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Abstract — In this paper, a RF CMOS amplifier is designed on 

the basis of a novel negative impedance linearization technique 

with negative differential resistance (NDR) element. The 

simulation results show that the designed amplifier can achieve 

high gain accuracy, good linearity with improved efficiency, 

revealing that the proposed technique could find wider 

application in RF/Microwave circuits and systems. 

Keywords - CMOS amplifier, linearization, RF feedback, negative 
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I. INTRODUCTION 

Designing broadband amplifiers for digital signal 
transmission presents a trade-off between efficient amplifiers 
that create distortion or unnecessarily large and inefficient 
amplifiers without distortion. Therefore, in current CMOS 
technology, the design process is trapped in a trade-off cycle. 
One solution to break this cycle is to use a linearization 
technique to provide more flexibility for amplifier design. 

In recent years, some new linearization methods such as 
using special predistortion [1, 2], compensating pre–post-
distortion [3, 4], harmonic/intermodulation injection [5, 6] and 
active auxiliary compensation [7-10] have been reported. 
Among these new techniques, due to its significant advantages 
for fully monolithic design, the active auxiliary compensation 
has received a great deal of attention. The negative impedance 
linearization technique presented in [11, 12] uses a two-
channel active compensation scheme, where the main 
amplifier provides the forward gain while the auxiliary 
amplifier functions as a negative impedance performing 
nonlinearity compensation. As discussed in [11, 12], the 
technique has many advantages over the existing linearization 
methods. However, the additional amplifier to implement the 
negative impedance causes more power dissipation; hence the 
power efficiency of the amplifier may be degraded.  

In this paper, a novel RF CMOS amplifier design 
technique based on enhanced negative impedance 
compensation is presented. As can be seen, by using the 
negative differential resistance (NDR) [13] as a compensating 
device, the proposed method can improve not only the gain 
accuracy and the linearity but also the power efficiency 
greatly. The other useful features of the proposed technique 
are simpler structure, easy-to-implement and good for low 
power design. 

II. NEGATIVE DIFFERENTIAL RESISTANCE (NDR) 

The NDR element is commonly used in oscillator, flip-
flop, adder, multifunctional logic gates etc. Because of its 
unique I-V transfer characteristics, it can be realized as 
negative impedance when biased properly. Thus the NDR 
element can be used to replace the auxiliary amplifier in [11, 
12] to carry out the nonlinearity compensation in a RF 
feedback amplifier. In the novel linearization technique,  using 

the NDR can cancel the additional power dissipated by the 
auxiliary amplifier, and due to improved gain accuracy, the 
power added efficiency (PAE) can be increased. Therefore the 
traditional linearity-efficiency trade-off will be overcome. 

 In the past most NDR devices were based on the resonant 
tunnelling diode (RTD). However these RTD devices are 
fabricated by the compound semiconductor and process [14], 
making it difficult to combine the RTD and NDR with other 
devices and circuits to achieve the system-on-chip (SoC). As 
shown in Figure 1, a new NDR fully composed of CMOS 
devices was first published in [15]. By means of the MOS-
NDR element, the full linearized amplifier can be fabricated 
on a single chip without using any complicated and expensive 
process.  
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Figure 1.  CMOS Negative Resistive Element and Its Symbol [15] 

 

Figure 2.  IC – VC Curve of the Negative Resistive Element in Figure 1 

As shown in Figure 2, the simulated DC IC-VC 
characteristic of the element in Figure 1 demonstrates the 
NDR regions for different VB values. For normal transistors, 
current rises with the increase in voltage, but for the NDR, the 
current IC drops for the rise in voltage VC within the given 
range. The inverse of slope of the curves represents the 
impedance; hence the negative slope demonstrates the 
negative impedance. This property of NDR can be utilised to 
realise the required negative impedance in the proposed 
linearization technique.  



III. IMPLEMENTATION OF LINEARIZATION WITH NDR 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Linearized Amplifier with the NDR Element 

As shown in Figure 3, in order to demonstrate the 
linearization technique an amplifier with NDR compensation 
has been designed, where the main amplifier is the drain–gate 
feedback configuration and the compensation circuit is a 
MOS-NDR connected to realize negative impedance. In order 
to obtain a closed loop gain of -5 (13.98dB), the input 
resistance RS has been chosen as 400Ω and the feedback 
resistance RF as 2kΩ. According to the theory presented in 
[11, 12] the required negative impedance for linearization can 
be calculated as 
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As can be seen, in Figure 2, the I-V curve for Vb=0.7V has 
negative slope after peak point A (Vc ≈ 0.06V) which 
represents the negative impedance of the NDR element. The 
value of the negative impedance realised by proper biasing 
(e.g. Vb = 0.7V and Vc > 0.06V) can be measured from inverse 
of the slope of curve. Under this condition, in Figure 3, the 
NDR element is biased with DC source (VB) to remain under 
the downwards slope of the I-V characteristics, hence the 
impedance at the collector terminal of the MOS-NDR device 
is observed as (–1100–j12.72)Ω at 2.2GHz operating 
frequency. In order to realise the required negative impedance, 
a series structure, RN = 766.67Ω and LN = 0.92nH (which 
realised an impedance of 766.67+j12.72Ω at 2.2GHz) has 
been added so that the equivalent impedance seen from the 
base of M1 is –333.33Ω. The implementation of the 
linearization has been realised in such a way that the current iD 
from the NDR element neutralises the nonlinear current ii. 

Figure 4 shows the layout of the amplifier in Figure 3 by 
using the associated layer definitions and layout PCells of the 
FDK models based on 0.18µm CMOS technology. The 
developed layout has about 593 µm × 875 µm of chip area. In 
this context a simple L-section matching network has been 
utilized to transform input and output impedance of the 
developed amplifier. 

 

Figure 4.   Layout of the Designed Amplifier 

IV. SIMULATION RESULTS 

In order to demonstrate the linearization method with the 

MOS-NDR element, both amplifier configurations with and 

without the linearization have been simulated using Cadence. 

The MOSFET transistors are simulated based on the 

BSIM3V3.3 models [16]. The final design parameters of the 

transistors are shown in Table I. 

 
Table I: Transistor Parameters of the Designed Amplifier 

Process Transistor 

Number 

of 
Finger 

Finger 

Width(µm) 

Total 

Width(µm) 
Length(µm) 

1.8V 

Model 

M1 9 5  45  0.18  

NDR_M1 3 5  15  0.18  

NDR_M2 5 2  10  0.18  

NDR_M3 10 15  150  0.18  

NDR_M4 6 5  30  0.18  

 

A.  Gain and Power Added Efficiency 

First, the gain of the designed amplifier, as presented in 
Figure 5, shows that the gain accuracy has been greatly 
improved with the proposed linearization technique. The gain 
of the amplifier without linearization is 9.8dB, a low value; 
but, the gain for with linearization has been improved to 
13.2dB; which is much close to the ideal gain. In addition, the 
stable gain region of the linearized amplifier has been 
increased. 

The simulation results in Figure 5 also show that, as a 
result of improved gain and increased output power without 
any additional auxiliary amplifier, the power added efficiency 
(PAE) of the linearized amplifier has been enhanced up to 
30%. Hence the gain accuracy has been achieved without 
compromising the power efficiency. 

 

B. S-Parameter Simulation  

Figure 6 shows the simulation results for S21, the transfer 
characteristics of the amplifier with and without the 
linearization. As can be seen, the implementation of the 
linearization can improve the transfer gain.  
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Figure 5.  Gain and Power Added Efficiency 

 

Figure 6.   S21 for With and Without Linearization 

 
 

Figure 7.  1dB Compression Point  

C. Dynamic Range 

The dynamic range of the linearized amplifier can be 
measured by the 1dB compression point. The simulation 
results in Figure 7 show that the linearized amplifier has -
3.27dBm input referred 1dB compression point, whereas the 
amplifier without linearization reaches to compression at -
8.8dBm input power, revealing that the linear operating region 

of the amplifier has been increased with the proposed 
linearization technique. 

 

D. Intermodulation Distortion(IMD) Test 

In order to examine the nonlinearity of the designed 
amplifier, a two-tone test has been performed with 2.2GHz 
and 2.21GHz sinusoidal input signals having identical 
amplitude. When the input power is being increased from a 
given value, the IP3 curve can be generated. As can be seen 
from Figure 8, the input referred IP3 without linearization is 
found as 4.74dBm. However, with implementation of the 
linearization technique, the IP3 can be increased to 12.925 
dBm, more than 8dB of improvement has been achieved, 
which indicates that besides the improved gain accuracy, the 
third order intermodulation product with the linearization can 
also be suppressed. 

 

 

Figure 8.   IP3 Curves  

E. Noise Figure  

The noise analyses of the amplifier with and without the 
linearization technique have been performed with the S-
parameter analysis. The simulation results shown in Figure 9 
reveal that, with the implementation of the linearization, the 
noise figure has been improved by 0.5dB. 

 

Figue 9.    Comparison of Noise Figures 

 



 

Figure 10.    Stability Factor  

F. Stability 

Instabilities are encountered in all RF and microwave 
amplifiers, especially switching-mode amplifiers. In addition 
to the linear feedback mechanism that makes oscillation, the 
strong nonlinearity of power amplifiers may also lead to an 
unstable region [17]. According to Rollet’s stability analysis 
[18], in order to be unconditionally stable, the developed 
amplifier has to satisfy k > 1 and Δ < 1. Then, the circuit is 
stable no matter what passive terminations are presented in the 
input and output of the two-port network. 

Analysis using the s-parameter demonstrated that the 
implementation of linearization technique improves the 
isolation of the two port network, i.e. increased difference 
between S11 and S22 at 2GHz operating frequency with lower 
S22 value. It can be assumed that the stability factor should 
also be increased by the linearization technique. Since the 
main amplifier without the linearization was unconditionally 
stable, the implementation of the linearized amplifier has to be 
stable. The simulation results shown in Figure 10 are also in 
agreement with the anticipated unconditional stability of the 
linearized amplifier. 

V. CONCLUSION 

The proposed linearization technique, similar to [11, 12], 
neutralises the distortion current caused by the feedback loop 
at the input of the amplifier, as a result the gain and PAE can 
be improved in addition to linearization. 

As shown in Table II the proposed method has been 
compared with the previous work published in [4], [9] and 
[10]. As can be seen, the design results show that the new 
method can improve the gain accuracy and the linearity of RF 
feedback amplifier and enhance its power efficiency 
significantly. The results also confirmed that the method can 
achieve wider dynamic range, good noise figure and excellent 
stability. The proposed linearization technique has strong 
potential in RF/Microwave applications.  

 

 

 

 

Table II: Performance Comparison 

Ref. [4] [9] [10] 
This 

work 

Operating 

frequency 
2GHz 2.5GHz 2.45GHz 2.2GHz 

Number of 

transistors 
6 5 5 5 

Impact on 

gain 

Increased 

by 2.2% 
Reduced Reduced 

Increased 

by 35% 

IMD3 N/A N/A 
Improved 

by 5 dB 

Improved 

by 8 dB 

IIP3 

Improved 

by 6.6 

dBm 

Improved 

by 

6.8 dBm  

N/A 

Improved 

by 8.2 

dB 

PAE Reduced Reduced Reduced 
Improved 

by 30% 
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