arXiv:1410.0328v2 [cs.NI] 30 Apr 2015

An Open-Source Research Platform for Embedded
Visible Light Networking

Qing Wang'™

Domenico Giustiniano

I Daniele Puccinelli®

UIMDEA Networks Institute, Madrid, Spain
iUniversity Carlos III of Madrid, Madrid, Spain
§University of Applied Sciences of Southern Switzerland, Manno, Switzerland
Email: {qing.wang, domenico.giustiniano}@imdea.org, daniele.puccinelli@supsi.ch

Abstract—Despite the growing interest in Visible Light Com-
munication (VLC), a reference networking platform based on
commercial off-the-shelf components is not available yet. An
open-source platform would lower the barriers to entry to VLC
network research and help the VLC community gain momentum.
We introduce OpenVLC, an open-source VLC research plat-
form based on software-defined implementation. Built around
a credit-card-sized embedded Linux platform with a simple
opto-electronic transceiver front-end, OpenVLC offers a basic
physical layer, a set of essential medium access primitives, as
well as interoperability with Internet protocols. We investigate
the performance of OpenVLC and show examples of how it
can be used along with standard network diagnostics tools. Our
software-defined implementation can currently reach throughput
in the order of the basic rate of IEEE 802.15.7 standard. We
discuss several techniques that researchers and engineers could
introduce to improve the performance of OpenVLC and envision
several directions that can benefit from OpenVLC by adopting
it as a reference platform.

Keywords-Networked VLC, open-source platform, low-cost,
software-defined implementation, Linux driver

I. INTRODUCTION

The formidable uptake of mobile smart devices is driving
an ever increasing demand for wireless data, contributing to
the wireless spectrum crunch. As a spectrum-rich alternative to
Radio Frequency (RF), Visible Light Communications (VLC)
is attracting the interests of both researchers and engineers.
VLC also represents an appealing alternative to RF for net-
worked embedded devices, for instance in the internet of
things, wearable computing, indoor localization and vehicular
networks [1]-[3]]. In addition, the adoption of VLC would
reduce the health hazards caused by overexposure to RF.

VLC experimental research in networked embedded systems
(Networked VLC) has yet to gain momentum due to the
lack of a low-cost reference platform. The drawbacks of the
existing experimental work on VLC platforms include its lack
of openness, its failure to provide broad support for common
networking protocols, and its focus on high-end platforms [4]-
(6]

Similarly to how the introduction of the Berkeley motes
spearheaded networked embedded systems research a decade
ago, we believe that a general-purpose, low-cost, open VLC
platform would pave the way to novel networking research
directions. This paper takes an initial step toward the adoption

of VLC in networked embedded systems and introduces Open-
VLC, an open-source software-defined networking platform
for fast prototyping. OpenVLC runs on a cost-effective yet
powerful embedded board, with a unit cost of approximately
sixty dollars. The source code and electronic schematic of
OpenVLC are available at the following URL: http://openvic.
org.

In this article, we present the design and evaluation of
the open-source OpenVLC research platform. We interface
an LED-based front-end to an embedded Linux platform and
provide a set of software-based primitives, such as signal
sampling, symbol detection, coding/decoding, carrier sensing,
and communication with the TCP/IP layers of the Linux
operating system. We further design and implement a basic
Medium Access Protocol (MAC) protocol running in software
and illustrate its performance evaluation. The objective of this
first step toward Networked VLC is to provide a functional
research platform that can be easily extended according to the
directions of interest.

In its present form, OpenVLC relies on simple off-the-shelf
electronic components and only uses a basic Physical Layer
(PHY), which can be scaled to use more advanced PHYs.
Currently, OpenVLC can achieve a MAC layer throughput in
the order of the basic rate of IEEE 802.15.7 [[7], and UDP
throughput of 12.5 kb/s, operating at distances up to 1 m.

The rest of this paper is organized as follows. The system
design and implementation of OpenVLC are presented in
Sec.|lI} followed by the evaluation at MAC layer and at system
level given in Sec. Techniques that could improve the
performance of OpenVLC and several research directions that
can benefit from OpenVLC are discussed in Sec. [[V] Closing
remarks are presented in Sec.

II. OPENVLC SYSTEM DESIGN

OpenVLC is a general-purpose software-defined platform
for networked VLC. The prototype of OpenVLC is shown in
Fig.[1] It is built around the BeagleBone Black (BBB) board}
a cost-effective, user-friendly, versatile single-board computer
with a small form factor. OpenVLC consists of a BBB board,
a VLC front-end transceiver and a software-defined system
implementation. The front-end transceiver adopts a single LED

Uhttp://beagleboard.org/Products/BeagleBone+Black

http://openvlc.org
http://openvlc.org
http://beagleboard.org/Products/BeagleBone+Black

Hllummm

Fig. 1: The current prototype of OpenVLC: the front-end transceiver
of an OpenVLC node is shown on the left, and an example of inter-
node communication is shown on the right.

together with a few basic electronic components for both
transmission and reception. OpenVLC’s software components
are implemented as a Linux driver that communicates directly
with the LED front-end and the Linux networking stack. As a
result of this design choice, the VLC communication interface
can take advantage of the vast range of Linux tools. The
communication between two OpenVLC nodes is illustrated in

Fig.

A. Bidirectional Communication

The current version of OpenVLC front-end transceiver
reuses the same LED for both transmitting and receiving
light signals. Using LEDs as receivers can reduce the design
complexity and increases the resilience to ambient noise (e.g.,
sunlight and indoor illumination [8]]) with no need for addi-
tional optical filters [9]. The current design can be extended
to use photodiodes as receivers, as we will discuss in Sec.

The block diagram of the transceiver is shown in the right
part of Fig. 2] It includes a TransConductance Amplifier (TCA)
for transmission, a TransImpedance Amplifier (TIA) and an
Analog-to-Digital Converter (ADC) for reception, a tristate-
output buffer and ancillary circuitry for transmission and
reception. A software-defined Transmitter (TX)/Receiver (RX)
switch is used to change the LED operation mode between TX
and RX through the GPIO pins:

e In TX mode, the tristate buffer is enabled and encoded
signals are first amplified by the TCA and then fed to the
forward-biased LED.

e« In RX mode, the tristate buffer is disabled to avoid
current leakages to the TCA circuitry, and the light
signal is received by the reverse-biased LED. The small
photocurrent is then amplified by the TIA. Finally, an
ADC converts the output analog signals to digital signals,
which are then sent to the decoder through the Serial
Peripheral Interface (SPI).

Through the TX/RX switch and the tristate buffer, Open-
VLC can switch the LED between being TX mode and RX
mode with low latency, such that it can reliably sustain the
operation mode for one or more symbol periods. This design
offers a basic setup to implement bidirectional communication
using a single LED for VLC networks.

B. Software-Defined PHY Layer

The communication stack of OpenVLC is illustrated in the
left part of Fig. 2] Primitives are implemented to build various
PHY and MAC layer protocols in the Linux operating system.

TX, RX and TX/RX switching. In TX mode, the BBB
outputs the signal to the anode of LED for a symbol period.
In RX mode, the small photo-current is amplified by the TIA
and then sampled by the ADC and converted into a digital
signal. The BBB samples the output of ADC at a fixed interval
equal to one symbol period. Symbol boundaries are obtained
via the real-time timer of the Linux kernel and handled by our
driver. When the timer expires, the TX outputs the signal of
the symbol waiting to be transmitted and hold the signal for
a symbol period. In turn, the RX samples the output of ADC
and stores the value in a sequence that will be decoded by the
driver at a later time. The LED switches between TX and RX
mode through the software-defined TX/RX switch that runs
on the BBB.

Modulation and detection. We adopt intensity modulation
for data transmission. Binary information is mapped to the
presence (symbol HIGH) or absence (symbol LOW) of the
visible light carrier. At the transmitter, we use the On-Off
Keying (OOK) modulation and the Manchester Run-Length
Limited (RLL) code. Therefore, bit 1 is mapped to symbol
sequence LOW-HIGH, and bit 0 is mapped to HIGH-LOW. At
the receiver, demodulation is performed with direct detection.
Based on the measured voltage, the receiver detects a received
signal as a sequence of symbols HIGH and LOW that are then
converted to binary data.

Preamble. The PHY layer transmits each frame with a
fixed-length preamble, consisting of an alternate sequence of
HIGH and LOW starting with a HIGH symbol. The numbers
of HIGH and LOW symbols in the preamble are the same. To
convert symbols into binary data, an adaptive symbol detection
threshold is adopted because the received light intensity is
greatly affected by the free path loss attenuation of light
transmitted from the TX to the RX. This detection threshold
is obtained on a per-frame basis by averaging out the digital
samples of the preamble sequence. A Special Frame Delimiter
(SFD) field is appended to the end of the preamble.

C. Software-Defined MAC Layer

We define two types of MAC frame: DATA and Acknowl-
edgement (ACK). The frame format is shown in Fig. [3 If
the frame has no payload (Length=0), it is inferred to be an
ACK. Otherwise, it is a DATA frame. Each frame can carry
a payload from 0 to MAX (a predefined value) bytes. The
destination and source addresses follow the Length field and
each occupies 2 bytes. The 2-byte field Protocol identifies the
upper layer protocol encapsulated in the frame payload. Fields
from the Length to the Protocol form the MAC header. A two-
byte Cyclic Redundancy Check (CRC) over the MAC header
and payload is appended after the payload. The Reed-Solomon
(RS) error correcting code over the MAC header, payload, and
CRC is appended to the end of each frame.

Carrier sensing. Wireless MAC protocols usually employ
carrier sensing to reduce collisions. In our VLC platform, we

| Application layer |

User space

GPIQ ;
@ | Encoder TCA |—>| Tri-state buffer |—>%

| Transport layer | Kernel space GPIO LED
|TX/RX switch I ,
Transmitter
| Internet layer | BBB Front-end transceiver
—— (software part) (hardware part)
VLC supporting library
VLC MAC To/from Internet layer - GPIO Receiver
| l Encoding/Decoding | TX/RX switch I
Channel sensing L
ADC&LED operations Decoder 221 ADC |<-{ TIA k- Tri-state buffer |<- - %{’
| viceny | U R | [« 271 <1 <1 I

Fig. 2: Diagram of the front-end transceiver (right) and the communication stack of OpenVLC in an embedded Linux operating system (left).

provide two types of carrier sensing: basic sensing and fast
sensing. Both are implemented in the PHY layer and can be
invoked by the MAC layer. In basic sensing, the platform
reads a certain number of continuous symbols. The channel
is assessed to be busy if one or more symbols are detected
as HIGH symbols; otherwise it is assessed to be clear. Unlike
basic sensing, fast sensing operates on per-symbol basis. The
channel is assessed to be clear if the symbol is detected as
LOW and is assessed to be busy otherwise.

MAC access protocol. We implement a MAC layer pro-
tocol based on the primitives discussed above. We employ
a contention-based Carrier Sensing Multiple Access/Collision
Detection (CSMA/CD) MAC protocol to ensure fair channel
access among all VLC nodes and reduce the impact of
collisions [8]. When a frame is ready for transmission, the
MAC first calls the basic sensing block of the PHY layer. The
frame is transmitted immediately if the PHY layer reports the
channel is clear. If the channel is assessed to be busy, the
MAC starts a backoff counter. The counter is initialized with
an integer value randomly drawn from a uniform distribution
within the range (0, CW-1]. The contention window CW is
initialized as CWmin, where CWmin is the smallest size of the
contention window. The PHY layer keeps sensing the channel
and each time the channel is assessed to be clear, the counter
is decremented. The frame is transmitted when the counter
reaches zero.

Preamble | SFD | Length | Dst | Src | Protocol | Payload | CRC
3B 1B 2B 2B | 2B 2B 0-MAX B 2B
backoff i}frame format

mm lll m DATA
b N /\
asic sensing 0o l 1 1l o0 1 o | 1>

HIGH Mw

LOW
/T\TX mode \l/RX mode fast sensing

Fig. 3: Backoff, basic and fast sensing of the CSMA/CD protocol.
The transmitter uses OOK with Manchester coding to send data. In
the frame format: Length> 0 <=-DATA; Length= 0 <—=ACK.

Upon frame transmission, the transmitter can engage in
fast sensing. This occurs when the transmitter sends a LOW
symbol of the Manchester code, as it powers down the LED
and is therefore able to switch the LED to RX mode to
receive a symbol, as presented in Sec. The received
symbol is sufficient for fast sensing. Afterwards, the LED
is switched back to TX mode to carry on the transmission.
The transmitter alternates between TX and RX mode during
data transmission. If the transmitter detects a collision, i.e.,
the channel is assessed to be busy through fast sensing for
no less than a predefined interval, the ongoing transmission
is immediately interrupted. The illustration of the backoff
mechanism, basic sensing, and fast sensing in CSMA/CD is
shown in Fig. 3]

After successfully receiving a frame, the receiver sends an
ACK to the transmitter. If the transmitter has not received an
ACK within the timeout, it retransmits the frame and doubles
the CW (until it reaches a pre-defined CWmax threshold
that denotes the maximal size of the contention window).
The frame is dropped after a pre-defined number of failed
retransmissions.

Interfacing with the Internet layer. We implement the
MAC protocol as well as part of the PHY layer as a new
driver of the Linux operating system. The MAC protocol will
become transparent to various applications if it can connect
with the Internet layer. We implement two primitive functions
to receive a packet from the upper layer and the PHY layer,
respectively. The first function is called by the Internet layer to
move packets to the MAC layer, where they are enqueued for
transmission scheduling. The second one receives packets from
the PHY layer, checks their protocols, and decides whether
or not to send them to the Internet layer. By invoking these
two functions, any MAC protocol can easily interact with the
Internet layer.

III. EXPERIMENTAL EVALUATION

The experimental evaluation described in this section uses
the Debian Linux Distribution with kernel version 3.8.13
and the Xenomai patch. The details of the electronic devices
employed in the current version of OpenVLC can be found
in [10]. Unless otherwise specified, each node uses a symbol
period of 20 us and (216,200) Reed-Solomon error correction

MAC throughput (kb/s)
o> © B o o

w
T

o

50 100

200 400 600
Payload (bytes)

800 1000

Fig. 4: MAC layer throughput as a function of the per-frame payload.

code. All the experiments are carried out in an indoor office
environment in the presence of artificial lighting.

A. MAC layer

We evaluate the saturation throughput of OpenVLC’s MAC
layer in a two-node scenario, where the two nodes are within
each other’s Field-Of-View (FOV) and one continuously trans-
mits to the other. The throughput as a function of the per-frame
payload is shown in Fig.] where the two nodes are placed
at a distance of 0.6 m and the payload ranges from 50 to
1000 bytes. We measured a saturation throughput of up to
18 kb/s. The throughput increases as the payload increases,
ranging from 6 kb/s when the payload is 50 bytes to 18 kb/s
when the payload is increased to 1000 bytes, which also shows
the reliability of software synchronization implementation as
frame size gets longer.

B. System Level

It is possible to evaluate the performance of OpenVLC
using various traditional network measurement tools. In this
subsection, we present evaluation results obtained from the
well-known network tools ping and iperf in point-to-point
link and three-node scenarios.

The OpenVLC’s ping performance in a point-to-point link
scenario over various ping Inter-Packet Interval (IP]) settings
is shown in Fig. 5] (top-left). These results are collected from
1000 ping packets where each ping packet has 10-byte data.
From the empirical Cumulative Distribution Function (CDF)
of the Round-Trip Time (RTT)), we observe that when the IPI
is set to 0.25 s, about 90% of the packets incur a RTT below
200 ms. This value drops to 60% when the ping traffic load
increases to IPI=0.2 s as a result of the longer queuing time.

The network testing tool iperf is also used to evaluate
the performance of OpenVLC, and the evaluation results of
UDP and TCP over a point-to-point link are shown in Fig. [3]
(top-right). Here the UDP datagram size is set to 1000 bytes.
The results are collected by running the experiment for 10
minutes in each scenario and we plot the results reported by
iperf every 10 seconds. We observe that the maximal and
median achievable throughputs with UDP are about 17 kb/s
and 12.5 kb/s, respectively. As for TCP, the maximal and

median achievable throughputs are around 13 kb/s and 9 kb/s,
respectively. The throughput drops with TCP with respect to
UDP is due to the overhead and reliability features of TCP.

Furthermore, we evaluate the performance of OpenVLC in
a three-node (point-to-multipoint) network, and the results are
shown in Fig. E] (bottom). In the downlink scenario, one node
sends UDP data to the other two nodes (RX1 and RX2).
We observe that the median values of the UDP throughput
of RX1 and RX2 are around 6 kb/s. In the uplink scenario,
two nodes (TX1 and TX2) compete for the shared medium to
send data to the third one. The median values of the achieved
throughput are also around 6 kb/s, which shows a fair access
to the medium.

IV. PERFORMANCE ENHANCEMENTS AND FUTURE
RESEARCH DIRECTIONS OF OPENVLC

Currently, OpenVLC is designed using basic commercial
off-the-shelf components to implement communication net-
work among LEDs. The achieved data rate is already compara-
ble to the lowest one specified in the IEEE 802.15.7 standard,
which specifies a PHY rate of at least 11.67kb/s [7]]. In its
present form, OpenVLC already offers a flexible starter kit for
VLC research.

While most of the VLC efforts so far have targeted point-
to-point systems between resource-rich high-end nodes, to
date, resource-poor low-end nodes are instead an unexplored
research area. Exploring networked systems of resource-poor
low-end nodes would be instrumental to the adoption of
networked VLC and would require a fundamental redesign of
the communication stack. The performance of OpenVLC can
be improved to reach out other domains of research investiga-
tions, using more powerful hardware and by customizing the
software implementation to the application scenarios of choice.
In this section, we discuss a set of possible enhancements for
OpenVLC as well as future research directions based on it.

A. Performance Enhancements of OpenVLC

We begin by reviewing a list of points that could be
implemented to boost OpenVLC’s performance.

Matched filtering and timing error recovery have not yet
been implemented in OpenVLC. A matched filter serves to
maximize the signal-to-noise ratio and minimize the sym-
bol error probability. Timing error recovery is very useful
when the transmitter and the receiver are unsynchronized. To
support matched filtering, the front-end transceiver hardware
needs to be upgraded. To implement timing error recovery,
the software-defined PHY layer of OpenVLC needs to be
enhanced to detect the timing error and recover from it. The
implementation of the matched filtering as well as the timing
error recovery on OpenVLC would also help to increase the
communication range as well as the overall system stability
for higher rate communication.

The coverage of an OpenVLC node is currently limited by
the output power and FOV of its LEDs. The output power
can be increased by using high brightness white LEDs as
optical front-end. For scenarios where one OpenVLC node
acts as an access point, hardware should be extended to support

18

- I
o \
0.8} .
® @ 15
= o)
X
S 0.6f j:_;
L -
o) 212]
O 04} =)
< ' >
8 o |
= - - -IPI=0.15s|| £ o | |
g 02 - - IPI=0.2 s n
w —— IPI=0.25 s T
0 — 6
0 02 04 06 08 1 12 14
Ping packet RTT (s) Point-point link
12 12
+
— RX1 RX2 —_ TX1 X2
(2] Q oo iy
2 10 210 : |
< = ‘
= — + 5 \ |
g | g
> 8 [+ o 8 !
= >
e - e
£ £
5 o S
> ‘ o = |
" 1 1

4 1

Three—node network (Downlink)

Three-node network (Uplink)

Fig. 5: System-level evaluation results using ping and iperf.

Multiple Input Multiple Output (MIMO) LED communication,
with modulations such as optical GSSK [12]. This direction
exploits the fact that multiple LEDs are usually required for
illumination due to the limited brightness of an individual
LED. The software would also need to support the selection
and use of different LED-to-LED links.

The current prototype adopts the basic OOK modulation, but
advanced modulation schemes can also be used by adding a
Digital-to-Analog Converter (DAC) or by exploiting the Pulse-
Width Modulation (PWM) pins of the BBB. In this way, the
disadvantage of OOK in terms of inefficient bandwidth usage
can be circumvented. For OpenVLC, the current bottleneck of
the achievable date rate is the speed at which the BBB reads
symbols from the ADC (the Linux system we employ fails to
provide accurate timing past a certain speed [13]]). In turn, the
BBB can write symbols to the LED at a much faster speed.
To eliminate the current bottleneck, Field-Programmable Gate
Arrays (FPGAs) (as the one used in [14] that can be in-
terfaced with the BBB) or micro-controllers (MCUs) could
be employed for the PHY layer implementation. Using such
solutions, however, would increase the cost of OpenVLC. A
cheaper alternative is to use the Programmable Real-time Unit
(PRUs) of the BBB for dedicated implementation of time-
critical functionalities. The ARM CPU of the BBB has two
PRUs and each PRU is a low-latency 32-bit micro-controller.
To improve the performance of OpenVLC, the PRUs can be
used to implement time-sensitive sampling. Because the PRUs
can operate at 200 MHz, the performance gain from using
them would be significant.

B. Future Research Directions Based on OpenVLC

We will now discuss a number of promising research

directions that can be pursued based on the OpenVLC.

e LED-to-Photodiode communication: extending Open-
VLC to support LED-to-Photodiode communication is
straightforward. It would be very valuable to compare
the performance of LED-to-LED and LED-to-Photodiode
communications, in terms of transmission range, maximal
achievable throughput, resilience ability to ambient light,
etc.

e OpenVLC as an app: recent research has explored the
feasibility of implementing the PHY and MAC layers
of ZigBee and WiFi as downloadable pieces of software
(such as apps for smartphones) [[15]. This approach would
streamline the testing and deployment of modifications to
existing protocols and, in principle, new protocols as well.
With the PRUs of the BBB, it is possible to develop a
software on the MAC/PHY protocols of OpenVLC within
the user space of Linux without sacrificing the achievable
data rate.

o Enabling intra-frame bidirectional transmissions: a basic
choice for the PHY layer of a VLC system is the OOK
modulation with the Manchester Run-Length Limited
(RLL) line code. RLL line codes are used to prevent
flickering. With the OOK modulation and RLL line codes,
a transmitter normally does not need to emit light when
it transmits a LOW symbol. As presented in Sec.
the transmitter can then switch the LED to RX mode
to receive a symbol. Furthermore, if the receiver has
detected a HIGH symbol in current symbol slot and the

TABLE I: Summary of the possible performance enhancements and research directions of the OpenVLC platform.

Performance Enhancements Benefits for the system Need hardware | Need software Difficult Has been
& Future research directions changes? changes? Y implemented?
. -Stability
mﬁ;ﬁgfjﬁfgﬂggg -Throughput Yes Yes Medium No
-Communication distance
(CI_(I)II;IIH Eﬁgﬁ;igscﬁ\é%aif MIMO) -Communication coverage Yes Yes Medium No
Advanced modulation scheme -Throughput No/Yes Yes Medium No
FPGA for the PHY -Throughput Yes Yes Hard No
MCU for the PHY -Throughput Yes Yes Medium No
PRUs for the PHY (kernel space) -Throughput No Yes Hard No
PRUs for the PHY (user space) -Throughput No Yes Medium No
LED-to-photodiode communication -To be verified Yes Yes Easy No
OpenVLC as an app -Fast testing and deployment No Yes Hard No
Intra-frame bidirectional transmissions | -Throughput No Yes Medium Yes [11]
Integration with -Stabilit
RF fc;ornrnunication -Commlilnication flexibility Yes Yes Hard No

HIGH symbol is the first part of a modulated bit, then
the receiver can switch the LED to TX mode to transmit
a symbol during the next symbol slot. Therefore, the
receiver can embed data into the current frame it is re-
ceiving. This technique enables intra-frame bidirectional
transmissions that can increase the system throughput to a
significant extent. We have successfully implemented this
technique using OpenVLC and the details can be found
in [[11].

e Integration with RF communication: In order to provide
backward compatibility with previous embedded systems,
one may think of designing hybrid communication net-
works that are built on top of both visible light and RF
communication. This may allow to exploit the advantage
of both technologies, and use them in the most appropri-
ate channel and network conditions.

A summary of these research directions together with the
performance enhancements of OpenVLC is given in Table [I}

V. CONCLUSION

In this paper, we presented the design, implementation,
and performance evaluation of OpenVLC, an open source
platform designed to enable VLC research in the field of
networked embedded systems. OpenVLC’s paramount goal is
to demystify VLC and lower the barriers to entry to VLC
research for embedded systems researchers. Much like the
Berkeley motes demystified low-power wireless a decade ago
and paved the way to a decade’s worth of rich and active
research in wireless sensor networks, we believe that an
open reference platform may open up the unexplored area of
networked VLC for embedded devices. OpenVLC leverages
the recent diffusion of powerful but cost-effective embedded
Linux platforms to provide a reference platform that can be
used jointly with a vast array of Linux tools. OpenVLC also
shows how a handful of commercial off-the-shelf components
can suffice as a starter kit for VLC research. Going forward,
we hope that OpenVLC can serve as a bridge between the VLC
community and the wireless embedded systems community.
We envision that research groups in embedded systems with

no prior VLC experience can use OpenVLC to explore the
realm of visible light, while research groups with a solid VLC
background can easily expand OpenVLC and enrich its set of
functionalities, for instance with more sophisticated hardware
and more advanced PHY designs.

ACKNOWLEDGEMENT

This article has been partially supported by the Madrid
Regional Government through the TIGRES5-CM program
(S2013/1CE-2919).

REFERENCES
[1]
[2]

X. Zhou and A. T. Campbell, “Visible light networking and sensing,”
in Proceedings of the ACM Workshop on HotWireless, 2014, pp. 55-60.
L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao, “Epsilon: A visible light
based positioning system,” in Proceedings of the USENIX NSDI, 2014,
pp. 331-343.

C. B. Liu, B. Sadeghi, and E. W. Knightly, “Enabling vehicular visible
light communication (V2LC) networks,” in Proceedings of the ACM
VANET, 2011, pp. 41-50.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communi-
cation: potential and state-of-the-art,” IEEE Communications Magazine,
vol. 49, no. 9, 2011, pp. 56-62.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb,
C. Kottke, V. Jungnickel, and K.-D. Langer, “High-speed visible light
communication systems,” [EEE Communications Magazine, vol. 51,
no. 12, 2013, pp. 60—66.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella,
“3.4 Gbit/s visible optical wireless transmission based on RGB LED,”
Optics Express, vol. 20, no. 26, 2012, pp. B501-B506.

“IEEE standard for local and metropolitan area networks—part 15.7:
Short-range wireless optical communication using visible light,” IEEE
Std 802.15.7-2011, 2011, pp. 1-309.

D. Giustiniano, N. Tippenhauer, and S. Mangold, “Low-complexity visi-
ble light networking with LED-to-LED communication,” in Proceedings
of the IFIP Wireless Days (WD), 2012, pp. 1-8.

H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, H. Haas, and
D. O’Brien, “Demonstration of a Bi-directional visible light commu-
nication with an overall sum-rate of 110 Mb/s using LEDs as emitter
and detector,” in IEEE Photonics Conference, 2014, pp. 132-133.

Q. Wang, D. Giustiniano, and D. Puccinelli, “OpenVLC: Software-
Defined Visible Light Embedded Networks,” in Proceedings of the ACM
Workshop on Visible Light Communication Systems, 2014, pp. 1-6.

Q. Wang and D. Giustiniano, “Communication networks of visible
light emitting diodes with intra-frame bidirectional transmission,” in
Proceedings of the ACM CoNEXT, 2014, pp. 21-28.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12] W. Popoola, E. Poves, and H. Haas, “Error performance of generalised
space shift keying for indoor visible light communications,” IEEE
Transactions on Communications, vol. 61, no. 5, 2013, pp. 1968-1976.
J. H. Brown and B. Martin, “How fast is fast enough? Choosing between
Xenomai and Linux for real-time applications,” in Proceedings of the
Real-Time Linux Workshop, 2010, pp. 25-27.

S. Videv and H. Haas, “Practical space shift keying VLC system,” in
Proceedings of the IEEE WCNC, 2014, pp. 405-409.

Y. Park, J. Yu, J. Ko, and H. Kim, “Software radio on smartphones:
Feasible?” in Proceedings of the ACM HotMobile, 2014, pp. 1-6.

[13]

[14]

[15]

BIOGRAPHIES

Qing Wang (qing.wang@imdea.org) is currently a PhD student with the
IMDEA Networks Institute as well as the University Carlos III of Madrid.
He received his Bachelor’s and Master’s degrees from the University of
Electronic Science and Technology of China (UESTC), Chengdu, China, in
2008 and 2011, respectively. He also received a Master’s degree from the
University Carlos III of Madrid in 2012. His interests include visible light

communication, device-to-device communication, stochastic optimization, and
performance evaluation.

Domenico Giustiniano (domenico.giustiniano@imdea.org) is a Research
Assistant Professor at IMDEA Networks Institute. He was formerly a Senior
Researcher and Lecturer at ETH Zurich and a Post-Doctoral Researcher at
Disney Research Zurich and at Telefonica Research Barcelona. In 2008, he
was awarded a Ph.D. in Telecommunication Engineering from the University
of Rome Tor Vergata. Dr. Giustiniano devotes most of his current research
to emerging areas in the field of wireless networking and pervasive wireless
systems, including visible light communication networks and mobile indoor
localization.

Daniele Puccinelli (daniele.puccinelli@supsi.ch) is a Senior Research Scien-
tist at the University of Applied Sciences and Arts of Southern Switzerland
(SUPSI). He holds a Ph.D. in Electrical Engineering from the University of
Notre Dame (USA). His research interests include networked embedded sys-
tems, low-power wireless networking, pervasive computing, and information
technology for energy efficiency.

	I Introduction
	II OpenVLC System Design
	II-A Bidirectional Communication
	II-B Software-Defined PHY Layer
	II-C Software-Defined MAC Layer

	III Experimental Evaluation
	III-A MAC layer
	III-B System Level

	IV Performance Enhancements and Future Research Directions of OpenVLC
	IV-A Performance Enhancements of OpenVLC
	IV-B Future Research Directions Based on OpenVLC

	V Conclusion
	References
	Biographies
	Qing Wang
	Domenico Giustiniano
	Daniele Puccinelli

