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Abstract
The unprecedented growth of wireless data 

traffic not only challenges the design and evolu-
tion of the wireless network architecture, but also 
brings about profound opportunities to drive and 
improve future networks. Meanwhile, the evolution 
of communications and computing technologies 
can make the network edge, such as BSs or UEs, 
become intelligent and rich in terms of computing 
and communications capabilities, which intuitively 
enables big data analytics at the network edge. In 
this article, we propose to explore big data analyt-
ics to advance edge caching capability, which is 
considered as a promising approach to improve 
network efficiency and alleviate the high demand 
for the radio resource in future networks. The 
learning-based approaches for network edge cach-
ing are discussed, where a vast amount of data can 
be harnessed for content popularity estimation and 
proactive caching strategy design. An outlook of 
research directions, challenges, and opportunities 
is provided and discussed in depth. To validate the 
proposed solution, a case study and a performance 
evaluation are presented. Numerical studies show 
that several gains are achieved by employing learn-
ing-based schemes for edge caching.

Introduction
The proliferation of smartphones has substantially 
enriched the mobile user experience, leading to 
a vast amount of emerging multimedia services, 
including video streaming, Internet and mobile 
gaming, social network applications, and so on. 
Such dramatic changes of different types of con-
tents result in an interesting phenomenon on data 
and content distribution, that is, the same pop-
ular contents may be requested many times at 
different time instants but at a similar location, 
which has motivated mobile operators to rethink 
the current network architecture, and seek more 
sophisticated and advanced techniques to bring 
contents closer to end users with low latency and 
in a cost-efficient way [1]. In this context, moving 
contents’ proximity to the network edge and pro-
actively caching popular contents, such as at base 
stations (BSs), namely infrastructure caching, or at 
user equipments (UEs), namely infrastructureless 
caching, are recognized as promising solutions for 
enabling data services with low latency and alle-
viating heavy traffic load at cellular backhaul [2]. 
For example, in a vehicular network, a roadside 
unit can cache popular content, such as traffic or 

weather information, and distribute it to the vehi-
cles in proximity in infrastructure caching, while 
the vehicles can pre-cache and disseminate the 
content for other nearby vehicles in infrastruc-
tureless caching. In general, two closely related 
problems need to be addressed for edge cach-
ing: content placement and content delivery. The 
content placement problem is to determine what, 
where, and when to cache, and the content deliv-
ery problem is to find a way to deliver the content 
to end users. In wireless networks, content deliv-
ery can be realized via the access scheme, such 
as cellular downlink or device-to-device (D2D) 
communications. The content placement prob-
lem, however, heavily relies on the accuracy of 
the prediction of user requirement and content 
popularity, and caching strategy design, which 
draws great efforts in network edge caching 
research.

To accurately predict the demand for data 
content, users’ demand profiles can be tracked, 
recorded, and built by leveraging the massive 
amount of available data. Moreover, the widely 
deployed online social networks have become an 
enabler for content sharing and distribution. As a 
matter of fact, users who have similar backgrounds 
and interests or close social relationships tend to 
rank the data content in a similar way [3]. Thus, 
the correlation of social and geographic data, as 
well as the history data of users, can be utilized 
for better prediction of user demand. However, 
the large-scale data also poses a major obstacle 
for efficiently utilizing an intelligent edge caching 
mechanism. Thanks to the recent advances in 
the computing and storage of BSs and UEs, big 
data analytics [4], for example, machine learning 
schemes, can be explored and implemented even 
to the network edge to analyze and extract the 
features of the collected data from end users and 
make more accurate caching decisions. 

In fact, as most traditional approaches for 
addressing an unexpected growth of data traffic 
are becoming ineffective in terms of scalability and 
flexibility, big data analytics has been recognized 
as an innovative way to manage future wireless 
networks and cope with the challenges brought by 
the data explosion [4]. In today’s networks, wire-
less data is generated on a very large scale from 
various sources, with different quality and trust lev-
els. The induced 4V features (volume, velocity, vari-
ety, veracity) not only pose immediate challenges 
to conventional network management operations, 
but also bring profound opportunities for estab-
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CONTENT-CENTRIC COLLABORATIVE EDGE CACHING IN 5G MOBILE INTERNET lishing a smart and intelligent network. In the con-
text of edge caching, as it is unlikely to provide an 
accurate caching prediction based on one dimen-
sion of data from one single end user, big data 
analytics schemes, in particular, machine learning 
mechanisms for large scale multi-dimensional data 
from various resources, are indispensable [5]. In 
this work, we examine the potentials and challeng-
es of utilizing machine learning in network edge 
caching design.

In this article, we first overview the concepts 
and architectures of network edge caching and 
the need for sophisticated big data analytics 
approaches. Then we briefly introduce the big 
data analytics schemes proposed for wireless net-
works. Moreover, we leverage machine-learning-
based approaches for enabling big-data-enabled 
edge caching, and provide detailed discussions 
on its potential for performance gain and future 
research directions and architectures to accom-
modate machine learning schemes in caching 
development. To validate the proposed solution, 
we consider two case studies and present the cor-
responding performance evaluation.

Network Edge Caching:  
Concepts and Challenges

Caching at the edge of the wireless network is 
a promising way to boost network throughput, 
improve energy efficiency (EE), decrease service 
latency, and reduce traffic load of the cellular 
backhaul. These improvements are rooted in the 
fact that popular contents are brought to the net-
work edge to be reused by many UEs.

Infrastructure Caching
As shown in Fig. 1, it is expected that a data cen-
ter/fog node with data storage can be deployed 
at the BS level, for example, at existing macro BSs 
(MBSs) and small BSs (SBSs). Compared to data 
caching or fetching in the core network or even 
at a higher level, edge caching at the BSs essen-
tially alleviates backhaul congestion. Moreover, it 
is also possible to deploy new dedicated caching 
entities with cabled backhaul or dedicated wire-
less backhaul to enable a flexible and cost-effec-
tive method of content distribution. As caching 
more data can generally increase the cache-hit 
probability and alleviate the required backhaul 
capacity, but at the cost of distributed storage, the 
trade-off should be investigated. Moreover, as the 
BS usually has more powerful computing units, it 
is also able to provide an accurate prediction of 
the data demand.

Infrastructureless Caching
Today’s smart devices, such as smartphones and 
tablets, usually have large storage capacities that 
are typically underutilized. Infrastructureless cach-
ing, that is, caching at the device level, can be 
implemented efficiently and effectively by uti-
lizing these storage spaces. By device caching, 
the traffic load of the BS and core network can  
be further alleviated, and are made available for 
other operations [2]. As illustrated in Fig. 1, there 
are two kinds of device caching. One is that with 
known or estimated content popularity or user 
demand, popular contents can be pushed to the 
UEs via broadcast or unicast. Such a process can 

also be referred to as content push, self-caching, 
or pre-fetching (Fig. 1). In practice, due to the 
involved energy consumption, a user may not be 
willing to cache contents for others. Therefore, 
energy consumption investigation is important 
in this context and has been studied in [3, 6]. In 
addition, how to motivate users to cache contents 
is also of research interest [6].

If the contents are not cached at a local device 
but in the UEs in proximity, a D2D communica-
tion link can be established to deliver the contents. 
In D2D caching, as shown in Fig. 1, a BS can uti-
lize the available information of data popularity 
and user location, and cache popular contents at 
given UEs that are willing to share their storage 
with others. Recent studies have shown a profound  
performance gain in terms of throughput and EE 
achieved by D2D caching [6].

Related Works and Challenges
The investigation of caching strategies basical-
ly focuses on the core issues: when, how, and 
what to cache [1]. In addition, an edge caching 
mechanism needs to address another challeng-
ing issue: where to cache. Most existing research 
works focus on the content placement and con-
tent delivery problems in edge caching. For the 
infrastructure caching design, there are several key 
features to be explored, that is, content popularity, 
social relations [3, 7], user preference, cache size, 
as well as estimation or data uncertainty. For infra-
structureless caching, the authors of [1] discuss the 
importance of exploring where, what, and when to 
cache and share data. The authors of [6] focus on 
extracting the inherent social relations of the devic-
es to encourage D2D caching and pushing. Based 
on the above observation, we summarize the key 
features, challenges, and approaches of the edge 
caching schemes in Fig. 2.

In fact, content popularity, which is one of the 
key parameters for caching accuracy, is time-vary-
ing and usually unknown in advance. Moreover, 
how to utilize different features of the previously 
requested data to improve the tracking and esti-

FIGURE 1. Caching at the network edge.
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mation of timely content popularity is an important 
issue. Moreover, the locations of the UEs are also 
time-varying and the prediction of spatio-tempo-
ral users’ behavior requires dedicated efforts. All 
such data uncertainties may pose great obstacles 
for next-step analysis, and also make the proposed 
schemes vulnerable to the upcoming data and 
device explosion. Therefore, employing machine 
learning technology in the design of caching poli-
cies has great potential to improve the system per-
formance in the emerging big data era.

Learning for Caching at the Network Edge
In the following, we first briefly summarize the 
typical big data analytics schemes in the design 
of wireless networks as shown in Fig. 3 and dis-
cuss the machine learning scheme for edge cach-
ing development. It is worth noticing that some 
big data analytics schemes may have inherent 
connections. For example, some of the machine 
learning schemes can be classified as general data 
mining schemes or vice versa, and some statistical 
modeling schemes can be considered as broad 
data mining schemes.

Big Data Analytics for Future Networks
Stochastic and Statistical Modeling: Using 
probabilistic models, stochastic-modeling-based 
methods can capture the explicit features and 
dynamics of the data traffic and the deployment 
of network elements. Commonly used stochastic 
models include the K-Markov model (KMM), hid-
den Markov model (HMM), stochastic geomet-
ric model, time series, linear/nonlinear random 
dynamic systems, and so on, which have been 
applied to address the problems of energy har-
vesting analysis, data traffic control, prediction of 
BS sleeping and user association, and so on [4].

Statistical modeling is a simplified mathemat-
ical method to approximate reality and make 
predictions from the approximation. Statistical 

modeling is a popular tool for channel modeling, 
measurements, deployment and traffic analysis, 
multiple-input multiple-output (MIMO) systems, 
and so on [8].

Data Mining: Data mining focuses on extract-
ing and exploiting the implicit structures in the 
datasets. Data-mining-based schemes have been 
widely applied to solving the security problems, 
such as intrusion and anomaly detection, and 
those of self-organizing networks (SONs), such 
as self-optimization, self-healing, and many others 
[5].

Distributed and Dynamic Optimization: Dis-
tributed optimization techniques, such as primal/
dual decomposition and alternating direction 
method of multipliers (ADMM), are useful to 
decouple large-scale data transmission and anal-
ysis problems into several small subproblems for 
parallel computing so as to relieve both the com-
putational burden at the fog node or in the cloud, 
and to alleviate bandwidth pressures at the fron-
thaul/backhaul links.

Machine Learning: The main objective of 
machine learning is to establish a functional rela-
tionship between input data and output actions 
in order to obtain an auto-processing capability 
for patterns of data inputs. Based on whether the 
data is labeled or not, machine learning can be 
generally categorized into two groups: supervised 
and unsupervised learning. In supervised learning, 
the goal is to establish a function from labeled 
training data (input and output data), while unsu-
pervised learning is to infer a function to describe 
the hidden structure from unlabeled data.

In addition, based on how learning is per-
formed, there are several other learning schemes, 
such as transfer learning, deep learning, and rein-
forcement learning. In the following, we break 
the traditional categorization of machine learning 
and introduce some learning schemes that have 
been or have the potential to be applied for edge 
caching.

Machine Learning Schemes for Edge Caching
Classification and Regression Analysis: Among 
the many useful techniques in supervised learning, 
classification and regression analysis are two com-
mon methods that have been applied to context 
identification of mobile usage and prediction of 
traffic levels (classification) and content demand. 
Regression analysis relies on a statistical process 
for estimating the relationships among the vari-
ables. The goal of regression analysis is to pre-
dict the value of one or more continuous-valued 
estimation(s). Although supervised learning may 
obtain relatively good caching decisions, some 
pre-knowledge is required to label the data, which 
in practice may not be possible when there is not 
sufficient information about the users in the net-
work.

Clustering: In unsupervised learning, cluster-
ing is used to identify the different patterns in the 
datasets. It can be applied to edge caching design 
by clustering numbers of UEs into different groups 
based on their behavioral and data request history 
information [7]. Then the edge node can predict 
the data demand based on the interests or social 
relations of the entire group and cache the con-
tent that attracts the most UEs in the group. It can 
be found that proximity measure among groups 

FIGURE 2. Summary of the edge caching schemes.
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should be carefully chosen for implementing clus-
tering schemes and has a great impact on the 
algorithm performance.

Reinforcement Learning: Reinforcement learn-
ing (RL) focuses on how a machine or agent 
determines the proper actions automatically to 
optimize its performance. In RL, reward feedback 
is required for the machine to adapt its behavior 
from the environment. Basically, RL is about the 
decision making process instead of simply learn-
ing from the data. There are some attempts to 
apply RL in caching design [9, 10]. Typical exam-
ples are applying Q-learning to perceive the data 
request probability or popularity distribution, and 
the statistics of the random arrival of data or UEs 
by finding the Q-value. The multi-armed bandit 
learning scheme [10] has also been applied to 
edge caching design by properly designing the 
reward of caching.

Transfer Learning: Transfer learning (TL) focus-
es on storing knowledge gained while solving one 
problem and applying it to a different but related 
problem. In other words, TL allows one to deal with 
some problems by leveraging the already existing 
data of some related tasks. Generally, by leverag-
ing user-content correlations and the information 
from some other domains, such as social networks 
or location, the aim of utilizing transfer-learn-
ing-based schemes is to enhance the estimation 
of content popularity [11]. However, a TL-based 
scheme may face difficulty when source and target 
problems have few relations. Therefore, when the 
information from another domain is not as related 
to content demand, the TL-based scheme may not 
provide accurate decisions for caching.

Deep Learning Approach: Deep learning (DL) 
investigates a deep, multi-layered, and hierar-
chical architecture of data learning and distrib-
uted representation, where higher-level, more 
abstract features are defined by lower-level fea-
tures [12]. Due to its hierarchical architecture, 
DL schemes enable automatic abstraction and 
feature extraction from the underlying data. As 
for edge caching, DL-based schemes are able to 
make accurate caching decisions in some cases. 
Among DL architectures, we have used a deep 
neural network (DNN) for the caching design 
and provide a DNN-based scheme for optimiz-
ing content delivery in edge caching. A DNN is 
an artificial neural network with several hidden 
layers between the input and output layers. Com-
pared to the  conventional iterative optimization 
methods, the DL-based approach can provide a 
good approximation to the optimal content deliv-
ery solution with significant complexity reduction. 
However, It is worth noticing that it may require a 
large amount of data for training.

Similarity Learning Approach: Generally, 
similarity learning has been applied to super-
vised learning. In similarity learning, the learning 
machine is given pairs of examples that are con-
sidered similar and pairs of less similar objects. 
It needs to learn a similarity function (or a dis-
tance metric function) that can predict whether 
new objects are similar. Similarity learning can 
be applied to edge caching by identifying the 
similarity among UEs with similar data demands 
and selecting the UEs who can act as edge cach-
es. However, the system should have sufficient 
knowledge of the UEs in order to perform simi-

larity learning for accurate decisions. We provide 
a case study and examine the effect of similarity 
learning below.

Developing Learning-Based Edge Caching: 
Challenges and Future Directions

The performance of the edge caching algorithm 
heavily depends on the knowledge of content 
popularity among a number of users, which is usu-
ally observed in a large area and over a very long 
period. However, the temporary content popu-
larity in practice varies largely from time to time 
and is usually not in line with certain distribution. 
Therefore, knowing temporary content popular-
ity is of importance to design efficient proactive 
caching algorithms. Investigating a machine-learn-
ing-based scheme may bring a new way of edge 
caching development. However, there are still 
many challenges ahead concerning the amount of 
data and computational resources, learning pro-
cess, accuracy, efficiency, privacy, and security. 
In the following, we introduce the obstacles that 
may prevent leaning-based caching design and 
point out possible research directions.

Cold-Start UE and Data Sparsity
The cold-start problem is very prevalent in the 
machine-learning-based system. To implement the 
learning-based scheme for edge caching, data or 
information on the UEs within range is necessary. 

FIGURE 3. Big data analytics for wireless networks: approaches and applica-
tions.
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However, this requirement sometimes cannot be 
satisfied due to the mobile and dynamic nature 
of wireless networks. When the UEs enter a new 
cell, the BS has no sufficient prior knowledge of 
the new UEs. Thus, it cannot obtain accurate esti-
mation of the demand and cache the possible 
requested data by leveraging machine learning 
without sufficient data. There are some possible 
solutions for addressing the cold-start UE prob-
lem. One is to explore protocol design for col-
laborative edge caching. By designing protocol, 
the edge node can request information from the 
central cloud/core network or other edge nodes 
regarding the new UEs and execute the caching 
decisions. Moreover, the edge node may also 
be able to check the cache or its record of the 
UEs provided that the security and privacy can be 
guaranteed. In addition, it is of profound impor-
tance to investigate effective machine learning 
schemes to analyze the limited available data, and 
estimate the usefulness of the data, to overcome 
the data sparsity.

Integration of Machine Learning at the Edge: 
Efficiency and Accuracy

In edge caching, the machine-learning-based 
schemes face many new challenges concerning 
data processing and analysis. Both data sparsi-
ty and high density pose challenges for the 
learning and training process. Moreover, some 
learning-based schemes can be computational-
ly prohibitively expensive. Therefore, it is worth 
investigating whether data preprocessing is 
needed to extract knowledge from the raw data 
before the machine learning process. In addition, 
limited computing resources also pose stringent 
constraints on operating the learning process in 
a sustainable way. The computing resources may 
be insufficient to process the high-dimensional 
data and make accurate caching decisions. Thus, 
how to tightly integrate machine learning at the 
network edge for great consolidation to improve 
the intelligent functionalities of the edge, from 
both the academic and industrial perspectives, 
is significant. Efficient learning schemes for mas-
sive high-dimensional data should be developed 
in order to provide accurate prediction of the 
cached data at the network edge. Radio resourc-
es, computational efficiency, and EE should be 

seriously considered when designing a machine 
learning scheme. In addition, investigation of the 
trade-off between the consumed resources, such 
as computing units, spectrum, and energy, and 
accuracy of prediction, is highly practical and vital 
for the caching strategy design at the network 
edge.

Security and Privacy
In order to provide an accurate caching strate-
gy, a large volume of data should be collected 
and processed at the network edge or even at 
the central core network. A large amount of data 
that are collected for strategy design may be 
exposed to active attackers or passive eavesdrop-
pers. Moreover, by applying machine learning 
schemes, the outcome and extracted information 
contain much sensitive and critical personal infor-
mation, and any leakage can cause serious confi-
dentiality, security, and privacy concerns. Utilizing 
the social network also poses security and privacy 
issues as the learned data is also from other UEs. 
For example, in vehicular networks, the route and 
destination of a vehicle may be predicted, and the 
map and transportation status can be pre-cached. 
However, if such information is not secure, the 
safety of the vehicle may face some problems. 
To secure the edge caching system, security and 
privacy-preserving schemes should be developed 
not only in the transmission/collection domain, 
but also in the data processing, access, and stor-
age domains, and to both edge nodes and UEs. 
In particular, the sophisticated cryptographic pro-
tocol, authentication/access control, secure inter-
face design, anomaly detection, and prevention 
mechanisms should be explored.

Hierarchical Collaborative Edge Caching Structure for 
a Learning-Based Scheme

As discussed, the inherent features create many 
obstacles toward efficiently utilizing machine 
learning approaches in edge caching. For exam-
ple, a UE may not have authority to obtain others’ 
data and information. Meanwhile, the computing 
capabilities of the UEs may not be sufficient to 
learn from the data. Thus, the UEs may not be 
able to make D2D caching decisions themselves. 
Moreover, due to the limited computing resourc-
es at the edge node and the mobility of the UEs, 
one single BS or other edge nodes may not exe-
cute the entire learning and caching process. 
Based on the above observations, a hierarchical 
edge caching structure as shown in Fig. 4 should 
be considered for edge caching.

To cope with the problems of caching at the 
device level, the caching decision should be made 
in the BS domain. The BS can utilize the data (at 
both the individual and social levels) from UEs, 
execute the learning process, and identify the UE 
that should act as the cache for other UEs and the 
content in which the other UEs are interested. For 
example, as shown in Fig. 4, when considering a 
home environment, the UE may be willing to cache 
the content and share it with other UEs. In addi-
tion, when the BS acts as the cache (e.g., in a stadi-
um), it should be able to obtain the information or 
data from many UEs, and leverage the computing 
capabilities and UE information from other BSs or 
core networks to perform collaborative network 
caching via learning schemes. Within such a hierar-

FIGURE 4. Hierarchical edge caching structure.
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chical structure, the backhaul between the BS and 
core networks, and radio resources among the BSs 
should be utilized to carry out (abstracted) data 
transmission. As such, the limitation caused by data 
sparsity and insufficiency computing resources may 
be overcome, along with limited radio resources, 
the overhead of signaling, and sophisticated algo-
rithm design.

Case Study and Numerical Results
In this section, two case studies are conducted to 
evaluate the learning performance in infrastruc-
ture and infrastructureless caching. We use the 
datasets from a real-life cellular network, Alexan-
derplatz in the city of Berlin, provided by Euro-
pean project MOMENTUM (publicly available 
data: www.zib.de/momentum). The entire serving 
area is divided by thousands of pixels. Each pixel 
represents a small square area, where the signal 
strength between each pixel and BS is derived 
from real measurements. The BSs’ locations, 
antenna heights, mechanical tilts, electrical tilts, 
and azimuths are pre-optimized.

Machine/Deep Learning for Infrastructure Caching
In the first case study, we integrate unsupervised 
learning, deep learning, and optimization algo-
rithms to edge caching. A sub-area is extracted 
from the dataset consisting of seven cache-en-
abled BSs with orthogonal channel allocation. 
Each cell serves 100–200 randomly distributed 
UEs in its converge area/pixels. The objective is 
to optimize the energy consumption in data trans-
mission, such that all the UEs’ file/data requests 
can be satisfied in a timely manner. Conventional 
optimization algorithms may fail to support online 
decision making in real-time systems due to the 
high computational complexity in optimal content 
delivery. By introducing learning approaches, we 
aim at providing an efficient solution with com-
petitive performance. The whole procedure can 
be organized in two phases. In the first phase, 
we use unsupervised learning (e.g., K-means 
clustering) to partition the UEs in each cell into 
10–20 clusters based on their channel conditions 
and history information. In the second phase, 
based on the clustering result, we enumerate all 
the groups among the clusters, then selectively 
and sequentially schedule these cluster groups 
to transmit data to serve UEs. The optimal solu-
tion can be obtained by some iterative algorithms 
(e.g., see the linear programming formulations 
and the exact algorithms in [12–14]), but the pro-
cess is time-consuming. We then train a DNN, 
and let it learn how the optimal decisions behave 
with input parameters (channel conditions and 
UEs’ file requests). After training, the well-trained 
DNN helps us to establish a predicting system to 
tackle the most difficult and time-consuming part 
of optimization. The resilient back-propagation 
scheme is advocated as the learning heuristic for 
supervised learning in the DNN training stage. 
The DNN’s output design is tailored. For example, 
the DNN returns a K-dimension binary vector. 
The kth element of the vector indicates wheth-
er the kth cluster should be scheduled alone or 
simultaneously transmitted with other clusters. 
Relying on these types of output information, one 
can significantly reduce the searching space in 
the optimization process, for example, excluding 

a large number of non-optimal groups. Thus, an 
overall efficient solution for content delivery can 
be expected.

We compare the performance of the proposed 
learning-based solution (“LBS” in Table 1) with 
three content delivery algorithms, that is, simplex 
algorithm (“Alg.1”) [12], column generation algo-
rithm [13] (“Alg.2”), and a near-optimal algorithm 
[14] (“Alg.3”), where Alg.1 and Alg.2 are optimal, 
and Alg.3 is heuristic. First, we evaluate the average 
CPU time in computations (seconds per instance) 
in Table 1. The computing time is counted from 
the moment of giving a new input to a well-trained 
DNN or to the algorithms until obtaining the final 
(feasible) solution. From the results, the average 
computation time in LBS is much less than all the 
other algorithms, and is insensitive to the network 
scale. Second, we evaluate the DNN performance 
in terms of training time and prediction accura-
cy. In general, the training time linearly increases 
with the training set size. For training a mature 
DNN, the process can be completed in around 
dozens of seconds. When the training is sufficient 
(e.g., training by thousands of datasets), one can 
expect a high-quality prediction by the DNN. On 
average, over 90 percent of tested cases, the 
DNN’s predicted results are consistent with the 
optimal results. Third, we show the LBS’s capabil-
ity in approximating the optimal energy. We use 
the 100-UE instances for illustration. Based on the 
accurate DNN predictions, LBS is able to progres-
sively improve its energy saving performance in the 
training, around 8 percent gaps to the optimum 
(336.8 J). The near-optimal solution (Alg.3) has 
similar energy saving performance, around 5–13 
percent gaps to the optimum, but with much more 
CPU time. Therefore, toward online optimization 
in edge caching, adopting learning approaches 
in content delivery is promising to achieve com-
petitive performance and meanwhile enables less 
computation time.

Similarity Learning for D2D Caching
In this case, we consider applying similarity learn-
ing for D2D caching design and evaluate the 
user satisfaction based on the hit probability. It 
is assumed that there are several transmit UEs 

TABLE 1. Performance of the proposed learning-based solution.

CPU time (s) in computations

Number of UEs per cell LBS Alg.1 Alg.2 Alg.3

100 (10 clusters) 0.046 0.16 0.15 0.11

150 (15 clusters) 0.052 0.97 0.73 0.48

200 (20 clusters) 0.085 226.7 142.9 82.4

DNN performance in LBS

Training set size 500 1000 2000 3000 5000

Time (s) in DNN training 4.9 7.2 11.85 15.6 25.3

DNN predict accuracy 52% 61% 85% 89% 92%

LBS in approximating the optimum (100 UEs per cell)

Training set size 500 1000 2000 3000 5000

Energy (optimum: 336.8J) 481.6 454.7 383.9 367.1 363.7

Gap to optimum 43% 35% 14% 9% 8%
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(TX-UEs) who act as caches and several receive 
UEs (RX-UEs) who ask for data. The BS can uti-
lize the similarity learning to find the social tie 
of two UEs, and we define the similarity of the 
UEs as their common interests over a large num-
ber of data items. A Kullback-Leibler (KL)-diver-
gence-based metric is used for obtaining the 
similarity. After finding the social tie via learning, 
we also consider the physical relations, that is, the 
link quality of D2D communications. We incor-
porate a one-to-one matching scheme for pairing 
the TX and RX UEs, and the final pairing decision 
is made based on both social and physical rela-
tions, and the goal of finding the TX-RX pair so 
that the social throughput (defined as the com-
bination of similarity ranking and data rate of the 
D2D link) can be maximized.

We examine the impact of social relations on 
user satisfaction. Figure 5 shows the cumulative dis-
tribution function (CDF) of the satisfaction for D2D 
RX-UEs, that is, the similarity of users’ preferences 
on the data between the matched D2D pairs. To 
investigate the impact of the social relations on 
D2D RX-UEs’ satisfaction, we compare our pro-
posed socially aware matching algorithm with the 
one without consideration of social information. 
In addition, the threshold of social relationships 0 
< δ < 1 (a lager δ indicates that a stronger social 
tie is needed for pairing) is also varied to see its 
impact. It is shown that when compared to the one 
without social relation consideration, the proposed 
scheme can obtain better satisfaction for users. It 
can also be seen that when d decreases, the sat-
isfaction performance also becomes worse. This is 
mainly due to the fact that for a higher threshold, 
it is more difficult for D2D TX-UEs and RX-UEs to 
form a pair, which in turn achieves a better satisfac-
tion performance.

Conclusion
In this article, big data analytics techniques, par-
ticularly machine learning mechanisms, are pro-
posed to advance edge caching capability. We 
review and categorize the current edge caching 

schemes and introduce big data analytics tech-
niques. The major families of machine learning 
algorithms are examined in the context of their 
potential applications in edge caching. The chal-
lenges, along with a long-term view of research 
directions, and opportunities are provided and 
discussed in depth. A hierarchical collaborative 
edge caching structure for implementing learn-
ing schemes is also introduced. To validate the 
proposed solution, a case study and a perfor-
mance evaluation are presented. Numerical stud-
ies show that several performance gains can be 
achieved.
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