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Abstract—This paper presents a novel algorithm for residual
phase estimation in wireless OFDM systems, including the
carrier frequency offset (CFO) and the sampling frequency
offset (SFO). The subcarriers are partitioned into severalregions
which exhibit pairwise correlations. The phase increment between
successive OFDM blocks is exploited which can be estimated
by two estimators with different computational loads. Numerical
results of estimation variance are presented. Simulationsindicate
performance improvement of the proposed technique over several
conventional schemes in a multipath channel.

I. I NTRODUCTION

Although the Orthogonal-Frequency-Division-Multiplexing
(OFDM) technique significantly enhances the system perfor-
mance under frequency-selective fading channels, it is vulner-
able to synchronization non-idealities, including the symbol
timing offset (STO), carrier frequency offset (CFO), and
sampling frequency offset (SFO).

The previous works including [1]–[3] deal with the coarse
STO and CFO estimation in time domain before Fast Fourier
Transform (FFT). However, due to the imperfections of com-
pensation, after FFT, the residual part of CFO remains to be
corrected. Also, at this stage, SFO should be estimated and
removed; otherwise, it would lead to a phase rotation not
only proportional to the tone index within one OFDM block
(inter-block increment), but also grows linearly for successive
OFDM blocks (intra-block increment) [4].

In literature, several schemes are proposed to estimate or
track the residual CFO and SFO in frequency domain with
the assistance from pilot subcarriers [5]–[7]. In [5], Speth et
al. utilize the symmetric locations of pilots to estimate CFO
and SFO jointly. However, its performance degrades in the
multipath channels. [6] suggests three estimators with thehelp
of the least square estimation (LSE). An improved weighted
LSE variant is proposed by Tsai et al. in [7] which requires the
second-order statistics of the channel state information (CSI).
In general, these schemes mainly rely on the linearly growing
inter-block increment.

This paper proposes a novel technique to make use of the
intra-block increment spanning a number of OFDM blocks. By
dividing the subcarrier index into several regions, the method
is capable of exploiting the pairwise correlation which leads to
accurate results after applying least square fitting. Two variants
differing in computation complexity are presented with their
numerical variances derived.

The rest of the paper is structured as follows. Section
II presents the signal model in presence of CFO and SFO.

Section III introduces the proposed technique and analytical
results of variance. Simulation results are given in Section IV.
Finally, Section V concludes the paper.

II. OFDM SIGNAL MODEL WITH CFO AND SFO

We consider an OFDM system where the transmitted data
is modulated by anN -point Inverse FFT (IFFT). Assuming
a total ofM OFDM blocks to be delivered and each block
consists ofK data samples (K ≤ N ), the complex baseband
signal is described by

s(t) =
1√
N

M−1∑

l=0

∑

k∈X

Xl,ke
j2πk(t−(Ng+lNB)Ts)

NTs ⊓ (t− lNBTs)

(1)
whereX are the locations of theK data subcarriers; fork /∈ X,
Xl,k is either pilot or null subcarrier.Ng is the length of the
guard interval,NB the total length of an entire OFDM block
given byNB , N + Ng, andTs the sampling interval.⊓(·)
is the rectangular function defined as

⊓ (t) =

{
1 0 ≤ t ≤ NBTs,

0 otherwise
(2)

The multipath channel is

h(t, τ) =
L−1∑

ℓ=0

hℓ(t)δ(τ − τℓ) (3)

whereL is the total number of taps,{hℓ(t)}ℓ=0,1,··· ,L−1 the
independent and Rayleigh distributed complex channel gains,
{τℓ}ℓ=0,1,··· ,L−1 the timing delay of each path, andδ(·) the
delta function. Here, we assume thatτℓ = ℓTs.

Up-convertings(t) to a carrier frequencyfT , the post-
channel equivalent signal takes the form

y(t) =
[
s(t)ej2πfT t ∗ h(t, τ)

]
+ w(t) (4)

where the notation∗ stands for linear convolution, andw(t)
the complex, identically independently distributed (i.i.d.), ad-
ditive white Gaussian noise (AWGN) with zero mean and
varianceσ2

W ; also, it is wide sense stationary (WSS), with
independent real and imaginary part, and equal variance in
both parts (σ2

W /2). Now, assuming a CFO∆f and a SFOη
given as

∆f , fT − fR (5)

η , (T ′
s − Ts)/Ts (6)
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wherefR is the deviated carrier frequency andT ′
s the deviated

sampling interval at the receiver. The receivedn-th sample in
the l-th OFDM block is

rl,n = y(t)e−j2πfRt
∣∣
t=lNBT ′

s+NgT ′
s+nT ′

s

, n = 0, 1, · · · , N−1

(7)
After discarding theNg samples in the guard interval, the
complex data for thel-th block and on thek-th subcarrier is
[8]

Rl,k = Xl,kHl,kα(Θk)
(
ejπΘk(N−1)/N · ej2π((lNB+Ng)/N)Θk

)

+ ICIl,k +Wl,k (8)

whereHl,k is the channel transfer function (CTF) in frequency
domain;Θk ≈ ǫ+ ηk andǫ = ∆fNBTs the normalized CFO
to the subcarrier spacing;α(Θk) is the amplitude attenuation
approaching unity and can be safely neglected;ICIl,k the
inter-carrier interference (ICI) due to distorted orthogonality of
subcarriers;Wl,k is the WSS i.i.d. Gaussian noise in frequency
domain with independent real and imaginary parts. Without
loss of generality,ǫ andη can be regarded as theresidual part
of CFO and SFO after coarse synchronization or imperfect
channel estimation and equalization.

III. PROPOSEDTECHNIQUE

Define the full set of subcarrier index asK = {k|0 ≤ k ≤
N − 1}, which can be further divided intoQ equally-spaced
regions (assuming evenN andQ, andN is divisible byQ),
denoted asK = K1 ∪K2 ∪ · · · ∪Kq ∪ · · · ∪KQ where

Kq =

{
k

∣∣∣∣∣
(q − 1)N

Q
≤ k <

qN

Q
, k ∈ Z

}
(9)

Here,Z denotes integers. Ignoring disturbances of ICI, using
equation (8), for theq-th segment in thel-th OFDM block,
the pairwise correlation is

V q
l,k1,k2

= Rl,k1Rl,k2

∣∣∣
k1+k2=Nq

k1∈Kq, k2∈Kq

=
{
λl
k1,k2

ejθ
q

l,ǫ,η

}
7−→ Useful Part

+
{
Xl,k1Hl,k1Wl,k2e

jθl,ǫ,η,k1 +Xl,k2Hl,k2Wl,k1e
jθl,ǫ,η,k2

+Wl,k1Wl,k2

}
7−→ Cross terms (10)

where

Nq =
N + 2N(q − 1)

Q
, q = 1, 2, · · · , Q (11)

λl
k1,k2

= Xl,k1Xl,k2Hl,k1Hl,k2 (12)

θql,ǫ,η = (2ǫ+ ηNq)

[
2πl(1 + g) + 2πg + π

N − 1

N

]
(13)

θl,ǫ,η,k1 = πΘk1

N − 1

N
+ 2π(

lNB +Ng

N
)Θk1 (14)

θl,ǫ,η,k2 = πΘk2

N − 1

N
+ 2π(

lNB +Ng

N
)Θk2 (15)

andg = Ng/N . Clearly, the extra phase rotation of the useful
part in (13) is irrelevant to subcarrier indexk1 and k2; it is
only pertinent to the OFDM block indexl and segment index

q. The cross terms are the main disturbance in estimation. In
practice, the contribution of signal and channel (λl

k1,k2
) should

be replaced by

λ̂l
k1,k2

= Xl,k1Xl,k2Ĥl,k1Ĥl,k2 (16)

where

Xl,k =





Xl,k, k ∈ P

X̂l,k, k ∈ X

0, k ∈ U

(17)

The notationP is the full set of pilots andU the full set of
null subcarriers.X̂l,k is the estimatedXl,k, obtained by the
decision feedback device. Ĥl,k is the estimated CTF.V q

l,k1,k2

could be combined using a certain weightΓl,k1,k2 given as

Γl,k1,k2 =
{

1
σ2
W

× 1

[|Xl,k1
|2|Hl,k1

|2+|Xl,k2
|2|Hl,k2

|2]+σ2
W

, Weighted

1, Simplified

(18)

where σ2
W = E {|Wl,k|2}. See Appendix A for the details

of such selection for the weightedΓl,k1,k2 . Computation of
weightedΓl,k1,k2 requires the second-order statistics of signal,
channel and noise, avoided by the simplified scheme. For
constant-modulus modulation, the weightedΓl,k1,k2 reduces
to

Γl,k1,k2 =
([
|Hl,k1 |2 + |Hl,k2 |2

]
σ2
Sσ

2
W + σ4

W

)−1
(19)

whereσ2
S = E {|Xl,k|2} = Const.. To obtain estimation of

θql,ǫ,η, we coherently stackV q
l,k1,k2

by

Zq
l =

∑

(k1,k2)∈Cq

V q
l,k1,k2

Γl,k1,k2 [λ̂
l
k1,k2

]∗, q = 1, 2, · · · , Q

(20)
where(·)∗ denotes the conjugation of its argument and

Cq = {(k1, k2)|k1 ∈ Kq,+, k2 ∈ Kq,−, k1 + k2 = Nq}
∩ {(k1, k2)|k1 ∈ U

c, k2 ∈ U
c} (21)

Kq,+ is the left half ofKq while Kq,− the right one;Uc is the
absolute complement of U given byK\U = P∪X; in general,
the two-dimensional setCq 6= ∅. θ̂ql,ǫ,η can be estimated by

θ̂ql,ǫ,η = arg{Zq
l }, q = 1, 2, · · · , Q (22)

TheM × 1 vectorθq = [θ̂q0,ǫ,η θ̂q1,ǫ,η · · · θ̂qM−1,ǫ,η]
T can be

linearized into
θq = Abq + χq (23)

whereA is theM × 2 observation matrix expressed by

A =

[
D0 D1 · · · Dl · · · DM−1

V0 V1 · · · Vl · · · VM−1

]T

(24)

Dl = π(1 + g)l (25)

Vl = 2π(1 + g) + π

(
N − 1

N

)
(26)



Fig. 1. The framework of the proposed technique.θ denotes the extra phase
rotation caused by CFO and SFO.Q = 2. The red dot and green dot form a
pairwise correlation pair.

The 2× 1 vectorsbq take the form

bq = [cq cq]
T (27)

wherecq = 2ǫ + ηNq; χq is the associated estimation error
vector. By least square fitting,bq is given by

b̂q =
(
A

T
A
)−1

A
Tθq (28)

Note that both[b̂q]1,1 and [b̂q]2,1 give estimation of ĉq;
[·]i,j denotes the(i, j)-th entry of a vector/matrix. Here, we
choose [b̂q]1,1 and arrange allĉq into the Q × 1 vector
c = [ĉ1 ĉ2 · · · ĉq · · · ĉQ]T which leads to

c = Bµ+ χc (29)

whereµ = [η ǫ]T , χc is theQ× 1 error vector, and

B =

[
N
Q

3N
Q · · · Nq · · · N+2N(Q−1)

Q

2 2 · · · 2 · · · 2

]T

(30)

is theQ × 2 observation matrix. Another least square fitting
yields

µ̂ =
(
B

T
B
)−1

B
T
c (31)

The estimated̂η and ǫ̂ are [µ̂]1,1 and [µ̂]1,2 respectively. A
simple sketch withQ = 2 is drawn in Fig. 1. Assuming
correctness in tackling the phase ambiguity in the linearization
process, derived in Appendix A, estimation using either the
weighted or simplifiedΓl,k1,k2 is unbiased. On the other hand,

the numerical variances of̂η and ǫ̂ are

Var {η̂} =
81

∑Q
q=1 Uq

[∑M−1
l=0

(2l−M+1)2

Fl,q

]

32N4(Q2 − 1)2π2(1 + g)2M2(M2 − 1)2
(32)

Var {ǫ̂} =
81

∑Q
q=1 Yq

[∑M−1
l=0

(2l−M+1)2

Fl,q

]

32N4(Q2 − 1)2π2(1 + g)2M2(M2 − 1)2
(33)

where

Fl,q =





∑
(k1,k2)∈Cq

φ×

l,k1,k2

φ+
l,k1,k2

+1
, Weighted

(
∑

(k1 ,k2)∈Cq
φ×

l,k1,k2
)2

∑
(k1,k2)∈Cq

φ×

l,k1,k2
(φ+

l,k1,k2
+1)

, Simplified
(34)

φ×
l,k1,k2

=
|Xl,k1 |2|Hl,k1 |2|Xl,k2 |2|Hl,k2 |2

σ4
W

(35)

φ+
l,k1,k2

=
|Xl,k1 |2|Hl,k1 |2 + |Xl,k2 |2|Hl,k2 |2

σ2
W

(36)

Uq = 16N2 [2q −Q− 1]2 (37)

Yq = 4N4

[
2q − 1− 4Q2 − 1

3Q

]2
(38)

Appendix A validatesFl,q|Weighted ≥ Fl,q|Simp. and thus
Var {η̂}|Weighted ≤ Var {η̂}|Simp., Var {ǫ̂}|Weighted ≤
Var {ǫ̂}|Simp.. The equality establishesif and only if (iff)

A1: the channel experiences flat fading (|Hl,k|2 ≡ 1/N )
A2: constant modulus modulation (|Xl,k|2 ≡ σ2

S)
Otherwise, weighted estimation always outperforms simplified
estimation. To achieve the best performance, further assuming

A3: equal and maximalcardinality of each setCq, de-
noted byNCq

= N/2Q

The variances under conditions A1∼A3 are

Var {η̂} =
18Q2

π2(1 + g)2M(M + 1)(M − 1)N3(Q2 − 1)SNR
(39)

Var {ǫ̂} =
6(4Q2 − 1)

4π2(1 + g)2M(M + 1)(M − 1)N(Q2 − 1)SNR
(40)

whereSNR , σ2
Sσ

2
H/σ2

W ; σ2
H = E {|Hl,k|2}.

Remarks:
i) Apparently, an immediate way to enhance the perfor-

mance is to raiseM , which leads to asymptotically decreasing
variances in cubic scale. Nevertheless, if the applicationis
real-time oriented rather thanquality preferred, whereη and
ǫ should be tracked in the fastest manner,M andQ should be
replaced by their minimums asmin{M} = 2,min{Q} = 2.

ii) If [b̂q]2,1 is used for estimation, (39) and (40) are
rewritten into

Var {η̂}′ = (8M − 4)(M − 1)(1 + g)2

(1 + 2g)2
Var {η̂} (41)

Var {ǫ̂}′ = (8M − 4)(M − 1)(1 + g)2

(1 + 2g)2
Var {ǫ̂} (42)

which are significantly higher than (39) and (40) increasing
squarely withM . Therefore, it is reasonable to use[b̂q]1,1.



iii) According to (10), statistically, the proposed technique
only relies on the independency and equal variance of the real
and imaginary parts, and WSS assumptions of noise; it does
not require the power spectrum density (PSD) of noise to be
strictly flat (white), since the expectation of the cross terms is
zero.

IV. SIMULATION

In this section, we consider a wireless OFDM system with
FFT sizeN = 512. The guard interval isNg = 64. Thus,
the length of an entire OFDM block isNB = 576. The total
number of OFDM blocks isM = 10, and the total number
of segments isQ = 4. The carrier frequency is set at5
GHz. The sampling period isTs = 100ns. For brevity and to
exploit the best performance of the proposed estimators as well
as other conventional pilot-assisted schemes, all subcarriers
are regarded as pilots; otherwise, notations in (17) must be
used which varies with the accuracy of decision feedback
device. The signal is modulated from 16-PSK constellation.
The channel consists ofL = 32 Rayleigh taps, which are
statistically independent distributed with a power delay profile
decaying exponentially:

E {|hℓ|2} =
exp(−ℓ/L)

∑L−1
ℓ=0 | exp(−ℓ/L)|2

, ℓ = 0, 1, 2, · · · , L− 1

(43)
For the proposed estimators and the scheme in [7], CTF
is assumed to be known perfectly as well asσ2

W
1, unless

otherwise mentioned. Mean squared error (MSE) results are
used to benchmark the performance, defined asMSE{η̂} =
E {|η̂− η|2} andMSE{ǫ̂} = E {|ǫ̂− ǫ|2} whereE {·} denotes
the expectation of its argument.

A. Comparison of MSE{η̂}
Fig. 2 highlights the comparison ofMSE{η̂} among the

proposed estimators with other schemes in [5]–[7]. Numerical
result of Var {η̂} in (39) is drawn by assuming A1∼A3. In
the multipath channel, both of the weighted and simplified
estimator achieve the best performances. In the flat fading
scenario, the weighted estimator reduces to the simplified one.
Var {η̂} provides a tight bound in moderateSNR.

B. Comparison of MSE{ǫ̂}
Fig. 3 shows the performance comparison ofMSE{ǫ̂} in

multipath channel. [5] could achieve the best performance
when SNR ≤ 7 dB, which cannot be sustained into higher
SNR. Again,Var {ǫ̂} provides a tight bound in moderateSNR.

C. MSE{η̂} with a Varying η

Fig. 4 shows the deviation ofMSE{η̂} when η changes
underSNR = 20 dB in multipath channel. For the proposed
estimators,MSE{η̂} is asymmetric for negative and positive
η due to the presence of a positiveǫ; for η > 0, the
performance degrades gradually with a higherη since the ICI
is increasing simultaneously. For a major part, [7] and the
simplified estimator entangle with each other.

1For OFDM systems containing null subcarriers,σ2

W
could be estimated,

which is omitted in this paper.

D. MSE{ǫ̂} with a Varying ǫ

Fig. 5 displays the deviation ofMSE{ǫ̂} with a varying
ǫ under SNR = 20 dB in multipath channel. Different
from Fig. 4, shape ofMSE{ǫ̂} is akin to symmetric, since
comparing withǫ, the contribution ofη on ICI is minor. In the
full range, both of the proposed schemes outperform others.

E. MSE{η̂} with Different Estimation Accuracy

Fig. 6 shows theMSE{η̂} performance with different
channel estimation accuracy in multipath channel. Employing
the same philosophy of [9], the inaccurate channel estimation
takes the form

H̃l,k =
√
1− κ2Hl,k + κJl,k (44)

where κ represents the estimation accuracy, andJl,k the
additional complex noise with zero mean and variance0.5
in its real and imaginary part respectively, independent from
Hl,k. The weighted estimator degrades significantly when
severe inaccuracy occurs, which hinders the performance
improvements especially in moderate to highSNR region. For
moderate to highSNR, the weighted estimator outperforms
the simplified one under differentκ. Similar conclusion can
be drawn forMSE{ǫ̂}.

F. MSE{η̂} and MSE{ǫ̂} under Mobility

Fig. 7 exhibits theMSE{η̂} and MSE{ǫ̂} in presence
of terminal mobility with SNR = 20 dB under multipath
channel. Merely the CSI pertinent to the first moment of the
Rayleigh fading channel in simulation (t=0) is assumed to
be known a priori; for the ensuing frames, the same CSI
is used which entails a loss in channel estimation accuracy.
The Doppler bandwidths with respect to terminal speed of
[50, 100, 150, 200]km/h are232, 463, 695, 927 Hz. In general,
the performance deviation is insignificant if not imperceptible
even the terminal velocity reaches200km/h, since the maxi-
mal value of the product between the Doppler bandwidth and
the duration of an OFDM block is5.3×10−2, a relatively small
value. Thus, the CSI is sound enough to secure an excellent
estimation.

V. CONCLUDING REMARKS

In this paper, we propose a joint estimation technique to
deal with residual CFO and SFO estimation. By dividing the
subcarrier index into a number of regions and exploiting the
pairwise correlation, we estimate the phase increment between
adjacent OFDM blocks, which yields accurate estimation after
Q + 1 times of least square fitting. Extensive simulations
indicate better performance over several conventional pilot-
assisted schemes.

APPENDIX A
BIAS AND VARIANCE OF ESTIMATION

First of all, consider the case of the simplifiedΓl,k1,k2 in
(18) and the statistical information ofθq in (22). For thel-th
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element ofθq (θ̂ql,ǫ,η), subtracting the left hand side of (22)
yields

∆θql,ǫ,η = θ̂ql,ǫ,η − θql,ǫ,η = arg[Zq
l / exp(jθ

q
l,ǫ,η)] (A.45)

If θ̂ql,ǫ,η is in vicinity of θql,ǫ,η, using the approximation
tan(x) ≈ x for x small enough, we may write

tan(∆θql,ǫ,η) ≈
ℑ{∆θql,ǫ,η}
ℜ{∆θql,ǫ,η}

≈ ∆θql,ǫ,η (A.46)

whereℜ{·} andℑ{·} represent the real and imaginary part of
the arguments. Expectation of∆θql,ǫ,η in (A.46) is

E
{
∆θql,ǫ,η

}
≈ E

{
ℑ{∆θql,ǫ,η}
ℜ{∆θql,ǫ,η}

}
≈

E {ℑ{∆θql,ǫ,η}}
E {ℜ{∆θql,ǫ,η}}

(A.47)

which holds if E {ℜ[∆θql,ǫ,η]} ≫ [Var {ℜ[∆θql,ǫ,η]}]1/2.
In fact, each component inℑ{∆θql,ǫ,η} contains either
Wl,k1 , Wl,k2 , or Wl,k1Wl,k2 (see (10)) and therefore,
E {ℑ{∆θql,ǫ,η}} = 0, which finally leads to the unbiasedness
of µ̂ in (31) since only linear intermediate operations are
involved.

For the numerical variance of∆θql,ǫ,η, we could use

Var [∆θql,ǫ,η] ≈
Var [ℑ{∆θql,ǫ,η}]
(E [ℜ{∆θql,ǫ,η}])2

(A.48)

if E {ℜ[∆θql,ǫ,η]} ≫ [Var {ℜ[∆θql,ǫ,η]}]1/2. Standard calcula-
tions yield

Var [ℑ{∆θql,ǫ,η}] =
∑

k1,k2

σ2
W |Hl,k1 |2|Hl,k2 |2×

[
|Xl,k1 |2|Hl,k1 |2 + |Xl,k2 |2|Hl,k2 |2 + σ2

W

]
(A.49)
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Fig. 7. MSE{η̂} and MSE{ǫ̂} under different terminal velocity;M =
10, Q = 4, η = 5× 10−5, ǫ = 0.02, andSNR = 20 dB.

(E [ℜ{∆θql,ǫ,η}])2 =

{ ∑

k1,k2

|Xl,k1 |2|Xl,k2 |2|Hl,k1 |2|Hl,k2 |2
}2

(A.50)

Note that, for visual clearance, we abbreviate the notation
(k1, k2) ∈ Cq with k1, k2. Thus,

Var [∆θql,ǫ,η] ≈ Fl,q|Simp. (A.51)

whereFl,q is defined in (34). Using the linear intermediate
manipulations, we derive (32) and (33). SubstitutingFl,q |Simp.

with Fl,q|Weighted. backward produces the weighted version of
Γl,k1,k2 in (18) after lengthy calculations.

To proveFl,q|Weighted ≥ Fl,q|Simp., we invoke the Cauchy-
Schwarz-Inequality [10]. The essential steps are listed below.

Proof: To prove

∑

k1,k2

φ×
l,k1,k2

φ+
l,k1,k2

+ 1
≥

(
∑

k1,k2
φ×
l,k1,k2

)2
∑

k1,k2
φ×
l,k1,k2

(φ+
l,k1,k2

+ 1)
(A.52)

is equivalent to prove

∑

k1,k2

φ×
l,k1,k2

φ+
l,k1,k2

+ 1

∑

k1,k2

φ×
l,k1,k2

(φ+
l,k1,k2

+1) ≥ (
∑

k1,k2

φ×
l,k1,k2

)2

(A.53)

Now, using A(k1, k2) =
φ×

l,k1,k2

φ+
l,k1,k2

+1
and B(k1, k2) =

∑
k1,k2

φ×
l,k1,k2

(φ+
l,k1,k2

+ 1), the Cauchy-Schwarz-Inequality
gives

∑

k1,k2

A(k1, k2)
∑

k1,k2

B(k1, k2) ≥





∑

k1,k2

√
A(k1, k2)B(k1, k2)





2

(A.54)
where the right hand side of (A.54) isexactly the right hand
side of (A.53). The ’=’ holds iff

φ+
l,k1,k2

= Const., ∀(k1, k2) ∈ Cq (A.55)

and we have the conditions A1, A22. Therefore, we verify
thatFl,q|Weighted ≥ Fl,q|Simp..
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2Actually, it is merely a sufficient condition of (A.55). Specifically, consider
that there is asage at the transmitter side who could render|Xl,k|

2 =
C|Hl,k|

−2, ∀k where C is a constant, then (A.55) also establishes. However,
it is not insightful to be pursued.
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