
1

Live Service Migration in Mobile Edge Clouds
Andrew Machen, Shiqiang Wang, Kin K. Leung, Bong Jun Ko and Theodoros Salonidis

Abstract—Mobile edge clouds (MECs) bring the benefits of the
cloud closer to the user, by installing small cloud infrastructures
at the network edge. This enables a new breed of real-time
applications, such as instantaneous object recognition and safety
assistance in intelligent transportation systems, that require very
low latency. One key issue that comes with proximity is how to
ensure that users always receive good performance as they move
across different locations. Migrating services between MECs is
seen as the means to achieve this. This article presents a layered
framework for migrating active service applications that are
encapsulated either in virtual machines (VMs) or containers.
This layering approach allows a substantial reduction in service
downtime. The framework is easy to implement using readily
available technologies, and one of its key advantages is that it sup-
ports containers, which is a promising emerging technology that
offers tangible benefits over VMs. The migration performance of
various real applications is evaluated by experiments under the
presented framework. Insights drawn from the experimentation
results are discussed.

Index Terms—Cloudlet, containers, edge/fog computing, ser-
vice migration, virtualization

I. INTRODUCTION

Cloud-based mobile applications have become increasingly
popular over the recent years [1]. One key issue therein
is to ensure that services are always delivered with good
performance. The current centralized structure of the cloud
has led to a generally large geographical separation between
the users and the cloud infrastructure. In such a setting, end-to-
end communication between user and cloud can involve many
network hops resulting in high latency; the ingress bandwidth
to the cloud may also suffer from saturation as the cloud
infrastructure is accessed on a many-to-one basis [2].

A promising approach for resolving the above problems
is to install computing infrastructures at the network edge.
Particularly for real-time applications such as instantaneous
object recognition [3] and safety assistance in intelligent
transportation systems (ITS) [4], service applications have to
remain in relatively close proximity to their end users in order
to ensure low latency and high bandwidth connectivity. This
is captured by the newly emerged concept of mobile edge
clouds (MECs) [5], as well as similar concepts such as cloudlet

A. Machen was with Imperial College London and IBM, United Kingdom,
when this work was performed. Email: andrew.c.machen@gmail.com

S. Wang, B. J. Ko, and T. Salonidis are with IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, USA, Email: {wangshiq, bongjun ko,
tsaloni}@us.ibm.com

K. K. Leung is with Imperial College London, United Kingdom. Email:
kin.leung@imperial.ac.uk

This is the author’s version of the paper accepted for publication in IEEE
Wireless Communications.
c©2017 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Centralized Cloud

MEC 2 MEC mMEC 1

Mobile 
User 1

Mobile 
User 2

Mobile 
User n

Migration

Movement

Fig. 1: Mobile edge cloud (MEC) architecture

[2], fog computing [4], follow-me cloud [6], mobile micro-
cloud [7], and small cell cloud [8]. While these different
concepts may propose slightly different implementations, they
all suggest placing small cloud infrastructures at the network
edge so that users can have seamless connection to cloud
services. In particular, MECs are typically placed only one
or a few network hops away from the mobile user, thus the
communication latency can be kept very low. The ingress
traffic into the backhaul network can also be reduced, because
large amounts of data can be processed directly at the edge. It
is envisioned that MECs will co-exist and work in unison with
the existing centralized cloud that we have today, as shown in
Figure 1.

To maintain the benefits of running services close to the
user, when a mobile user moves away from its original
location, its service may need to be migrated to a new
MEC server that is near the current user location [6]. This
article focuses on systems aspects of live service migration in
MEC environments. The main challenge is how to maintain
relatively low service downtime and overall migration time.
We address this challenge with a layered framework which
decomposes a cloud application into multiple layers so that
only those layers that are missing at the destination are
transferred. Our framework applies to both virtual machines
and containers and can be readily implemented with existing
tools. To the best of our knowledge, this is the first systematic
study on live migration of MEC applications in a container-
based environment.

In the rest of this article, we first summarize the motivation
and background, then propose our layered framework for live
service migration and its experimentation results.

ar
X

iv
:1

70
6.

04
11

8v
2 

 [
cs

.D
C

] 
 2

 A
ug

 2
01

7



2

II. LIVE SERVICE MIGRATION: MOTIVATION AND
BACKGROUND

The need for live service migration in MECs can be
illustrated with the example shown in Figure 1. Here, mobile
user 2 is initially connected to its service running on MEC 1.
The direct connection between user 2 and MEC 1 ensures
low-latency access to the service. However, after some time,
user 2 moves to a location that does not have direct connection
to MEC 1; it has direct connection to MEC 2 instead. As
shown in [9], connecting to MEC 1 in such cases would
incur a significantly higher latency (due to backhaul network
communication) than connecting to MEC 2 directly. It can be
therefore beneficial to migrate user 2’s service from MEC 1
to MEC 2, so that user 2 can continue enjoying low-latency
access to its service. Such live migrations may be frequently
required, especially in vehicular applications where it is likely
that the users have high mobility.

Service migration can be classified into stateful and stateless
migrations. Stateless migration does not move application
running states, it only redirects the user requests to a new
server with a separate instance of the service running. This
is applicable for applications which do not keep states for
users. However, for interactive services that are becoming
increasingly popular today, such as active safety warning,
mobile multimedia, and mobile online gaming, it is very
likely that the application needs to keep some state for each
user. We therefore focus on stateful migration in this article,
which involves moving running states of applications. We con-
sider the stateful migration of a guest operating system (OS)
hosting service applications, where a user receives service
for a continuous period of time, and the service application
may need to keep some internal state for the user (e.g.,
some intermediate data processing results). After migration
is completed, programs resume exactly where they left off
before migration, thus the migration is classified as live. The
user starts to receive service before migration occurs, and it
continues receiving service after migration.

Optimization of Migration Decisions: Migration can incur
service interruption as well as computation and communica-
tion resource overheads. Therefore, the decision on whether,
when, and where to migrate depends on many aspects, such as
user mobility, communication channel characteristics, resource
availability at MECs, etc., which is a sophisticated optimiza-
tion problem. In essence, there is a trade-off between the cost
of migration and the benefit after migration. Algorithms for
making migration decisions need to balance this trade-off.
They usually need to predict the future service demands with
some accuracy or buffer service requests in queues so that they
can be served in batches possibly after migration. Readers are
referred to [7], [10] on how live migration decisions can be
formulated as optimization problems and how to solve these
problems.

Execution of Live Migration : An active systems research
challenge is how to efficiently execute live migration in a
practical cloud system containing MECs. We first recall that
services running on a cloud platform are likely to have OS
and application dependencies that need to be met by their host

system. Therefore, a service application is often encapsulated
into its own self-sufficient and pre-configured environment for
easy distribution. Current examples of such an environment are
the well established hypervisor-based virtual machines (VMs),
or the relatively new technique, containers. Both technologies
allow the creation and running of multiple isolated guest OSs
on top of a host OS. The main difference between the two
technologies is that VMs fully emulate the OS kernel and
hardware, whereas containers directly share the hardware and
kernel with their host machines. As a result, containers occupy
much less resources and have lower virtualization overhead
than VMs, but are less adaptable, e.g., a Linux container
cannot run on a Windows server.

Recent effort towards the implementation of service migra-
tion in MEC environments has focused on VM migration [9].
Container migration is a relatively new area which has not
been systematically studied in the literature. As containers
usually have a much smaller size than VMs, it can be very
beneficial to run container-based applications on MECs that
have limited storage and processing capability. Thus, a natural
question to ask is how to support the live migration of
containers. We particularly would like to support container live
migration without drastically changing the existing container
implementations, so that minimal effort is required to add this
functionality to existing systems.

We should also note that there are existing VM live migra-
tion methods for cloud environments [11]. However, most of
them are built for data centers, requiring the use of storage
area networks (SANs) and shared storage. Moreover, these
methods are usually specific to the underlying virtualization
technology. The method presented in this article is designed
to work over wide area networks (WANs) which is envisioned
to be the way that MECs are interconnected, and it is a generic
mechanism that applies for different types of containers and
VMs.

III. A LAYERED FRAMEWORK FOR LIVE MIGRATION

We present a generic layered migration framework using
incremental file synchronization, which works with both con-
tainers and VMs. A benefit of this framework is that it is built
based on readily available functionalities in most container
and VM technologies that are popular today, which means
that one does not need modify the internals of container and
VM implementation in order to apply this framework.

We focus on LXC (linuxcontainers.org) and KVM (www.
linux-kvm.org) as representative technologies for containers
and virtual machines, respectively. LXC and KVM are chosen
for their popularity, and their ability to run Linux-built appli-
cations without modification. We note that this article focuses
on the migration of back-end application components between
different MECs, where LXC and KVM are applicable because
the server often has a Linux-based operating system. The core
idea of the method we use for live migration is derived from
[12], which proposed an LXC live migration mechanism. We
have largely extended [12] so that our approach works with
multiple layers (see below), applies (with minor alterations) to
the live migration of KVM and undoubtedly other container
and VM technologies as well.

linuxcontainers.org
www.linux-kvm.org
www.linux-kvm.org


3

In the following, we first describe a basic procedure that we
have developed for performing stateful live migrations in MEC
environments. Then we describe our layered framework built
on top of this basic procedure that optimizes live migration
time further.

A. Basic Procedure of Stateful Live Migration in MECs

To migrate an application, the in-memory state of a running
guest OS is recorded, transferred, and then recreated at the
destination. The in-memory state includes the applications,
system processes, and resources currently loaded into memory
for quick access. It contains the progress (state) of running
applications, including any data that the application is cur-
rently working on. Transferring the in-memory state makes it
possible to restore an application exactly from where it was
suspended.

The migration framework we present uses accessible tools
that already exist in container and VM technology. In LXC,
this goes by the name of checkpointing, and in KVM, saving.
Both methods suspend the guest OS (at which point the service
is temporarily stopped) and save down the in-memory state
of the guest OS into one or more files that can be easily
transferred. Complementary tools exist to restore the guest OS
from their checkpoint (or save).

After the in-memory state is saved into files, the next step
is to use a file transfer protocol to transfer the guest OS’s
filesystem (i.e., all files saved on the hard disk of the guest OS)
and saved in-memory state1. For this we use incremental file
synchronization, namely in the form of rsync – a well-known
file syncing tool (rsync.samba.org), to compress and transfer
files. A major difference of incremental file synchronization
over other basic file transfer protocols is its ability to identify
and transfer only those files, or parts thereof, which are
different from those already located at the destination. This
can substantially reduce the amount of data that needs to be
transferred, particularly with our layered framework presented
next.

B. Layering

The problem with migrating an encapsulated service directly
using the above basic live migration procedure is that the
“package” contains the guest OS, virtualization data, and, for
VMs, the system kernel, which are required to make the ser-
vice self-contained. A base package with no services installed
can have a size that tips the scale at about 400 MB and 2.7 GB
for LXC and KVM, respectively. Our experiments using the
live migration method discussed above have shown that, for a
100 Mbps bandwidth connection, the average migration time
for a base package is 25 seconds and 160 seconds for LXC

1Note that besides the filesystem and in-memory state, we also need to
transfer any additional files/data related to the container or VM virtualization
itself. We do not specifically discuss those additional portions of data, and
only emphasize on the main part of data being transferred. Also, the filesystem
and in-memory state may be saved into a single file (in the case of a VM
image) or multiple files (in the case of containers). We do not separately
discuss them since rsync can find differences in two single files as well as
multiple files.

Base
(e.g. Ubuntu

Server)

Application 1
(e.g. Game

Server)

Application 2
(e.g. Face
Detection)

Instance 1

Instance 2

Instance 3

Base Layer Application Layer Instance Layer

Fig. 2: The three-layer model, where the dashed box outlines
the additional building block (i.e., the application layer) that
does not exist in the two layer model.

Source:
Start migration

Destination: Instance found

Destination: App found

Destination: Base found
Destination:

Clone base as app

Source to destination:
rsync base filesystem

Destination:
Clone app as instance

Source to destination:
rsync app filesystem

Source:
Suspend instance

Source to destination:
rsync instance

filesystem & in-
memory state

Destination:
Restore instance

N

N

N

Y

Y

Y

Fig. 3: Flow chart of the migration mechanism for live-
migrating with the three-layer model, where rsync is used
for incremental file synchronization. The dashed box outlines
the additional building block (i.e., operations related to the
application layer) that does not exist in the two layer model.

and KVM, respectively, during which time the service is down
and may appear as an unresponsive or frozen application.

In our approach, we aim to reduce service downtime (i.e.,
time of service interruption) and overall migration time (i.e.,
time from the beginning till the end of the whole migration
process) through the use of layers. Abstractly, we can separate
the base package (that includes the guest OS, kernel, etc., but
with no applications installed) into a layer separate and distinct
from its service applications. We call this package the base
layer. This base layer is generic and all MECs shall have a
copy of it. The service applications and their running states
are placed within a separate layer called the instance layer.
Assuming the base layer exists at the destination, when we

rsync.samba.org


4

want to migrate a service, we first suspend the service and then
transfer only the instance layer to the destination. A running
service can be reconstructed from a combination of the base
and instance layers. By removing the need to transfer the base
package in every migration, we can drastically cut down the
amount of data that needs to be transferred, and in turn reduce
the service downtime and overall migration time.

We extend this two-layer approach further, by splitting out
the application from the instance layer into an intermediate ap-
plication layer that contains an idle version of the application
and any application-specific data. The instance layer now only
needs to contain the running state (i.e., in-memory state) of a
service. When we want to migrate a service, the application
layer can be migrated first whilst the service is running, then
the service is suspended and the instance layer is transferred to
the destination. A running service can be reconstructed from
a combination of the base layer, instance layer, and associated
application layer. By doing this, we are able to transfer the
majority of an encapsulated service’s program and data before
suspending the service, leaving only the running state transfer
to count towards the service downtime. This three-layer setup
is shown in Figure 2, and is referred to as the three-layer
model.

The intermediate application layer of the three-layer model
has advantages other than improvements to service downtime.
A distinct application layer allows the application and its
related data to be distributed independently of a running
service. Through smart pre-distribution of services, possibly by
application caching based on demand prediction, the overall
migration time can be reduced to only the time it takes to
migrate the instance layer.

In the current implementation, a layer contains its unique
data (including files and possibly in-memory state) plus all the
data from its preceding layers. We achieve pseudo-incremental
layering for migration, by first cloning a lower layer (e.g.,
application layer), and then using incremental file synchroniza-
tion to transfer only the difference between that and the higher
layer (e.g., instance layer) we want to recreate. This process
of cloning and incremental file synchronization is repeated
depending on what layers are missing at the destination, the
complete migration process is shown in Figure 3. The time
to start the migration and the destination of migration can
be determined by an optimization algorithm, see [7], [10] for
details.

IV. EXPERIMENTATION RESULTS AND DISCUSSIONS

We study the live migration performance of our layered
framework for a variety of applications. We ran experiments
in three “host” VMs connected to an emulation framework,
where the emulation framework is the open-source Common
Open Research Emulator (CORE) [13]. The host VMs were
each given 2 virtual CPU cores and 2 GB of virtual memory
from a physical machine with 2.6 GHz Intel Core i7 and a
total of 16 GB 1600 MHz DDR3 memory. Two host VMs
acted as MECs, between which migration was carried out,
and the third host VM acted as a user requiring MEC service.
Unless otherwise specified, the bandwidth between MECs was

configured as 100 Mbps with only system-inherited latency
and jitter. The connection between each MEC and the user was
configured with 100 Mbps bandwidth, 25 ms latency, and 5 ms
jitter. These connection specifications are typical for wide-area
wired networks and local wireless networks, on which MECs
and their users operate. They are much more inferior than
network connections in data centers. Migration times were
calculated by a migration script at each stage of the migration
process. We use rsync for incremental file synchronization and
the amount of transferred data was measured using Wireshark.

Nested KVM and LXC, which contain running applications,
were run inside the two host VMs that mimic MECs. The guest
OS of the nested KVM and LXC was Ubuntu 15.10. Note that
the base OS image sizes for KVM and LXC are different due
to their different virtualization mechanisms, but this has no
bearing in our results since, in our experiments, the base layer
resides in every MEC and is not included in the migration. As
we see below, the installation footprint of applications can be
larger for LXC than for KVM, because the Ubuntu installation
of LXC has fewer packages included as standard. As such, the
installation of any missing packages is counted into the LXC
application size.

We studied the migration of the following applications using
our migration framework presented above.

1) Game Server runs the sauerbraten-server package, a
server for the online game Cube 2. It sends and receives
regular packets related to player location and other
match statistics. The installation footprint is very small
(0.7 MB), as is the memory requirement (approximately
1 MB).

2) RAM Simulation is a simple script (approximately
0.1 MB) that consumes a large amount of RAM, where
the exact RAM consumption is user-defined and the
RAM contents keep changing over time. It represents
memory intensive applications, such as those that pro-
cess large data sets or perform complex calculations
(e.g., big data analysis, training of deep neural networks,
etc.). Unless otherwise specified, RAM utilization is
maintained at around 330 MB.

3) Video Streaming uses the vlc-nox package (approxi-
mately 280 MB for LXC, 230 MB for KVM) to stream
video to a user. A 50 MB video file is stored with
the application at the MEC. Video Streaming has a low
memory requirement (approximately 30 MB).

4) Face Detection uses the OpenCV library to process an
incoming video stream. It detects faces in the video
received, and sends the detection result, embedded into
each video frame, back to the user. This application has a
very large installation footprint (approximately 655 MB
for LXC, 565 MB for KVM), and a moderate memory
requirement of approximately 100 MB.

5) No Application is a guest OS with no applications
installed, and therefore requires no additional resources.
It represents the overhead, or minimum bound, on mi-
gration.

The experimentation results (averaged over 10 independent
experiments in each case) are shown in Table I and Fig-



5

TABLE I: Migration results for two-layer and three-layer configurations.

LXC Total Migration Time 2 layers 3 layers
(app not found)

3 layers
(app found)

LXC Service Downtime
LXC Total Data Transferred 2 layers 3 layers

No Application 6.5 s 11.0 s 6.3 s 2.0 s 2.0 s
1.4 MB 1.9 MB 1.4 MB

Game Server 7.3 s 10.9 s 6.4 s 3.0 s 2.0 s
2.2 MB 2.7 MB 1.6 MB

RAM Simulation 20.2 s 27.2 s 19.8 s 15.4 s 15.3 s
97.1 MB 97.6 MB 97.1 MB

Video Streaming 27.5 s 37.3 s 8.5 s 23.2 s 3.3 s
180.2 MB 184.6 MB 7.4 MB

Face Detection 52.0 s 70.1 s 15.5 s 47.6 s 3.7 s
363.1 MB 365.0 MB 10.0 MB

KVM Total Migration Time 2 layers 3 layers
(app not found)

3 layers
(app found)

KVM Service Downtime
KVM Total Data Transferred 2 layers 3 layers

No Application 81.5 s 141.8 s 79.7 s 55.8 s 56.1 s
65.3 MB 65.9 MB 65.2 MB

Game Server 84.7 s 142.0 s 80.9 s 60.2 s 58.7 s
71.5 MB 72.3 MB 69.7 MB

RAM Simulation 95.9 s 152.2 s 93.0 s 72.5 s 72.0 s
170.0 MB 178.4 MB 170.4 MB

Video Streaming 120.9 s 189.7 s 86.4 s 93.9 s 61.3 s
251.3 MB 270.5 MB 87.3 MB

Face Detection 381.2 s 558.3 s 152.3 s 355.0 s 107.5 s
1,027.3 MB 1,033.7 MB 99.0 MB

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

No Application

Game Server

RAM Intensive App

Video Streaming

Face Detection

LXC Migration Time [s]

Clone base as app rsync app filesystem Clone app as instance Suspend instance
rsync instance filesystem rsync instance in-memory state Restore instance Other remaining tasks

0 50 100 150 200 250 300 350 400 450 500 550 600

No Application

Game Server

RAM Intensive App

Video Streaming

Face Detection

KVM Migration Time [s]

Fig. 4: Application migration time broken down by stages, for the three-layer model when the application has not been found
at the destination. The hatched stages represent those that contribute towards service downtime.



6

0 100 200 300 400 500 600
0

50

100

150

RAM Usage [MBytes]

M
ig

ra
tio

n
Ti

m
e

[s
]

LXC
KVM

1 10 100 1,000
0

200

400

600

Bandwidth [Mbps]

M
ig

ra
tio

n
Ti

m
e

[s
]

LXC
KVM

Fig. 5: Total migration time under different RAM usage and
bandwidth, for RAM Simulation application.

ures 4 and 5. For a particular setup, the service downtime
is always smaller than the total migration time, because the
total migration time also includes the time taken for cloning
and data transfer (during which the service remains running).
The time required for different migration stages are unequal
for different applications, as shown in Figure 4, due to the
different installation and RAM occupation sizes. This aligns
with the layered abstraction discussed earlier. For example, the
time required for rsyncing the application filesystem is related
to the application installation size, and the time required
for rsyncing the instance in-memory state is related to the
application’s RAM usage.

A. Container vs. Virtual Machine

Although it is understood that containers are more
lightweight than VMs, a quantitative view on the difference
in their migration performance does not exist in the literature.
The container-supported migration framework presented above
allows us to provide such a quantitative view and draw further
insights.

We can see from the experimentation results that for all the
example applications shown, LXC has a clear advantage over

KVM in terms of total migration time, service downtime, and
amount of transferred data. This is mainly because containers
are more compact and the filesystem and in-memory contents
of a container is mostly relevant to the application; whereas
the filesystem and in-memory contents of a VM can be
related to many other background processes irrelevant to the
considered application, and rsync (or any other incremental
file synchronization mechanism) needs to remotely compare
a larger amount of data and may not be able to filter out
everything that does not belong to the application.

From Figure 5 (top), we see that for the RAM Simulation
application, the migration times of both LXC and KVM are
approximately linear in RAM utilization. This linear rela-
tionship is because the amount of in-memory state data that
needs to be transferred is proportional to the RAM usage. The
lower bound on RAM usage represents the overhead required
to migrate LXC or KVM. Depending on the application’s
RAM utilization, we can migrate approximately up to 19x
the number of containers compared to VMs within the same
amount of time. That said, the relative advantage of LXC
over KVM is reduced as the RAM utilization increases. At
400 MB of RAM usage, LXC is 5x faster to migrate than
KVM; whereas at 600 MB of RAM usage, LXC is only 4x
faster to migrate than KVM.

Figure 5 (bottom) shows that the relative advantage of LXC
over KVM increases as bandwidth increases. At 1 Mbps,
LXC is 2x faster to migrate than KVM, whereas at 10 Mbps
LXC is 4x faster. We found in our experiments that the data
transmission rate is capped by how fast rsync is able to
compare files and compress data. When the bandwidth is over
50 Mbps, the migration time remains about the same, where
LXC is 8x faster to migrate than KVM.

Containers also have their shortcomings though. By relying
on the host system for both the hardware and kernel, they
are less adaptable than VMs. They can be nested within
VMs to regain their adaptability, but this is likely to degrade
performance. Instead, it is advisable that MEC infrastructure
is chosen to ensure container compatibility, in as much as the
OS (most likely a Linux derivative) being consistent across
the MEC network.

There are also considerations other than performance that
will need to be addressed, notably security, in order for con-
tainers to be recommended over VMs in all scenarios. Security,
a pre-requisite for any enterprise software, is a serious concern
with containers, as unlike their VM counterparts they are not
fully isolated from their host system, and can therefore be
more susceptible to attack from a compromised host.

B. Two Layers vs. Three Layers

From the experimentation results, we see that most appli-
cations respond positively towards the three-layer model. For
LXC, when the application has been found at the migration
target, Table I and Figure 4 show that the Video Streaming
and Face Detection applications have significant reductions in
the total migration time compared to using only two layers,
in the orders of 3x for both. Even more significant is the
reduction in service downtime for these applications, in the



7

orders of 7x and 13x, respectively. This service downtime
reduction is particularly important for a seamless experience
for the end user. The most significant is the reductions in the
amount of data transferred over the network for migration,
which are respectively in the orders of 24x and 36x. This
is particularly important for bandwidth or time constrained
connections. Total migration times and data transfers for
the Game Server, RAM Simulation, and No Application do
not improve significantly, but are also not worse than with
two layers when the application is found at the migration
target. The relative reductions in total migration time and data
transfers are smaller for KVM, because the application and
associated data count for a smaller proportion of the total size
of a KVM virtual machine.

We note that Video Streaming and Face Detection both have
large filesystems compared to RAM Simulation and Game
Server, and it is from this the three-layer model derives its
benefit. The larger the application or associated data, the
greater the benefit from introducing an intermediate layer. This
can be seen in Figure 4, which shows how the migration of
application data can account for a significant portion of the
total time it takes to migrate an application.

The three-layer model does have a downside, in that if the
application has not been found at the migration destination, the
total migration time can be longer than with only two layers,
because additional time is required for cloning the application
into an instance and rsyncing the third layer (see Figure 4).
However, the service downtime (which is usually the more
critical factor for MEC applications) remains the same no
matter whether the application is found at the destination or
not, because the service is suspended only after the application
layer (containing an idle application) has been transferred.

Therefore, it is apparent that the benefits of the three-
layer model need to be balanced with any trade-offs incurred.
Factors such as how frequently the application is used and how
much service downtime impacts the user experience should be
taken into account when deciding whether to use two or three
layers. Such decisions have to be made based on application
characteristics. For example, it may be better for applications
with small installation sizes and intensive RAM utilization to
use only two layers for quicker migration.

A practical implementation of an MEC system can support
both two-layer and three-layer models, since their underlying
mechanisms are similar. The system can perform some simple
profiling of applications and historical migration performance,
and it can decide whether to use two or three layers on a case-
by-case basis in real time.

V. OPEN ISSUES

Our current implementation of containers uses the default
directory backing store, and as a result, each additional layer
duplicates the entire filesystem of the previous layer plus the
new data. For a layered setup like the one we demonstrated, a
more ideal solution would be to try using an overlay filesystem
such as overlayFS, which allows the sharing of lower-layer
files with different upper layers. This would provide a much
more efficient usage of storage, and is much closer to the

abstract model. However, LXC currently does not support
overlayFS yet (as of version 1.1.5).

Another way of potentially improving performance, es-
pecially service downtime, would be to investigate the use
of iterative migration. Iterative migration is the process of
transferring memory pages whilst the service is running, so
that when the service is finally suspended and migrated, in
theory, only a small portion of the remaining in-memory state
needs to be transferred.

For our experiments, LXC offered the greatest ease for
running different applications without specialist knowledge
in order to set them up. Other container technologies exist,
among them Docker (www.docker.com) which has become the
de facto standard for containerization. Future research should
investigate whether Docker or other container technologies
offer a better overall solution. To answer this question, con-
sideration should be given as to what technology is likely
to receive wide-spread adoption from industry, and therefore
have the greatest impact. An interesting development to this
is the work being carried out by the Open Container Initiative
(www.opencontainers.org) which aims to create an open indus-
try standard around container formats and run-times. Extensive
industrial backing and a foundation based on Docker’s format
and run-times makes this a group to follow.

Besides migrating back-end applications between different
MEC servers, another interesting aspect that is worth studying
is the “vertical” migration of code and data between the
mobile device and MEC, to strike a balance among device
resource consumption and service quality. This is also known
as application/computation offloading [14]. The challenge here
is that the mobile device’s operating system is often different
from the server’s operating system. A proper encapsulation
mechanism that works on both platforms is needed to facilitate
the migration. Since the layered framework presented in this
article is applicable to a general class of encapsulation methods
that supports the suspension of applications, we envision that
a similar approach can be applied to live migration between
mobile device and MEC. A detailed study on the vertical
migration can be conducted in the future.

Future work should also study the live migration perfor-
mance under large-scale networked MEC systems. The perfor-
mance of migration decision making in large-scale MEC en-
vironments has been mainly studied using simulations, where
no real application migration is carried out [7], [10]. We have
focused on the other end of the problem in this article, namely
the implementation of live migration itself. In the future, it is
worthwhile to study the migration of real applications in a
realistic, large-scale networked system, which would connect
the theoretical results in [7], [10] with the systems work in
this article.

VI. SUMMARY

We have presented a layered framework for service migra-
tion in MECs. The framework supports both container and VM
technologies, and it can be easily implemented using existing
functionalities of popular container and VM implementations.
Extensive experimentation results on the performance of dif-

www.docker.com
www.opencontainers.org


8

ferent approaches for various applications under different sce-
narios have been presented. In general, the three-layer model
with a container-based encapsulation environment gives the
best overall performance, but other options may be preferred in
specific cases, as discussed. The three-layer model also allows
the pre-caching of popular applications at MECs, so that the
time required for future instantiation of such applications can
be shortened. In addition, as migration is performed on the
entire container or VM, the underlying service applications
do not need to be specifically modified to support migration.
This makes it easy to run existing applications in the migration
framework. A future implementation may also specify an
optional interface between the framework and the application,
so that the application can announce when it prefers or does
not prefer to be migrated, thereby improving the migration
performance.

ACKNOWLEDGEMENT

Some preliminary results only on the three-layer model were
presented as a 2-page poster abstract in [15]. This article
provides more comprehensive discussion and experimentation
results.

Andrew Machen’s contribution to this work was performed
while he was affiliated with Imperial College London and IBM
U.K.

This research was sponsored in part by the US Army
Research Laboratory and the UK Ministry of Defense and
was accomplished under Agreement Number W911NF-16-3-
0001. The views and conclusions contained in this document
are those of the author(s) and should not be interpreted as
representing the official policies, either expressed or implied,
of the US Army Research Laboratory, the US Government,
the UK Ministry of Defense or the UK Government. The
US and UK Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[2] M. Satyanarayanan, R. Schuster, M. Ebling, G. Fettweis, H. Flinck,
K. Joshi, and K. Sabnani, “An open ecosystem for mobile-cloud con-
vergence,” IEEE Communications Magazine, vol. 53, no. 3, pp. 63–70,
Mar. 2015.

[3] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards wearable cognitive assistance,” in Proc. of ACM MobiSys,
2014.

[4] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
Jun. 2016.

[5] “Mobile-edge computing – introductory technical white paper,” Sept.
2014. [Online]. Available: http://www.etsi.org/technologies-clusters/
technologies/mobile-edge-computing

[6] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” IEEE Network, vol. 27, no. 5,
pp. 12–19, Sept. 2013.

[7] S. Wang, “Dynamic service placement in mobile micro-clouds,” Ph.D.
dissertation, Imperial College London, 2015.

[8] Z. Becvar, J. Plachy, and P. Mach, “Path selection using handover in
mobile networks with cloud-enabled small cells,” in Proc. of IEEE
PIMRC 2014, Sept. 2014.

[9] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satya-
narayanan, “Adaptive VM handoff across cloudlets,” Technical Report
CMU-CS-15-113, CMU School of Computer Science, Tech. Rep., 2015.

[10] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in IFIP Networking Conference, 2015. IEEE, 2015, pp.
1–9.

[11] V. Medina and J. M. Garcı́a, “A survey of migration mechanisms of
virtual machines,” ACM Comput. Surv., vol. 46, no. 3, pp. 30:1–30:33,
Jan. 2014.

[12] T. Andersen. (2014, Sep.) Live migration of Linux containers. [Online].
Available: https://tycho.ws/blog/2014/09/container-migration.html

[13] J. Ahrenholz, “Comparison of CORE network emulation platforms,” in
Proc. of IEEE MILCOM Conference, 2010, pp. 864–869.

[14] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, Sept. 2013.

[15] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Poster:
migrating running applications across mobile edge clouds,” in Proc. of
ACM MobiCom 2016, Oct. 2016.

http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
https://tycho.ws/blog/2014/09/container-migration.html

	I Introduction
	II Live Service Migration: Motivation and Background
	III A Layered Framework for Live Migration
	III-A Basic Procedure of Stateful Live Migration in MECs
	III-B Layering

	IV Experimentation Results and Discussions
	IV-A Container vs. Virtual Machine
	IV-B Two Layers vs. Three Layers

	V Open Issues
	VI Summary
	References

