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Abstract—Salient object detection (SOD) from raw sensor
images in the edge networks can effectively speed up the decision-
making process in the complex environments, because it simulates
the mechanism of human attention to identify salient objects from
images. The success of supervised deep learning approaches have
been widely proved SOD field. However, the imbalanced and
limited training data at each edge device pose a huge challenge
for us to deploy deep learning methods in the edge computing
environments. In this article, we propose a cloud-edge distributed
augmented semi-supervised learning architecture for SOD over
the edge networks. The framework consists of two components:
the base classification networks are employed in different edge
nodes, and the reverse augmented network is employed in cloud.
First, the base classification networks are trained with data from
edge nodes while the reverse augmented network is trained with
the whole data. Then, we concatenate each base classification
network with reverse augmented network, thus the latter network
can help the training of former network. Finally, we integrate
the outputs of all base classification network to generate the
pseudo-labels, which are used for semi-supervised learning of the
augment network. We demonstrated a convincing performance of
our semi-supervised learning framework on four bench-marked
data-sets. These results show that our augmented semi-supervised
learning framework can outperform other optimization strategies
on deep learning for the edge computing.

Index Terms—Edge computing, Salient object detection, Semi-
supervised learning

I. INTRODUCTION

Salient object detection from raw sensor images collected
from edge networks aims to segment the most informative
parts from complex environments. It is an essential step for a
wide range of application include visual tracking, visual ques-
tion answering, and person re-identification, and has attracted
a lot of attention [1], [2]. Recently, deep learning has become
an important tool for salient object detection (SOD) from
complex and massive data since its powerful ability of hierar-
chical feature mining and representation. Deep learning is also
deployed to the scenario of edge computing environments with
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promising early results. A commonly deployment paradigm is
the cloud-edge distributed structure. For example, the method
in [3] employs low-level layers of deep neural network in the
edge nodes while high-level layers in the cloud. Thus it make
use of deep feature extraction, and also alleviate network traffic
via uploading reduced intermediate data generated by edge
nodes rather than original raw data.

However, existing cloud-edge distributed deep leaning
frameworks in [4] may suffer from the imbalanced and limited
training data in different edge devices. Most of them directly
deploy deep learning algorithms to edge networks, thus their
accuracy and generalization performance heavily dependent
on the balanced and sufficient training data. However, it is
challenging to obtain the balanced and sufficient training data
in the real edge computing environment. First, it is difficult to
collect balanced data from different edge devices. For example,
if a sensor device is deployed in the market, it can collect a
lot of images of people due to a large number of customers.
Conversely, if a sensor device is deployed in the remote areas,
we can only collect limited images of people. Imbalanced data
of different senor devices may reduce the generalization of
the employed deep models. Second, it is difficult to obtain
enough labeled data. Even though many raw data can be
obtained from the devices, it is time-consuming and expensive
to label them. Therefore, it is desirable for edge computing
to develop a cloud-edge distributed deep learning framework
without requiring a large number of balanced training data.

In this article, we propose an augmented semi-supervised
learning cloud-edge framework for SOD with edge comput-
ing.The framework has a special designed cloud-edge structure
to address the imbalance and limited training data problem: the
base classification networks are deployed in edge devices for
SOD from the raw images, the reverse augmented network
is deployed in the cloud, which can act as a regularization
to the base classification networks via reconstructing images
from predicted SOD map. In particular, the reverse augmented
network is trained with whole data, thus it can act as a teacher
who further improve the base classification networks. To
exploit the unlabeled images, we first generate pseudo-labels
via integrating the predicted results of all base classification
networks. Then those pseudo-labels are also used for the
training of the reverse augmented network. Our framework
leverages the benefits of both cloud-edge paradigm and deep
learning. A large number of computing tasks on global data
are performed by the reverse augmented network on the
cloud. Only a small amount of local data is processed in
edge nodes by base classification network. At the same time,



the collaboration among deep models on the cloud and the
edge nodes guarantees the promising performance in edge
computing environments.

We can summarize the main contributions of this work here:

o We first introduce the cloud-edge distributed augmented
semi-supervised deep learning-based SOD into edge com-
puting environments. The proposed method can perform
well without requiring a large amount of balanced train-
ing data. Therefore, it is more suitable for the real edge
computing environment.

o We propose a reverse augmented network to cope with
imbalanced data problem. The reverse network is de-
ployed in cloud, and also trained on global data. Then, it
act a further supervision to regular the learning of base
classification networks deployed in edge nodes.

« We propose a pseudo-label generation strategy to address
the limited training data problem. We leverage the diver-
sity of the classification networks deployed in edge nodes
to generate different results. Then, we integrate those
results to obtain a final pseudo-label via the ensemble
method.

II. A RELOOK ON STATE-OF-THE ART

We review the supervised deep learning-based methods for
SOD followed by the semi-supervised deep learning methods.
In the end, we discuss the deep learning for edge computing.

A. Deep learning-based SOD

Supervised deep learning-based methods have been widely
examined in SOD field since its competitive performance on
SOD task. These methods can accurately and automatically
segment salient objects via training a deep neural network
from massive data. Due to its powerful ability for multi-
level and multi-scale features mining and representation, con-
volutional neural network (CNN) takes the advantage of the
coarse shape information and fine boundary information. For
instance, Wang et al. [5] employ a DNN-L network for local
feature extraction and a DNN-G network for global search.
[6] first employ a CNN to extract local features for each
superpixel, and then a the standard VGGNet to capture high-
level features. In the end, the salient object region is predict a
two-layers regression network from both high- and low-context
features. Li et al. [7] propose a multi-inputs framework. They
first decompose the image into different patches followed by
extract multi-scale features from these patches using different
parts of the whole networks. The obtained features from dif-
ferent patches are finally concatenated for SOD. However, the
above discussed works rely heavily on CNN based multi-level
and multi-scale feature extraction and classification networks.
Such a learning framework does not fully utilize advanced
semantic information. In addition, spatial information of those
features failed to be passed to the last layers of the whole
network, which lead to the loss of global information. To cope
with above issues caused by fully connected layers, the fully
convolutional network (FCN) is employed to consider pixel-
level operations. [8] designs two sub-branches in the whole
network: a segment-wise spatial pooling stream (SPS) and a

pixel-level fully convolutional stream (FCS). Then the outputs
of these two sub-branches are fused for final SOD. The work
in [9] takes the advantages of both pyramidal feature extraction
and hierarchical data collection. A pyramidal neural network
is employed to obtain thin-to-coarse feature representation
for salient objects, and the hierarchical data collection is
employed to obtain within-semantic knowledge and cross-
semantic knowledge between Different categories of data. In
addition, many sample but efficient techniques i.e. pre-training,
fine-tuning, deeply supervision and versatile architectures are
also combined into deep SOD models. However, the state-of-
art supervised learning method heavily rely on a great number
of balanced labels for training. The difficulties of collecting
such data in edge computing environments require more
advanced deep learning paradigm, such as semi-supervised
deep learning.

B. Semi-supervised deep learning

Semi-supervised deep learning aims to achieve reliable
results with limited labeled data. A common method is deep
representation learning, which can map the raw data to a low
dimension space in both unsupervised and semi-supervised
way. Recently, unsupervised adversarial training has attracted
the attention from researchers since its ability for modeling
the data distribution. Adversarial training based methods can
be divided into two main categories. First, one category that
focuses on data synthesis, or unpaired domains translation.
The another category focuses the scene with limited labeled
data. In this case, the adversarial training is used to map
the generate features into one common space. To further
exploit the unlabeled data, co-training of multi-deep nets is
proposed in classification and segmentation tasks. For instance,
the method in [10] employ three different deep network to
predicted pseudo-labels, which are then edited for model train-
ing. Semi-supervised learning is adopted in many applications
with strong generalization performance, however, it is not well
developed in edge computing environment.

C. Deep learning in edge computing

Due to the outstanding performance of deep learning in
many practical applications like computer vision and natural
language processing, there is a great impetus to apply it to
edge computing. In fact, many works [11], [12], [13] have
been done on how to make better use of deep learning
in edge computing environments. There are three common
deployment paradigms of deep learning: the edge only, the
cloud only and cloud-edge distributed. In practical application,
the first two paradigms have obvious shortcomings. On the
one hand, the edge-only paradigm requires a large amount of
computational resources to perform a deep learning algorithm
in edge nodes, on the other hand, the cloud-only paradigm
depends on the communication bandwidth between the edge
nodes and the cloud. The cloud-edge distributed paradigm [14]
is more advanced, which has real-time response and requires
less computing resource in edge nodes. However, all three
paradigm assume that there are balance and sufficient training
data, which are difficult to obtain in practice. In contrast,
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Fig. 1. The cloud-edge distributed paradigm of our framework. The base classification networks are deployed in edge nodes, each of which can only ‘watch’
the local images. The reverse augmented network is deployed in cloud, which can ‘watch’ whole images.

our proposed augmented semi-supervised learning can take
advantages of cloud-edge distributed paradigm. By leveraging
the cooperation between the cloud and the edge nodes, our
method can achieve more stable performance without suffi-
cient training data.

III. THE FRAMEWORK FOR AUGMENTED
SEMI-SUPERVISED LEARNING

A. An overview of the framework

As illustrated in Fig. 1, the base classification networks
are deployed in different edge nodes. A reverse augmented
network is deployed in the cloud. The learning process in
cloud-edge can be divided into following three steps. First,
the base classification networks are initialized based on the
local training data, and the reverse augmented network is
initialized based on the whole training data. Then, we al-
ternately concatenate each base classification network with
the reverse augmented network, thus the latter network can
help the learning of the former network. Finally, we integrate
the outputs of the classification networks to generate pseudo-
labels, which are then used for semi-supervised leaning of the
reverse augmented network.

B. Initialization

To better present our framework, we first give some basic
descriptions. For the edge computing environment, we are
given a labeled dataset and an unlabeled dataset. Those data
are collected from the all edge nodes. Note that each edge
node has its own lebeled and unlabeled sub-dataset ).

As shown in Fig. 1, we deploy a set of base classifica-
tion networks for all edge nodes. Those base classification
networks can predict salient object from the given images.

We also deploy a reverse augmented network in the cloud,
which can reconstruct the image from the given salient object
maps. A common practice to learn both the base classifi-
cation networks and the reverse augmented network is the
maximum likelihood estimation based on the parameterized
conditional distributions. In our framework, each base classi-
fication network is trained with the sub-dataset collected from
the corresponding edge node. The reverse augmented network
is trained with whole labeled data. Therefore, we only use
limited computing and memory resources to train the base
classification networks in the edge nodes, and much computing
resources to train reverse augmented network in the cloud.
But there are still two challenges. First, the generalization
performance of the base classification networks is inadequate
because it can only ‘watch’ the images of the edge node it
deployed. Though the reverse augmented network can ‘watch’
the images from all the edge nodes, it is expensive to deploy
reverse augmented network in each edge node, since it requires
a significant amount of storage and computing resources.
Second, it is difficult to label all the data collected from
sensor devices. How to exploit the unlabeled data to further
improve the model is a challenging but interesting problem
in edge computing environment. In next two subsections, we
will address the mentioned challenges.

C. Augmented learning for edge nodes

Obviously, the base classification networks and the reverse
augmented network are reverse processes of each other. We
aim to learn base classification networks and reverse aug-
mented network jointly and enable them to complement each
other via data consistent. As shown in Fig. 2, we concatenate
base classification networks and reverse augmented network,
thus that we obtain a new function as follows. The base
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Fig. 2. Semi-supervised learning. Step 1: the pseudo-labels are generated
from the base classification networks via ensemble method. Step 2: Both the
generated pseudo-labels and real labels are used for the training of the reverse
augmented network in cloud.

classification networks first predicts the salient object maps
from the observed images, then the reverse augmented net-
work regenerate the images from predicted salient object
maps. In our implementation, the function is solved based
on reconstruction loss. We argue that if the salient object is
accurately predicted by the base classification networks, the
the reverse augmented network can also accurately regenerate
original image from predicted salient object. In another word,
the reverse augmented network acts as a feacher, which can
further enhance the predicted results of the base classification
network. Because the reverse augmented network ‘watches’
at the whole images from all edge nodes, the joint training
of the base classification network and the reverse augmented
network would improve the generalization performance of the
base classification network. Thus, we call it reverse augmented
network. In our framework, we alternately concatenate each
base classification network and the reverse augmented net-
work, thus the base classification networks in all edge nodes
can be improved by the reverse augmented network.

D. Semi-supervised learning in cloud

The unlabeled data can be exploited to further improve the
deep model. In a typical edge computing environment, a large
amount of raw image data can be collected from the edge
nodes. It is important to use those raw data, which contain
more patterns.

Inspired by ensemble learning, the deep learning algorithm
deployed on the edge nodes are regraded as the base classifier.
A key issue for ensemble learning is how to learn diverse
and accurate base classifiers, thus a strong classifier can be
constructed via integrating the outputs of the base classifiers. A
commonly adopted approach in the edge computing environ-
ment is to use local data collected from different edge nodes
to train the diverse and accurate base classifiers. In our case,
the goal is not directly utilizing the base classifiers to generate

final results in real time, instead, we provide a training strategy
to exploit unlabeled based on reverse augmented network. In
particular, as illustrated in Step 1 (Fig. 2), we use a decision
function to obtain peseudo-labels from a given unlabeled
images. Then, we train the reverse augmented network with
both pseudo-labels and real labels as shown in Step 2. The
decision function in our method is implemented by commonly
used average approach.

E. Other details

We adopt FCN-net to fit our base classification networks
deployed in edge nodes. The encoder has one convolution layer
and three convolution blocks, while the decoder has a sym-
metric structure. For all convolution layers in our framework,
2D dilated CNN is employed because of its great capability
in feature extraction. For the first convolution layer, we use
three different sizes convolution kernel (32, 52, 72) to generate
hierarchical information for further learning. For the rest of
convolution layers in network, the 32 convolution kernel is
used.

For the reverse augmented network in the cloud, we de-
ployed a more powerful model to learn from a large mount
of data. Specifically, the reverse augmented network takes the
same structure of the FCN, but the difference is that dense
blocks are applied. We employ four dense blocks with 1, 4, 8§,
and 8 layers for encoder network, while the other four dense
blocks with 8, 8, 4, and 1 layers for decoder network. The 32
convolution kernel is used for all layers.

We implemented all python codes on one desktop computer
with Intel Xeon CPU 5-2650 and 64 GB DDR2 memory.
The OS of this desktop computer is the Ubuntu 16.04. We
use NVIDIA GTX1080 GPU to run all python codes over
Tensorflow. In the end, the random gradient descent is 0.9
momentum in our deep learning model. The initial value of
learning rate is set to 0.001.

IV. PERFORMANCE EVALUATION
A. Experiment setup

We perform the proposed framework on four popular public
data-sets [15]: VOS, DAVIS, FBMS, and NTT. The SOD data-
set consists of 200 videos (64 minutes) with 7,650 uniformly
sampled keyframes, which can be divided into 23 subject
scenarios. The DAVIS contains 50 high quality videos about
human, animal, vehicle, object and action with 3,455 densely
annotated frames. The Freiburg-Berkeley Motion Segmenta-
tion (FBMS) is collected for motion scenarios. This data-
set contains 59 videos with 720 sparsely annotated frames.
The NTT data-set is collected from outdoor scenarios, which
contains 10 video with individual video has 5-10s long
duration. Three evaluation metrics, such as Precision score,
Sensitivity score, and F-measure are considered to measure
the performance of our framework.

For one data-set, we deploy a specific base classification
for each scenario. For instance, in VOS data-set, we employ
28 base classification networks for 28 scenarios, each of base
classification network learned with data from corresponding
scenario. The reverse augmented network is deployed in cloud
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Fig. 3. Visual comparsion of different SOD methods. The first and second columns are images from different scenes and corresponding ground truth. The
remaining columns present the predicted results of different methods, of which the third column is the results of our method.

and learned with data from all 28 scenarios. In DAVIS data-
set, five base classification networks are deployed for five
scenarios. Then, depending on the the data scale, ten and three
base classification networks are deployed for the FBMS and
the NTT, respectively. In order to see the effectiveness of the
proposed framework with limited labeled data, we perform the
experiments with different scales of labeled data on the four
data-set.

B. Results and comparison

Fig. 3 illustrates two typical examples from four different
scenarios, i.e., zoo, car, people, and airplane. The third column
of Fig. 3 demonstrates our proposed framework. We observe
the following: the proposed method can accurately detect a)
the salient object from complex background as the zoo shown,
b) the big salient object as well as the small salient object as
the car and people shown respectively, and 3) the complex
salient object as airplane shown. The results in all four
scenarios show the effectiveness of our method in imbalanced
data environment.

In addition, Table I shows the quantitative results in terms
of Precision, sensitivity and F-measure. Our method have
achieved the promising results on four datasets, i.e., 0.871
(VOS), 0.852 (DAVIS), 0.780 (FBMS) and 0.755 (NTT) for
F-measure. Table I depicts the quantitative results of our
method when different scale of labeled data are given on
the four datasets. It is worth noting that when only 30%

of the labeled data is given, our approach still delivers a
good performance, i.e. 0.783 (VOS), 0.711 (DAVIS), 0.702
(FBMS) and 0.682(NTT) for F-measure. The results in Table II
show the effectiveness of our proposed method in limited data
environments.

We compare our method with several fully-supervised meth-
ods, i.e., FCN, CSDW, GF, and SAG [1]. Table. II summarizes
the comparison results on the four benchmark datasets. Note
that the F-measure score of our method (0.871) is higher than
CSDW (0.861) on VOS data-set. From these figures, we can
see that our method outperforms the other four methods on
all data-sets in terms of the evaluation indices satisfying the
validity and accuracy of the method.

C. Take Away Message and Future Research Direction

We designed one reverse augmented network in this paper
to improve the performance of the edge nodes, and then
to leverage the unlabeled data via an ensemble learning
strategy. However, there are still several limitations in our
work that need to be overcome: 1) how to generalize the
proposed method to more computer vision tasks and 2) how
to deploy the proposed method in real application scenarios
with minimum cost.

V. CONCLUSION

In this article, we have proposed cloud-edge distributed
augmented semi-supervised learning framework for salient



TABLE I
QUANTITATIVE COMPARISONS (PRECISION, SENSITIVITY, AND
F-MEASURE) BETWEEN THE PROPOSED METHOD AND THE COMPARED
METHODS ON FOUR BENCHMARKS

Benchmark | Parameter VOS DAVIS FBMS NTT
Precision 0.782 0.545 0.580  0.683
FCN Sensitivity  0.833 0.840 0.748  0.736
F-measure  0.802 0.663 0.647  0.704
Precision 0.870 0.534 0.589  0.690
CSDW Sensitivity  0.848 0.825 0.778  0.750
F-measure  0.861 0.650 0.665 0.714
Precision 0.633 0.421 0.447  0.450
GF Sensitivity  0.801 0.768 0.687  0.598
F-measure  0.700 0.569 0.543  0.509
Precision 0.722 0.380 0.401  0.480
SAG Sensitivity  0.771 0.819 0.756  0.608
F-measure  0.742 0.719 0.543  0.531
Precision 0.841 0.856 0.806 0.776
Ours Sensitivity  0.891 0.846 0.741  0.721
F-measure  0.871 0.852 0.780  0.755

TABLE II

QUANTITATIVE RESULTS (PRECISION, SENSITIVITY AND F-MEASURE) OF
OUR METHOD, WHICH ARE TRAINED WITH DIFFERENT SCALE OF LABELED

DATA

Labeled data | Parameter VOS DAVIS FBMS NTT
Precision 0.730 0.553 0.570  0.603

20% Sensitivity  0.762  0.652 0.611  0.624
F-measure  0.742 0.593 0.587 0.611

Precision 0.759  0.601 0.624  0.688

40% Sensitivity  0.822  0.719 0.677  0.690
F-measure  0.784 0.648 0.645  0.689

Precision 0.804  0.652 0.690 0.746

60% Sensitivity  0.861 0.782 0.732  0.751
F-measure  0.827 0.704 0.707  0.748

Precision 0.828 0.680 0.715  0.773

80% Sensitivity  0.884 ~ 0.801 0.755  0.775
F-measure  0.850 0.728 0.731 0.774

Precision 0.841 0.856 0.806  0.776

100% Sensitivity  0.891 0.846 0.741  0.721
F-measure  0.871 0.852 0.780  0.755

object detection. For each edge node, we deploy one scene-
specific base classification network for local salient object
detection. In the cloud, we deploy one reverse augmented
network to reconstruct image from salient object map. More-
over, we proposed two learning strategies to integrate the
base classification networks and the reverse augmented net-
work: 1) In order to obtain more stable performance with
imbalance data in edge environment, we jointly train the base
classification networks and the reverse augmented network via
concatenating them, thus the former network can be improved
by the former network. 2) In order to further exploit the
unlabeled data, we use the diversity of the base classification
networks to generate pseudo-labels, which are then used for
the training of the reverse augmented network. The extensive
experiments demonstrate that effectiveness of our method, as
well as its promising results with limited labeled data, and also
the superiority to the existing approaches. In the future work,
we will study how to extend the proposed method to more
computer vision tasks in real edge computing environment.
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