
To illustrate the mobility gain for a single- or
multiple-antenna system, a Monte Carlo analysis
of the combination of a MIMO antenna system
and an RF-MG enabled radio node was per-
formed to compare and illustrate the mutual
benefit of using these techniques. In this simula-
tion radio nodes are placed in an NLOS envi-
ronment with Rayleigh fading (Rican K-factor is
–∞ dB). Spatially diverse antennas (case b) are
assumed to be at least 1/2 wavelength apart so
that each antenna experiences independent fad-
ing. Beamforming array antennas (cases d and e)
are less than a 1/2 wavelength apart to avoid
spatial aliasing. Five cases are considered:
a) A single-element antenna (single-input single-

output [SISO] baseline case without RF-MG).
b) A four-element antenna array with a 4 × 1

selection diversity switch connected to a single
receiver chain (discrete sampling of the fading

map at only four points and selecting the
antenna with the lowest amount of small-scale
fading, SIMO case without RF-MG).

c) A single-element mobile antenna moving over
100 independent samples of a Rayleigh dis-
tributed fading process and able to choose the
best location that minimizes loss due to small-
scale fading (SISO baseline case with RF-
MG).

d) A four-element antenna array with four
coherent receiver chains able to perform
beamforming for gain. (This requires a more
complex receiving architecture like that used
in MIMO systems, SIMO without RF-MG.)

e) A four-element mobile array with four coher-
ent receiver chains able to perform beam-
forming for gain while moving over 100
independent samples of a Rayleigh distributed
fading process and able to select the best loca-
tion (SIMO with RF-MG).
A Monte Carlo study is performed across

1000 trials for each antenna configuration. Each
trial has up to 100 possible locations for mobility
and up to four independent antenna fades. The
mobile radio nodes are assumed to store the fad-
ing observed at each of the 100 locations and
have the ability to return back to the optimal
location.

Figure 5 shows the results for the five cases.
The leftmost red curve (a) is the baseline case
and shows the cumulative distribution function
of typical Rayleigh fading in an NLOS environ-
ment where the radio node cannot move or
beamform. This curve shows the statistical prob-
ability of having a certain loss at the start of
each run. For example, it shows that 10 percent
of the fades have a loss of 10 dB or more, and
50 percent have a loss of –1.7 dB or more.

The green dot-dash curve (case b) shows
using four antennas with selection diversity. The
curve is the complementary cumulative distribu-
tion function (CCDF) of the process when the
radio selects the best antenna out of the four. In
this case 50 percent of the time, the RF-MG is
2.8 dB for 50 percent of the nodes in an NLOS
environment, where the RF-MG is found by tak-
ing the difference between the CCDF of (b) and
the CDF of the baseline case (a) at 50 percent
probability.

n Figure 5. RF-MG analysis for various numbers of antennas.
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The blue solid curve (case c) shows the CCDF
for the same RF fading process, but the SISO
radio node can now move and sample 100 dis-
crete locations on the fading map and picks the
best location. In this case, 50 percent of the
time, the RF-MG is 8.76 dB for 50 percent of
the points.

The black dot-dash curve is for beamforming
on a four-element antenna array for architecture
(d). The solid yellow curve (case e) is the combi-
nation of four-element antenna array beamform-
ing and RF-MG over 100 independent samples
of the fading map. For case (d) with fixed loca-
tion beamforming, the gain 50 percent of the
time is 11.4 dB for 50 percent of the points. For
case (e) with SIMO beamforming and RF-MG,
the gain 50 percent of the time is 17.3 dB for 50
percent of the locations.

Another scenario of interest is to evaluative
RF-MG when the radio node experiences deep-
er fades. For example, on the baseline CDF
curve, 10 percent of the time, a fixed location
SISO radio can have fades of –10 dB or more.
Now, for case (c) with an RF-MG SISO radio,
50 percent of the time the radio can improve the
10 percent deeply faded locations to at least 8.8
dB. In this case 50 percent of the time, the RF-
MG is 18.8 dB for 10 percent of the locations in
the NLOS environment. Hence, node mobility
provides substantial gain if we compare a SISO
RF-MG node against a fixed location SISO node
that is experiencing deep fades.

A conservative interpretation of these curves
could be that for 90 percent of the time the
improvement is 5.7 dB for the SISO RF-MG,
case (c). So for 50 percent of the locations for
the baseline case (fades are –1.7 dB or worse), a
SISO RF-MG system has a gain of 7.4 dB over
90 percent of the time. This is significant gain on
the radio link that would typically require trad-
ing bandwidth or throughput for error correction
coding or spread spectrum communications.

CONCLUSIONS

Mobility gain provides a new design option for
radio systems by exploiting spatial motion.
Obtaining a many-dB improvement translates to
power saving for endurance or increased capaci-
ty. Increasing a link budget by only 3 dB is a sig-
nificant achievement. Today the best decoding
of data sources using turbo decoders and con-
catenated codes strive to reach gains of 0.5 or
1.5 dB. The cost is substantial in processing, data
manipulation, and framing. The RF-MG concept
and coordination algorithms allow the RF link to
be systematically improved by several dB with
little or no a priori knowledge of the environ-
ment.

Integrating radios with robotics to achieve
mobility gain is an extremely promising direction
for future networking research and development.

The RF-MG enabled radio nodes that partici-
pate in a cooperative network will demonstrate a
never before seen level of social behavior that
literally approaches social networking as seen
between humans.
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