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Abstract—We explore the use of dependent types to address
the disparity between the theory and the practical hardware
description of DSP circuits. After discussing an approach to
modeling synchronous circuit behaviour in Idris (a pure func-
tional language with dependent types), two DSP case studies are
introduced — an FIR filter with optimal wordlengths and a
CIC decimator with register pruning. Both of these scenarios
prove difficult to describe in a parameterised fashion using
traditional HDLs and, as such, many implementations rely on ad
hoc circuit generators which are challenging to test and evaluate.
This work demonstrates that such circuits are readily described
in an environment with dependent types. Dependent types can
also encode various contracts between the IP designer and its
user. These contracts are automatically verified by the Idris type
checker before compilation, precluding many common mistakes
in IP development and evaluation.

I. INTRODUCTION

When describing Digital Signal Processing (DSP) circuits,
there is often a disparity between the generalised mathematical
theory and the practical description in a Hardware Description
Language (HDL). HDLs such as VHDL and Verilog do not
provide the language features required to fully parameterise
some simple structures, such as direct-form Finite Impulse
Response (FIR) filters with optimal wordlength growth.

As a consequence, designers either hand-craft an ad hoc
model for their own parameters or turn to software program-
ming, in an attempt to generate hardware descriptions in a
fully parameterised way. Perl has been a common choice for
such a task, however this offers extremely little in terms of
static checking of the circuit generators — placing an extra
burden of testing on the designer. This can also be problematic
when evaluating 3rd party Intellectual Property (IP); evidence
of testing is vital in the absence of any invariants checked
by a compiler. The user of these IPs will need to know what
constitutes a valid set of parameters, which edge cases have
been handled, and any assumptions that have been made. This
issue can even present itself in many functional HDLs with
expressive type systems, such as [1]–[3].

This paper introduces pure, functional programming lan-
guages with dependent types as a solution to describing
parameterised DSP circuits faithfully, and with structures ver-
ified at compile-time. Automatically verifying these properties
provides a contract between the IP developer and the user; the
developer must generate well-formed circuits for all possible

parameter sets, and the user is given a clear, computer-checked
proof of this behaviour. Dependent types allow the type of a
program (in this case, encoding the structure of a circuit) to
depend on the values of its arguments, not just the argument
types (e.g. a coefficient’s value, not just its wordlength). We
use the language Idris [4] to make this demonstration of
modeling DSP circuits. Currently this is in simulation only,
but synthesis remains a promising avenue for future work
given the success of similar synthesisable languages without
dependent types [1]–[3] and dependently typed tools from
other domains [5].

II. MODELLING SYNCHRONOUS CIRCUITS IN IDRIS

To model simple circuit behaviour in any language, it is
necessary to have fixed-size data types and a means of de-
scribing synchronous signals. These topics have considerable
complexity when considering circuit synthesis — but much
of this can be neglected when performing simulation alone.
One model of synchronous signals is an infinite stream where
the kth element represents the discrete-time sample that is
stable during the kth clock cycle. This technique can be seen
in various forms in languages such as Kansas Lavas [1] and
CλaSH [2], both hosted in Haskell.

The host language must have support for lazy evaluation
if using these infinite streams since we, unfortunately, run
our simulation on computers with finite memory. One subtlety
arising from this approach is that it is possible to describe a
variety of non-synthesisable circuits. For example:

• Dropping an element from the stream describes a time
advance, and is non-causal.

1 adv : Stream a -> Stream a
2 adv (x :: xs) = xs

• Some recursive uses of streams would infer circuits with
infinite memory resources [2].

1 elephant : a -> Stream a -> Stream a
2 elephant i (x :: xs) = i :: x :: elephant i xs

Such descriptions can be precluded by hiding the Stream
implementation and only exposing “safe” functions to operate
on these streams — such as delay, and a functor or applica-
tive interface.

Sections III and IV continue by considering how Idris’
dependent types can be used to describe and reason about
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commonplace DSP circuits more precisely than traditional
HDLs.

III. FIRST STEPS:
MINIMAL BIT GROWTH FOR FIR ADDER CHAINS

Consider the direct form FIR filter shown in Figure 1. All
wordlengths have been annotated with the worst-case for each
unsigned arithmetic operation in isolation. Note that we have
adopted unsigned arithmetic for the purposes of illustrating
Idris concepts, acknowledging that signed arithmetic would be
preferred for FIR filter implementation. The interested reader
can access our full source, including a signed variant, at [6].
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Fig. 1. A direct form FIR filter with worst-case growth along the adder chain

For this introductory example, the input is 8b (an 8-bit
word), the coefficients are all 5b, and the adder chain ends
as 16b. Given nb and mb unsigned words, multiplication with
worst-case bit growth is represented by (n+m)b, and addition
gives (Max[n,m] + 1)b. This sort of growth can be cap-
tured by VHDL designs using generics and for generate
statements. (Note that there is no type inference, however, so
every intermediate signal must be explicitly defined.). As an
introduction to Idris’ syntax we present this worst-case bit
growth for arithmetic functions in Listing 1, where the type
Unsigned n represents an unsigned integer of n bits.

Listing 1. Worst-case bit growth for binary arithmetic functions

1 mul : Unsigned n -> Unsigned m -> Unsigned (n+m)
2 mul (U a) (U b) = U (a * b)
3

4 add : Unsigned n -> Unsigned m
5 -> Unsigned (max n m + 1)
6 add (U a) (U b) = U (a + b)

Each function has a type (after “:”), and an implementation
(after “=”). For clarity, the type of the multiplication function,
mul, should be read as “a function accepting arguments of
type Unsigned n and Unsigned m, and returning a value
of type Unsigned (n+m)”.

In the case of Figure 1, a circuit can be described with
wordlengths better than the worst-case for two reasons:

1) Each operation was considered in isolation but repeated
additions will accumulate quantisation effects when the
range of a number does not align with powers of 2. For
example, y in Figure 1 will only inhabit values within
the range [[0, 215 − 1]], despite its 16b annotation.

2) The coefficients will often be constants. In this case,
the bit growth due to multiplication will vary with the
numerical value of each constant coefficient.

The latter is particularly relevant, as it clearly demands
a language with dependent types — a term-level value (a
coefficient) must be used to compute a type (the output
wordlength). The next section applies Idris to these challenges.

A. An Idris Implementation

Better bit growth is facilitated by types that track the
integer range each signal can inhabit, rather than immediately
rounding to the required number of bits (i.e. dlog2(range)e).
Our Bounded type implements this, where a number of type
Bounded n is in the closed interval [[0, n]] (i.e. any value
between 0 and n, inclusive). Listing 2 shows two arithmetic
functions on Bounded that help ensure minimum bit growth
for the FIR filter example — mulConst to multiply a
Bounded with a constant, and add to add two Boundeds.

Listing 2. Minimum bit growth for Bounded arithmetic functions

1 mulConst : Bounded n -> (m: Nat) -> Bounded (n*m)
2 mulConst (B x) m = B (x*m)
3

4 add : Bounded n ->Bounded m -> Bounded (n+m)
5 add (B x) (B y) = B (x+y)

Note mulConst’s use of dependent types, where the type
of the output depends on the value of an argument. A full
FIR filter circuit can be constructed using these arithmetic
functions, as it is just a dot product of j coefficients (w) and
the last j samples of a discrete time signal (x).

y[k] =

j−1∑
i=0

wi · x[k−i] (1)

To construct the type for the dot product’s output, consider
the worst-case magnitude of each term in Eq. 1. As the range
of x[k] is constant for all k, the type can become:

|y[k]| = |x[k]|
j−1∑
i=0

|wi| (2)

From this, we can deduce that a valid type for the dot
product function is Bounded (n * sum ws), given a
collection of j coefficients, Vect j Nat called ws, and a
collection of j samples of x, Vect j (Bounded n). Note
that sum is an ordinary function and it is a consequence of
dependent types that we can use it to construct a type for the
dot product output. Listing 3 shows the implementation of this
combinatorial dot product and the FIR model that “lifts” this
dot product into a Stream, modelling synchronous logic.

Notice that line 7 includes a “rewrite” rule that seems extra-
neous to the model of the circuit. This acts as a small proof for
the Idris compiler, demonstrating that the implementation does
agree with the type we described. The type of the dot product
is defined as in Eq. 2, and while our recursive implementation
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Listing 3. Dependently typed FIR implementation

1 dotProd : (ws : Vect j Nat)
2 -> Vect j (Bounded n)
3 -> Bounded (n * sum ws)
4 dotProd {j=Z} _ _ = zeros
5 dotProd {j=S l} {n} (w :: ws) (x :: xs) =
6 let y = add (mulConst x w) (dotProd ws xs)
7 in rewrite dotProdDistrib n w l ws in y
8

9 fir : (ws : Vect j Nat)
10 -> Stream (Bounded n)
11 -> Stream (Bounded (n * sum ws))
12 fir {j} ws x = liftA (dotProd ws) (window j zeros x)

is mathematically equivalent, it does have a subtly different
structure, as shown in Eq. 3 for the sth recursive step.

|y[k]| = |x[k] · ws|+ |x[k]|
j−1∑

i=s+1

|wi| (3)

The rewrite rule is reminding the compiler of multiplica-
tion’s distributive property, and thus Eq. 2 ≡ Eq. 3.

In summary, dependent types have been used to implement
an FIR filter in Idris that models minimal bit growth (hence
minimal resources) based on the constant values of the coef-
ficients. As we track the ranges in the types, the compiler
ensures that we implemented the minimal growth at each
arithmetic stage, as defined by our contract’s specification in
Eq. 2. If an implementation fails to do so for any possible set
of parameters, it will raise a compiler error for both the IP
designer and the IP user. The compiler will disallow designs
that, for example, do not grow wordlengths for arithmetic or do
not sensibly use each coefficient exactly once, giving us some
confidence that we have correctly implemented a form of dot
product. Note that this example’s types encode wordlengths
and do not strictly guarantee the arithmetic meaning of the
output or its dependence on time, but the patient designer can
refine these types to do so when deemed necessary. Further
discussion of this possibility is presented in Section V.

B. Comparisons to existing HDLs

Compare this dependently typed, minimum bit growth FIR
filter to the implementations possible in other HDLs. A
typical VHDL FIR filter can be parameterised in terms of its
coefficients, the wordlength of the coefficients, and the input
wordlength. However, the bit growth is likely to be worse than
even the scenario presented in Figure 1. Because of the lack
of type inference or type-level generate statements in VHDL,
a common approach is to simply resize all arithmetic stages to
match the full precision output — heavily relying on synthesis
tools to remove unused nets.

Although this is a valid design choice when considering
the filter in isolation, it presents practical difficulties for real
designs. The filter will usually be just one part of a larger chain
of DSP circuits. At several points along the data path, the full
precision signals will be shortened to constrain resource usage.

In this case, the designer may employ two strategies:
• Truncation/rounding of the LSBs.
• Removing uninhabited MSBs identified by Eq. 2.
The second option is appealing as it can reduce wordlengths

without loss in precision, but it requires extra manual effort
(for each coefficient set!) just to emulate a static property of
our Idris implementation. Beyond this, breaking the reliance
on synthesis tools allows the designer to reason about resource
usages directly from the source — including how resource
usage mathematically relates to any design parameters.

There are also clear benefits above other modern functional
HDLs, such as Lava [1]. In Lava, a similar circuit can be
described using dynamically sized lists of bits to represent
each word. It is then the execution of a (software) Haskell
program that generates the circuit, since statically sized struc-
tures are required for most structural hardware descriptions.
In this case, the output circuit might be equivalent to the Idris
implementation, but there are no guarantees about wordlengths
checked by the compiler — this is what we have addressed
with dependent types. Similar benefits are demonstrated in
an adjacent domain; the language Proto-Quipper-D uses de-
pendent types to ensure correctness of entire “families” of
parameterised quantum circuits [5]. Without these compiler
checks, there is a large burden on the developer to provide
good evidence of testing.

IV. GOING FURTHER:
PRUNING IN CIC INTERPOLATORS/DECIMATORS

Moving away from simple FIR examples now, it is natural to
start exploring other DSP applications that are parameterised
slightly differently. We start to notice that many of these do
place unmet demands on existing HDLs in their most general
form. A noteworthy example is the Cascaded Integrator-Comb
(CIC) decimator/integrator, as these designs cannot rely on
synthesis tools to mask imprecise descriptions from traditional
HDLs.

CIC decimation filters are often used as a very low resource
means of resampling — composed of a chain of N integrators,
followed by a 1

R downsampler, followed by N comb filters
with a differential delay of M . Figure 2 shows an example
CIC decimator with R = 8, N = 3 and M = 1.
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Fig. 2. A CIC decimator without pruning. (R = 8, N = 3 and M = 1)

Hogenauer introduced a register pruning technique for CIC
filters [7], deriving equations for the mean error and variance
introduced by truncation at each stage. It is suggested that,
given a desired output wordlength, a legitimate design choice
is to prune the wordlengths of all previous stages maximally
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without accumulating an error greater than that introduced
by the final rounding/truncation. This choice results in Eq.
4, describing the number of LSBs to discard at the jth stage.

Bj =

⌊
− log2 Fj + log2 σT2N+1

+
1

2
log2

6

N

⌋
(4)

where Fj is the variance error gain for the jth stage, σT2N+1

is the total variance at the output due to truncation, and N
is the number of stages. Note that the first two terms have
complicated definitions of their own, including cases, sums,
exponentials, and binomial coefficients [7].

As the pruned bits do contain information, synthesis tools
cannot perform an equivalent optimisation given an non-
pruned description. We apply the same techniques as shown
in Section III to implement a fully parameterised, pruned
CIC decimator. Our implementation (omitted for brevity, but
available in full at [6]) makes use of Idris’ single language that
can be used at the term-level and the type-level. All language
constructs can be used to implement Eq. 4, and this can then be
used to direct the type of each stage in a CIC implementation.
Using Eq. 4 at the type-level gives us the contract between IP
designer and user, which is verified by Idris at compile time.

Although this early work is in simulation only, we can
still explore post-layout results for this CIC pruning algorithm
using an ad hoc Verilog/VHDL generator. Fig. 3 presents the
LUT usages for different CIC filter parameters, highlighting
the resource savings attained by Hogenauer pruning. While
these results are generated with a CIC utility from the Ki-
wiSDR project [8] (a C program that returns Verilog code), the
outputs are structurally identical to our Idris implementation
— only without the safety of our dependently typed properties.
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Fig. 3. Post-layout results for ad hoc CIC filter generation with Hogenauer
pruning (dashed lines) and without (solid lines). M = 1 and Bin = 16 for
all lines.

Note that the approach to circuit generation in [8] is a prime
example of some common issues that we are trying to address
with dependent types. There is no verified contract between
the IP designer and user for the range of valid parameters,
their effect on the generated circuit, and no clear evidence of
testing. One such bug found while generating Fig 3 is that any

Bout which requires bit extension at the final stage, rather than
truncation, will silently generate invalid Verilog.

While both of our examples focus on computing type-level
wordlengths, the techniques can be applied to many other type-
level constructs — e.g. circuit topology. It is only a small
leap to use these techniques to write type-safe descriptions of
many other circuits. We will explore this opportunity further
in Section V.

A. Comparisons to existing HDLs

Idris gives us the same advantages over VHDL here as in
Section III, with the addition that VHDL’s limitations cannot
be partly mitigated by optimisations built into synthesis tools.

In comparison to HDLs embedded in Haskell, such as Lava,
a similar structure may be technically realisable with type-
level functions and singletons. However, Haskell does not
offer the luxury of one rich language for both the term and
type levels. Because of this, implementing the complex, type-
level function required to represent Eq. 4 would prove to be
a particularly challenging excursion.

V. FURTHER APPLICATIONS

We have introduced two example use cases for Idris as
an environment for simulating (and, eventually, synthesising)
DSP circuits. These are both introductory examples, focusing
only on type-level wordlengths in commonplace DSP struc-
tures. Encoding wordlengths in a circuit’s type was chosen
here because it is both:

1) A genuinely valuable property to verify for DSP circuits.
When left unchecked, wordlengths can be a common
source of “off by one” errors and present ambiguity in
arithmetic modes (extending, saturating, or wrapping).
They can also hide valuable design information from
the user, as we have seen in our FIR example.

2) An approachable first introduction to type-level compu-
tations, the classes of error that Idris’ type system can
identify statically, and allows us to very briefly touch on
the use of dependent types as a general proof assistant.

However, as hinted at previously, dependent types actually
offer a user the means to track many other circuit generator
properties in their types too — not just wordlengths. Remem-
ber that if we encode such a property in our circuit’s type,
the compiler will mechanically check that this holds for the
entire parameter space. As one example, [9] introduces an
alternative encoding of binary numbers in Idris which carries
the natural number representation of a binary word in its type.
Here we can define the arithmetic intent of a circuit using
natural numbers and have the compiler ensure that our binary
implementation preserves this (i.e. it is functionally correct).

Our proposal allows the developer to program (without ad-
hoc compiler support) using as much type-level safety as is
desired — anywhere from checking wordlengths, to ensuring
pipeline depths of two branches are equal, or even to fully
verifying the arithmetic meaning of a family of circuits.

Speculating about futher applications for DSP circuits,
consider the literature’s rich set of digital design techniques
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that take simple (inefficient) operations and restructure them
into cheaper or more amenable forms. Two such examples
are area-efficient, parallel FIR structures for high-throughput
applications (such as the Fast FIR Algorithm [10]) and Mul-
tiple Constant Multiplier blocks for multiplierless arithmetic
in filters (such as Hcub [11]). Both of these typically rely on
software programming for generic implementation and their
supporting publications include proofs that the operation is
equivalent to their unoptimised counterparts. A particularly
thorough implementation with dependent types could include
these proofs/contracts alongside the implementation. This
would ensure that the ideas are not only peer-reviewed, but
have been mechanically verified. Importantly, this verification
would also apply directly to their concrete implementation,
not just the conceptual algorithm.

VI. RELATED WORK

We acknowledge the rich history of functional HDLs,
including [1]–[3] but we focus on the narrower field of
dependently typed languages. The work in [5] introduces
an application of dependent types for generating families
of quantum circuits, hinting towards an exciting future for
synthesis of digital circuits using similar techniques. Ref. [12]
introduces Π-ware, an extremely low-level structural HDL
with dependent types (embedded in Agda), but does not ad-
dress its application in a wider DSP context. The authors also
identify the productivity associated with Π-ware’s low-level
descriptions as point for improvement. We instead advocate
for future work exploring a new dependently typed language
with the higher-level functional productivity of CλaSH [2].

VII. CONCLUSIONS

This work explored how dependent types can be used to
represent fixed-point structures common to many DSP circuits.
The best implementations of these structures to date have used
ad hoc software that generates a circuit during its run-time
(rather than a direct hardware description). We have shown that
dependent types allow a compiler to check these structures,
rather than suppressing bugs until run-time with a particular set
of parameters. This method of hardware description minimises
the burden of testing for designers of reusable IP, as many of
the structural properties of a circuit can be guaranteed by their
type, and makes it possible for users to confidently evaluate
IPs. These implementations often require no extra effort, and
better still, using such specific types can even help guide the
implementation of complex structures.
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