
©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. DOI: 10.1109/MWSCAS.2016.7870083
.

I. Damaj, A Unified Analysis Approach for Hardware and Software Implementations, The 59th IEEE
International Midwest Symposium on Circuits and Systems, Abu Dhabi, UAE, 16–19 October, 2016. P

577–580.

https://doi.org/10.1109/MWSCAS.2016.7870083

A Unified Analysis Approach for Hardware and
Software Implementations

Issam W. Damaj
Department of Electrical and Computer Engineering

American University of Kuwait
Salmiya, Kuwait

Email: idamaj@auk.edu.kw

Abstract—Modern computing systems are hybrid in nature
and employ various processing technologies that range from
specific- to general-purpose processors. In co-design environ-
ments, specific-purpose processors, also known as hardware,
work to support software implementations under general-purpose
systems to create high-performance computers. Algorithms and
computationally intensive tasks are partitioned among the differ-
ent processing subsystems to achieve desirable degrees of parallel
processing and performance characteristics. In this paper, a
unified statistical performance analysis formulation is presented.
The proposed statistical formulation combines the heterogeneous
characteristics of both hardware and software implementations
to provide grounds for thorough evaluations. The formulation
includes the development of performance profiles, key indicators,
and the composition of a master indicator based-on hetero-
geneous measurements. The investigation includes a case-study
that targets a set of simple cryptographic algorithms. The two
main targeted high performance computing devices are multi-
core processors for software implementations and high-end Field
Programmable Gate Arrays for hardware implementations.

I. INTRODUCTION

Modern high-performance computers (HPCs) are hybrids
of multi-core processors, graphical processing units (GPUs),
high-density programmable logic devices (HDPLDs), to name
a few. Within hybrid systems, algorithms can be partitioned
and distributed or fully-delegated to one subsystem. Hybrid
HPCs are supported by rich co-analysis and co-design tools
that enable unified hardware/software implementations [1]. The
answer of how an algorithm implementation can perform on
hybrid HPCs is built upon the analysis of one or all of the
underlying subsystems. Indeed, the question is still on how to
make adequate performance measurements in such systems.

In computer system analysis, benchmarking is the act of
measuring and evaluating the performance of computations,
network processes, and connected peripherals - all under ref-
erence conditions [2]. A variety of benchmarks exist including
Whetstone [3], LINPAC [4], Dhrystone [5], Standard Perfor-
mance Evaluation Corporation (SPEC) [6], etc. Benchmarks
are usually specialized; none are reported to extensively ex-
amine hybrid systems that explicitly targets hardware/software
co-design.

Benchmarks can be classified into Algorithm Benchmarks
[7], Software Benchmarks [8], Embedded Systems Benchmarks
and Cryptographic Benchmarks [9]. Cryptographic Bench-
marks are available in the literature; they are designed to
measure the performance of different cryptographic algorithms
running under different systems [10]. Indeed, the use of Bench-
marks is essential for performance analysis, classification, and
accordingly implementation optimization.

In this paper, we present a statistical analysis framework
for performance profiling of related algorithms running under
different hardware and software subsystems. The developed
framework enables the deep and thorough reasoning about
each hardware and software subsystem, and combines het-
erogeneous characteristics to provide overall rating, ranking,
and classifications. The proposed framework is unique in
unifying different analyses of algorithms in combined indexes.
Combining analysis profiles enable the draw of conclusions on
how algorithms can perform on todays hybrid processors. The
proposed framework is customizable for any hybridization of
processing systems and can target any model of computation or
area of application. This paper includes a mathematical model
for the proposed framework, a case-study from cryptography,
and proposes a sample integration in development environ-

ar
X

iv
:1

90
7.

05
85

3v
1 

 [
cs

.D
C

] 
 1

0 
Ju

l 2
01

9

https://doi.org/10.1109/MWSCAS.2016.7870083


ments for hardware/software co-design. The case-study targets
two high performance computing systems, namely, the Dell
Precision T7500 with its dual quad-core Xeon processor and
24 GB of RAM, and Altera STRATIX-II Field Programmable
Gate Array (FPGA). The Software tools used for analysis are
Quartus, ModelSim, and Intel VTune Amplifier.

The paper is organized so that Section II presents the
statistical analysis framework. In Section III, the framework is
contextualized using a case-study on cryptographic algorithms.
Section IV presents a sample integration of the statistical
framework within an integrated development environment. A
thorough performance analysis and evaluation is presented in
Section V. Section VI concludes the paper and address possible
future directions.

II. THE ANALYSIS FRAMEWORK

The analysis framework classifies the heterogeneous
sources of measurements into hardware and software analysis
profiles (APs). The development of each profile includes the
identification of a set of key indicators, such as speed, propa-
gation delay, through, and power consumption. The indicators
are the most extensive part of the measurement framework
and should be carefully developed within the context of
application. For example, for network processors, throughputs
are identified as performance indicators and measured in bits-
per-second; however, in graphics processors, the same indicator
can be measured in frames-per-second. The measurements
associated with the identified indicators may mainly quantities.
The measured quantities are then each divided by similar
measurements from a reference institution for normalization
and for producing performance ratios. Accordingly, we can
create Combined Measurement Indicators (CMIs) using the
Geometric Mean of all the calculated ratios.

To formulate the calculation of the CMIs, Equation 1
composes several analysis profiles:

CMI = AP1 ◦AP2 ◦ ...APk (1)

where Pk is the kth Profile

The measurement of every Profile is done using a statistical
composition of its Key Indicators (KIs) as in Equation 2.

Pj = KIj.1 ◦KIj.2 ◦KIj.n (2)

where KIj is the jth Key Indicator

Therefore, The CMI is the statistical composition of all the
key indicators of all Profiles as in Equation 3.

CMI = KIk.j.1 ◦KIk.j.2 ◦ ...KIk.j.n (3)

The Key Indicator values are then each divided by a
reference measurements for normalization and for producing
performance ratios as in Equation 4.

ratioi =
KIk.j.i

KIrefk.j.i

, (4)

where ratioi is the ith ratio, and i ∈ {1..n}
Then, the CMI is the Geometric Mean of all n ratios as in

Equation 5.

CMI =
√
ratio1 × ratio2 × ...ration (5)

The Geometric Mean is used, for the CMI, as it is able to
measure the central tendency of data values that are obtained
from ratios [11].

III. A CASE-STUDY ON THE LIGHTNESS OF
CRYPTOGRAPHIC CIPHERS

The presented statistical framework is contextualized by
analyzing the performance of a set of lightweight cryptographic
ciphers as a case-study. The aims of the case-study comprise
the following:

• Applying the presented framework in a computation-
ally demanding application, such as, cryptography.

• Developing the key indicators for the hardware sub-
system.

• Developing the key indicators for the software subsys-
tem.

• Developing a CMI that aids the classification of cryp-
tographic algorithms according to their lightness; the
developed CMI is called the Lightness Indicator (LI).

The LI classifies the investigated algorithms according to
a combination of their software and hardware characteristics.
The LI combines several key indicators including speed, mem-
ory efficiency, hardware size, and more. The analyzed cryp-
tographic algorithms are Skipjack [12], 3-WAY [13], XTEA
[14], KATAN and KATANTAN [15], and Hight [16]. The
reference cipher is the Advanced Encryoption Standard (AES)
[17]. The literature includes a variety of implementations and
performance evaluations of the addressed set of cryptographic
ciphers. However, the evaluations of the targeted set of ciphers
are done separately with no ground for cross-evaluation.

The identified performance metrics of the LI are classified
into hardware and software profiles. The software profile
includes the several indicators including the execution time,
throughput, the total number of clock cycles per instruction,
and the cash miss ratio. The Execution Time (ET) is the
time between the start and the completion of a task [18].
The calculation of the ET allows for the determination of the
Performance according to:

Performance = 1
ET

The Throughput (TH) is the total amount of work done
in a given time [18]. The TH is application specific and could
be measured, for example, in bits-per-second (bps), frames-
per-second (fps), etc. The Clock Cycle per Instruction (CPI)
is the average number of clock cycles each instruction takes
to execute. Since different instructions may take different
amounts of time depending on what they do, CPI is an average



of all the instructions executed in the program [18]. the Cache
Miss Ratio (CMR) is the ratio of memory accesses that cause
a cache miss. The cache miss ratio of an application depends
on the size of the cache. A larger cache can hold more cache
lines and is therefore expected to get fewer misses [18].

The hardware profile comprises several indicators, namely,
the execution time of the hardware implementation, through-
put, propagation delay, the hardware area in number of look-
up tables and logic registers, and power consumption. The
Propagation Delay (PD) is the time required for a signal
from an input pin to propagate through combinational logic
and appear at an external output pin [1]. The Look-Up Table
(LUT) is the number of combinational adaptive lookup tables
required to implementation algorithm in hardware. The number
of LUTs is an indicator of the size of hardware in Altera
devices. In other devices, the area could be measured in terms
the total number of gates, logic elements, slices, etc. Logic
Registers (LRs) are the total number of logic registers in the
design. The Power Consumption (PC) is the total power
consumed by developed hardware in Watts [1].

The LI is formulated as the composition of several as-
sessment profiles; two for the current study. Each assessment
profile is the composition of several indicators. key indicators
are benchmarked against measured reference implementations
to produce ratios for each measurement. Based on Equation
5, the overall LI is defined as the geometric mean of all the
calculated ratios (See Equations 6 and 7).

LI = 10
√
ratio1 · ratio2 · ratio3...ratiol (6)

and hence

LI = (

l∏
i=1

ratioi)
1
l (7)

Where l is the number of ratios.

The LI enables the classification of cryptographic algo-
rithms according to their lightness. A higher LI is achieved
through a higher throughput, a more efficient memory per-
formance, more compact size, less complexity, less power
consumption, and less resource utilization. The master LI
formula using the developed indicators is shown in Equations
8, 9, and 10. The indicators that are common to the software
and hardware profiles are labeled with the profile name.

LI =
10
√
SWP ·HWP (8)

SWP =
ETsw,ref

ETsw
· THsw

THsw,ref
· CPIref

CPI
· CMRref

CMR
(9)

HWP =
EThw,ref

EThw
· THhw

THhw,ref
·PDref

PD
·LUTref

LUT
·LRref

LR
·PCref

PC
(10)

The derivations of Equations 9 and 10 are based on the
fact that indicators are either directly or inversely proportional
to the developed CMI.

IV. PROGRAMMING INTERFACE

The developed statistical framework is embedded in a sam-
ple co-design IDE. The purpose of the proposed IDE is to auto-
mate and test the connectivity to the various analysis, synthesis,
and evaluation tools employed in such a hybrid framework.
The IDE is implemented using Java under Netbeans. The used
implementation and performance evaluation tools comprise
Altera Quartus for Hardware implementation and analysis,
and Intel vTune Amplifier under Visual Studio for Software
analysis. The developed IDE connects to Altera Quartus using
the TCL commands to synthesize and generate timing analyses,
pin assignments for FPGA boards, and generate bit files to
program the targeted FPGAs. The IDE connects to Intel vTune
Amplifier, using Command Line and Batch Files, to perform
the software analysis and calculating the total execution time,
CPI, etc. The generated Hardware and Software analysis files
are exported to MS Excel to produce the complete analysis
profile and charts.

V. PERFORMANCE ANALYSIS AND EVALUATION

The presented statistical framework provides thorough per-
formance analysis options for algorithms running under hybrid
HPCs. The framework structure comprises an analysis profile
for every processing sub-system, key indicators for each, and a
formulation that produces composite indicators. The analysis
profiles serve as the performance record for one processing
system; this enable deep reasoning about the performance
characteristics of that processing system in particular. Looking
at all the analysis profiles provide an opportunity for an
evaluation based on a wider range of characteristics on more
than one processing system. The composite indicators, such
as the lightness indicator, provides a performance analysis
summary for a desired particular property. Moreover, compos-
ite indicators aid the classification and sorting of algorithms
according to a combination of heterogeneous measurements.

The performance of cryptographic algorithms is a primary
factor in their application integration criteria. The trade-off
between level of security, cost, and performance is a main issue
in designing and/or analyzing lightweight ciphers. Figures
1 and 2 depicts the classification of the analyzed set of
algorithms according to their lightness. The algorithm that
attained a larger indicator value is lighter, smaller in size, or
faster than the algorithm with a lower indicator value.

The targeted set of cryptographic algorithms including
Skipjack [12], 3-WAY [13], XTEA [14], KATAN and KATAN-
TAN [15], and Hight [16] are all claimed to be simple, tiny,
small, or lightweight. The composed LI is built upon the
presented statistical framework to provide a classification based
on actual, and uniform, implementations and measurements
that are based-on common grounds.

VI. CONCLUSION

In this paper, a statistical framework is developed to pro-
vide analysis options across different processing technologies.



Fig. 1. The Lightness Indicator

1
.7

7
 

1
.3

7
 

3
.3

8
 

2
.4

9
 

0
.9

3
 

0
.8

1
 

0
.7

9
 

1
.1

4
 

1
.0

4
 

0
.9

9
 

1
.0

0
 

LI 

Fig. 2. The Lightness Indicator; a radar chart

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Skipjack

XTEA

3-WAY

HIGHT

KATAN-32

KATAN-48KATAN-64

KTANTAN-32

KTANTAN-48

KTANTAN-64

AES

LI  

The framework classifies processing subsystems into profiles,
where each can be contextualized according to a specific
application. The statistical framework is adopted to investigate
the lightness of a set of cryptographic algorithms that are
claimed to be small in size, tiny, and efficient. The developed
lightness indicator ranks the 3-Way algorithm as the lightest

among all with an LI of 3.38. Hight achieves the second best
lightness with a score of 2.49. The lowest score of 0.79 was
attained by KATAN-64. The case-study validates the statistical
framework and leads to a successful classification. Future
work includes the testing of reliability of the produced results
through comparisons with results obtained using different
methods. Future work also includes the expansion of the case-
study to include additional analysis profiles and composite
indicators with different performance characteristics.

REFERENCES

[1] F. Vahid, Embedded System Design: A Unified Hardware/Software
Introduction. New York: John Wiley & Sons, 2002.

[2] S. Bouckaert, S. C. Phillips, J. Wilander, S. Rehman,
W. Dabbous, and T. Turletti, “Benchmarking computers and
computer networks,” 2011, whitepaper. [Online]. Available:
http://www-sop.inria.fr/members/Thierry.Turletti/WP11.pdf

[3] H. Curnow and B. Wichman, “A synthetic benchmark,” Computer
Journal, vol. 19, no. 1, pp. 43–49, 1976.

[4] J. Dongarra and P. Luszczek, Encyclopedia of Parallel Computing.
Springer US, 2011, ch. LINPACK Benchmark, pp. 1033–1036.

[5] R. P. Weicker, “Dhrystone: a synthetic systems programming bench-
mark,” Communications of the ACM, vol. 27, no. 10, pp. 1013–1030,
1984.

[6] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[7] O. Mersmann, M. Preuss, and H. Trautmann, “Benchmarking evolu-
tionary algorithms: Towards exploratory landscape analysis,” in PPSN
(1), 2010, pp. 73–82.

[8] M. S. Müller, “An openmp compiler benchmark,” Scientific Program-
ming, vol. 11, no. 2, pp. 125–131, 2003.

http://www-sop.inria.fr/members/Thierry.Turletti/WP11.pdf


[9] EEMBC, “Website,” 2014. [Online]. Available: http://www.eembc.org/
[10] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of

applied cryptography. CRC press, 2010.
[11] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-

tative approach. Elsevier, 2011.
[12] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of skipjack

reduced to 31 rounds using impossible differentials,” in Advances in
CryptologyEurocrypt99. Springer, 1999, pp. 12–23.

[13] J. Kelsey, B. Schneier, and D. Wagner, “Related-key cryptanalysis of
3-way, biham-des, cast, des-x, newdes, rc2, and tea,” Information and
Communications Security, pp. 233–246, 1997.

[14] V. R. Andem, “A cryptanalysis of the tiny encryption algorithm,” Ph.D.
dissertation, The University of Alabama TUSCALOOSA, 2003.

[15] C. De Canniere, O. Dunkelman, and M. Knežević, “Katan and ktantana
family of small and efficient hardware-oriented block ciphers,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2009. Springer,
2009, pp. 272–288.

[16] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang,
J. Lee, K. Jeong et al., “Hight: A new block cipher suitable for low-
resource device,” in Cryptographic Hardware and Embedded Systems-
CHES 2006. Springer, 2006, pp. 46–59.

[17] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced
encryption standard. Springer, 2002.

[18] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
the Hardware/Software Interface, 5th ed. Morgan Kaufmann, 2013.

http://www.eembc.org/

	I Introduction
	II The Analysis Framework
	III A Case-Study on the Lightness of Cryptographic Ciphers
	IV Programming Interface
	V Performance Analysis and Evaluation
	VI Conclusion
	References

