
IEEE Copyright Notice
c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted to be Published in: Proceedings of the 2019 IEEE International Midwest Symposium on Circuits
and Systems (MWSCAS), Aug. 4-7, 2019, Dallas, TX, USA.

ar
X

iv
:1

90
9.

07
82

1v
1

 [
cs

.C
R

]
 1

7
Se

p
20

19

Variable Record Table: A Run-time Solution for
Mitigating Buffer Overflow Attack

Love Kumar Sah, Sheikh Ariful Islam, and Srinivas Katkoori
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

Email: {lsah, sheikhariful, katkoori}@mail.usf.edu

Abstract—We present a novel approach to mitigate buffer
overflow attack using Variable Record Table (VRT). Dedicated
memory space is used to automatically record base and bound
information of variables extracted during runtime. We instru-
ment frame pointer and function(s) related registers to decode
variable memory space in stack and heap. We have modified
Simplescalar/PISA simulator to extract variables space of six (6)
benchmark suites from MiBench. We have tested 290 small C
programs (MIT corpus suite) having 22 different buffer overflow
vulnerabilities in stack and heap. Experimental results show
that our approach can detect buffer overflow attack with zero
instruction overhead with the memory space requirement up to
13Kb to maintain VRT for a program with 324 variables.

I. INTRODUCTION

National Vulnerability Database (NVD) records show that
in the past two years, the cases of buffer overflow attack was
almost thrice than previous years [1]. Several library functions
in C programming lack variable boundary checking leading
to potential memory corruption unknowingly. Many operating
system kernel and drivers written in such unsafe language
allow an attacker to exploit the system. An attacker normally
overflows variable(s) space to modify the control data and
hijack the program control.

Ever since the introduction of stack smashing [2] in the
early 90s, the stack has been vulnerable to multiple attacks.
Many software and hardware approaches have been proposed
to prevent such attacks. The software-based approach performs
both static and lexical analysis of the code to find vulner-
able function(s), function call, and illegal accesses of array
element(s) in the source code or the binary. Techniques such
as FlawFinder [3], RATS[4], and LibSafe [5] performed an
exhaustive search to match tokens in program semantics against
a database of known vulnerabilities. However, software-only
approaches limit their application to debugging purposes and
incur performance overhead as high as 30X [6]. On the contrary,
hardware solutions are faster and transparent to the running
process. Non-Executable stack [7], Address Space Layout Ran-
domization (ASLR) [8], Canary word [9] next to return address
have been effective with extra instruction overhead. Maintaining
shadow stack [8] incurs performance overhead as high as 10%.
Most solutions proposed so far implement either additional
lines of code to check the bound or maintain expensive memory
isolation strategy.

In this paper, we propose a novel approach to extract the
memory space information by instrumenting instructions during

runtime. We store this information in a table called Variable
Record Table (VRT). We track frame pointer operation in
instructions to extract static variables space in the stack. For
heap space, we instrument the argument and return registers
during a dynamic memory function call by an instruction. VRT
is built upon instrumenting object file only during runtime. With
this variable level information, memory related security issues
can be handled by the processor itself. We use VRT entries to
check out-of-bound access during buffer overflow. The novelty
of the proposed work is as follows:

1) Extract variable runtime memory space information.
2) Detect buffer overflow cases utilizing VRT entries.
Experimental results for MIT Static Corpus benchmark [10]

(290 C programs) on SimpleScalar toolset [11] successfully
detect different buffer overflow cases. We also demonstrate
that our approach detects buffer overflow with no additional
instruction overhead. The memory overhead to maintain VRT
a program with 324 variables was only 13Kb.

The remainder of the paper is organized as follows. In
Section II, we present background, discuss the attack on process
memory. In Section III, we describe the details of the proposed
approach. In Section IV, we report the experimental results. In
Section V, we draw conclusions and mention future directions.

II. BACKGROUND

A. Buffer Overflow
During a buffer overflow, variables access go beyond their

allocated space that may overwrite data into adjacent memory
space. Such undesirable and illegal scenario pose a security
threat during program execution. Fig. 1 shows an exploitable
program with overflow case. In the strcpy() function, there
exists no bound checking of the destination variable, p and
unrestricted source variable data, argv[1] provided by the
user could override p’s heap space resulting in data corruption
of adjacent space.
int main(int argc, char **argv)
{
char *p, *q;
p = malloc(1024);
if (argc >= 2)

strcpy(p, argv[1]);
return 0;

}
Fig. 1: Buffer Overflow Program

Program code

Literal pool

Static data

Heap

Stack

Instruction pointer

Stack pointer

Local variable 1

Frame pointer

Return address

Arg 1

Arg n

Local variable 2

Local variable n

Local variable 1

Frame pointer

Return address

Arg 1

Arg n

Local variable 2

Local variable n

Fu
n

ct
io

n
 1

Fu
n

ct
io

n
 2

(b) (c)

Previous chunk size

Chunk size

Previous chunk size

Chunk size

Previous chunk size

Chunk size

(a)

Data

Data

Local variable 2

Fig. 2: Process Memory Organization

B. Process Memory

Fig. 2(b) depicts the main memory space for a running pro-
cess. It consists of code and data segment for storing program
instructions and data respectively. Stack memory segment in
Fig. 2(c) is used to store static variables of the program. It also
stores additional information of the function such as arguments,
return address, and previous frame pointer in order to maintain
the function execution. On the contrary, the heap segment in
Fig. 2(a) stores the dynamic data during the runtime. A heap
dynamic block space is linked with the static variables in stack
space (shown as color coded in figure). Heap space can be
dynamically allocated or freed using library functions in the
program whereas the stack space is fixed for a function call.

III. PROPOSED APPROACH AND IMPLEMENTATION

In this section, we present static and dynamic memory space
extraction process followed by discussion on the VRT table and
its format. Then, we discuss the use of VRT for different cases
of buffer overflow.

A. Static Variable Space

In the stack, static variable space for a function is laid out in
sequential order by the compiler. Such variable space starts in
the stack after the return address, frame pointer, saved registers,
and argument(s) from the previous function. To find the base
address of the local variables, we track the frame pointer’s
offset in load (lw) and/or store (sw) addresses. The relative
difference between sequential variable addresses can provide
the size of the allocated space.

In Fig. 3 we have three variables (basic, array and pointer)
of int type declared whose assembly code in MIPS is shown
in Fig. 4. In this figure, once the frame pointer is initialized
with the stack pointer address (line 7), it allocates the local
variables’ space based on their size and order of use in the
program. We observe that the frame pointer with offset value 16
for the array (line 9), 40 for the pointer (line 10), and 44 for the

1 int main()
2 {
3 int my_arr[] = {13,56,71,38,93,12};
4 int *ptr, i;
5
6 }

Fig. 3: Static variable declaration example in C

1. 4001f0 <main>:
2. 4001f0: addiu $29,$29,-56
3. 4001f8: sw $31,52($29)
4. * 400200: sw $30,48($29)
5. 400208: addu $30,$0,$29
6. 400210: jal 400618 <__main>
7. * 400218: addiu $2,$30,16

:
8 * 4002b0: sw $2,40($30)
9 * 4002b8: sw $0,44($30)
10 400358: addu $29,$0,$30
11 400360: lw $31,52($29)
12 400368: lw $30,48($29)
13 400370: addiu $29,$29,56
14 400378: jr $31

Fig. 4: MIPS Assembly code

variable i (line 11). To find the bound, we subtract two adjacent
variables’ base addresses. For example, the bound value of the
array will be (40-16) = 24. For the last variable (variable i)
the bound information can be calculated by subtracting it from
line 6 offset when it finishes storing the previous function data.

B. Dynamic Variable Space

Dynamic variable space is reserved or freed using the library
functions. malloc(), realloc(), free() and their vari-
ants are Direct Memory Access (DMA) functions in C. We
present the technique to extract the variables space from the
assembly code of these functions.

malloc(): This function takes an integer and return heap
space.

int *p1 = malloc(size);

Instruction level decomposition of the above malloc func-
tion call is shown below. We notice that function call (jal)
has the argument register ($4) with an integer value and upon
return, return register ($2) with heap address.

addu $4,$0,$2
jal 400f98 <malloc>
sw $2,16($30)

In realloc(), argument registers ($4 and $5) are the previous
heap address and new size respectively at time of function
call. $2 contains the new heap address after returning from
the function. Similarly free(), argument register $4 contains
the base address of the heap block to be freed. Thus, with
the content of argument registers and return registers, we can
track and differentiate the DMA functions.

C. Variable Record Table (VRT)

Table I shows the VRT layout with 3 columns namely,
associated bit (1 bit), base address (32 bits), and bound value (8
bits). Each entry of VRT uses 41 bits. The associated bit is used
to differentiate entries of a function from other function. As
shown in Table I, top three entries of a function have associated
bit different than the function with two entries. With current
function entry at top of the table, new function entry changes
associated bit to stay different than current function entry.
Associative bit is also helpful to link entries to a particular
function. During return from the function, all entries with same
associative bit on top of the table will be flushed out.

TABLE I: Variable Record Table

Associated Variable Address Bound
1 0X7FFF60 24
1 0X7FFF3C 4
1 0X7FFF28 4
0 0X7FFE70 24
0 0X7FFE60 16

1) Populating VRT: During program execution, each jump
instruction to a function with local variable or DMA function
(malloc()) will populate the VRT. Every new stack address
generated using frame pointer will be kept in the table as entry
whose bound information is relative to the upper bound of
frame pointer unless new entry is populated into the table. Upon
next variable entry, we modify the bound information. With
DMA function malloc we push a new entry into the table.
While realloc function will search the function entries to
match base address and update it with a new base address and
bound information.

2) Deleting Entry from VRT: Table entry need to be flushed
out to cope with program requirement. free() triggers an
entry to be deleted. While return from a function requires
deletion of all the entries of the function. Entry with same
associated bit from top of the table is deleted in this situation.

D. VRT Overheads

VRT size is proportional to the number of entries it can
accommodate at any time. VRT dynamically grows and shrinks
during the program execution. With the deletion of outgoing
function’s entries VRT relinquish space that is used for new
function entries.

Search overhead for a particular entry can be greatly reduced
by concentrating on current function entry. Associated bit helps
to differentiate between different functions.

E. Buffer Overflow and VRT

Once the local variables’ base and bound address are pop-
ulated in VRT, we can test each array offset and pointer
operation to generate the invalid memory address under two
representative cases. In the following section, we discuss two
different cases of illegal accesses.

1) Constant variable index: Direct access to an array with
constant index value beyond the array range can be treated as
an out-of-bound access case. If unchecked, such operation will
corrupt the out of scope data.

a[out_of_bound] = ’X’;

Assembly code for array access is shown below. The offset to
the load (ld) instruction produces an address that goes beyond
the address space of the variable stored in the entry of VRT.

4002e0: lw $2,out_of_bound($30)

2) Loop operation on array or pointer variable: This
case is common in buffer overflow condition. String library
function such as, strcpy() overflow during loop. Unchecked
increment operation (line 4 of C snippet shown below) on a
pointer variable (ptr) produces address beyond the space of
variable X.

1. char X[6];
2. char *ptr = X;
3. for(i=0; i<10 ;i++)
4 ++ptr = ’\0’;

We can decompose ++ptr operation into two instructions
in a MIPS like architecture. Firstly, it accesses the variable
address and writes it to a register. Secondly, the register is
incremented to produce a new address. In the second operation
(line 5), $2 act as source and destination address on which
increment operation is done. For an out-of-bound case, $2 must
have addresses that fall in two different entries of VRT. During
regular program execution, increment operation must have an
address that falls in the same entry of VRT.

1. 4002e0: lw $2,44($30)
2. 4002e8: addu $3,$0,$2
3. 4002f0: sll $2,$3,0x2
4. 4002f8: lw $3,40($30)
5. 400300: addu $2,$2,$3

We have used the pipeline micro-architecture in [12] to im-
plement VRT. Fig. 5 shows the five-stage pipeline architecture
with VRT.

Bound

24

4

Associative
Base

Address

1 0X7FFF60

1 0X7FFF3B

0 0X3FFF30

0 0X7FFF3B 16

1024

Fetch Decode
Operand

Fetch
Execute Memory Write Back

LW/SW Instruction
with Frame

Pointer Register

Associative
Bit

Fig. 5: Pipeline Architecture to Add Entry

Process variable table implementation is achieved by aug-
menting the fetch and execution stage of the processor pipeline
with a VRT extraction unit and a memory space unit. Extraction
unit checks on the lw and sw instruction with frame pointer
registers as an operand. The new address generated in execution
stage is stored to the VRT.

Base
Address

Fetch Decode
Operand

Fetch
Execute Memory Write Back

Bound

24

4

Associative

1 0X7FFF60

1 0X7FFF3B

0 0X3FFF30

0 0X7FFF3B 16

1024
[] Valid

 A
d

d
re

ss

 A
d

d
re

ss
’s

 B
o

u
n

d

Offset

Fig. 6: VRT and Buffer Overflow Check

Fig. 6 shows overflow detection architecture using VRT.
During line 5 operation in above assembly code, VRT gives the
bound information of the first operand and is compared with
the second operand If second operand is less than the bound
value, we consider it as a within bound access else is an out
of bound access.

IV. EXPERIMENTAL RESULTS

We modified the sim-outorder simulator in SimpleScalar
toolset [11] to validate the proposed approach. Sim-outorder
simulator is a detailed pipelined micro-architectural simulator
in SimpleScalar toolset. It models different runtime parameters
in detail with features including instruction profiling, branch
prediction, caches, and external memory. We chose RISC
architecture (PISA) architecture with sequential (i.e., in-order)
fetch and decode stage maintaining the instruction order. As
we rely on an offset value of previous instruction, sequential
execution of instruction was important to maintain.

In order to verify our proposed approach, we first populate
VRT. We have used MiBench benchmark suite [13] with six
selected programs for extracting static variable space and six
different benchmarks rich in DMA function for heap space
operation. Heap and stack space extraction are performed indi-
vidually. Table II shows the static variable and DMA function
count respectively for the programs.

TABLE II: Static Variable and DMA Function Count
Benchmark # Variables Benchmark # malloc() # calloc() # realloc() # free()
basicmath 25 automotive 10 1 0 5
bitcount 49 consumer 49 0 0 41

qsort 13 network 10 0 0 11
CRC32 9 office 324 71 0 542
dijkstra 15 security 37 9 7 58
patricia 28 telecomm 12 0 0 17

In the case of the office suite of the MiBench, we observe
324 entry to be maximum entries. As one entry of VRT consist

of one bit valid bit, 32 bit for base address and 8 bit for bound
value altogether use 41 bit per entry resulting in total VRT
memory size 324*41 = ∼13Kb.

We also implemented VRT on MIT Corpus suite of 290 C
programs for buffer overflow case. Each of 290 test cases from
MIT Corpus has four different program suffix namely, ok, large,
medium, and min. These programs consist of different buffer
overflow attributes [10]. For each case, we successfully detect
overflow. The instruction count for each class of program is
shown in Table III.

TABLE III: Results MIT Corpus C Benchmarks 290 Programs

MIT Corpus Program Class Instruction Count(Avg.) Attack Detected?
ok 18467 Yes

large 18642 Yes
medium 19378 Yes

min 18875 Yes

V. CONCLUSIONS AND FUTURE WORK

We have proposed the variable record table (VRT) approach
with zero instruction overhead as a countermeasure for buffer
overflow attack. We show frame pointer operation and its role
in extracting variable space information. With VRT, we can
successfully detect the common form of buffer flow attack. In
the future, we plan to use VRT for control flow integrity using
the variables for verification. VRT can also be a useful tool for
smart data prefetcher where the data block can be prefetched
based on variable size rather than the block size.

REFERENCES

[1] NIST National Vulnerability Database. https://nvd.nist.gov/.
[2] Aleph One. Smashing the stack for fun and profit. PhrackMagazine,

49(14),Nov.1996.http://www.phrack.org/archives/49/P49-14.
[3] Flawfinder. https://www.dwheeler.com/flawfinder/.
[4] RATS. https://security.web.cern.ch/security/recommendations/en/

codetools/rats.shtml/.
[5] Arash Baratloo, Timothy Tsai, and Navjot Singh. Libsafe: Protecting

Critical Elements of Stacks, 1999.
[6] W. M. J. Richard and H. J. K. Paul. Backwards-Compatible Bounds

Checking for Arrays and Pointers in C Programs. In AADEBUG, pages
13–26, 1997.

[7] Non-Executable User Stack. http://www.false.com/security/linux-stack/.
[8] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-injection

Attacks with Instruction-set Randomization. CCS ’03, pages 272–280,
New York, NY, USA, 2003. ACM.

[9] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. SSYM’98, pages 5–5, Berkeley, CA, USA, 1998.
USENIX Association.

[10] K. Kratkiewicz and R. Lippmann. Using a Diagnostic Corpus of C
Programs to Evaluate Buffer Overflow Detection by Static Analysis Tools.
10 2009.

[11] T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for
computer system modeling. Computer, 35(2):59–67, Feb 2002.

[12] L. K. Sah, S. A. Islam, and S. Katkoori. An Efficient Hardware-
Oriented Runtime Approach for Stack-based Software Buffer Overflow
Attacks. In 2018 Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), pages 1–6, Dec 2018.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded
benchmark suite. In Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
pages 3–14, Dec 2001.

https://nvd.nist.gov/
Phrack Magazine, 49(14), Nov. 1996. http://www.phrack.org/archives/49/P49-14
Phrack Magazine, 49(14), Nov. 1996. http://www.phrack.org/archives/49/P49-14
https://www.dwheeler.com/flawfinder/
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml/
https://security.web.cern.ch/security/recommendations/en/codetools/rats.shtml/
http://www.false.com/security/linux-stack/.

	I Introduction
	II Background
	II-A Buffer Overflow
	II-B Process Memory

	III Proposed Approach and Implementation
	III-A Static Variable Space
	III-B Dynamic Variable Space
	III-C Variable Record Table (VRT)
	III-C1 Populating VRT
	III-C2 Deleting Entry from VRT

	III-D VRT Overheads
	III-E Buffer Overflow and VRT
	III-E1 Constant variable index
	III-E2 Loop operation on array or pointer variable

	IV Experimental Results
	V Conclusions and Future Work
	References

