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Abstract—Peripheral Arterial Disease (PAD) is a common form
of arterial occlusive disease that is challenging to evaluate at the
point-of-care. Hand-held dopplers are the most ubiquitous device
used to evaluate circulation and allows providers to audibly
”listen” to the blood flow. Providers use the audible feedback
to subjectively assess whether the sound characteristics are
consistent with Monophasic, Biphasic, or Triphasic waveforms.
Subjective assessment of doppler sounds raises suspicion of PAD
and leads to further testing, often delaying definitive treatment.
Misdiagnoses are also possible with subjective interpretation
of doppler waveforms. This paper presents a Deep Learning
system that has the ability to predict waveform phasicity through
analysis of hand-held doppler sounds. We collected 268 four-
second recordings on an iPhone taken during a formal vas-
cular lab study in patients with cardiovascular disease. Our
end-to-end system works by converting input sound into a
spectrogram which visually represents frequency changes in
temporal patterns. This conversion enables visual differentiation
between the phasicity classes. With these changes present, a
custom trained Convolutional Neural Network (CNN) is used for
prediction through learned feature extraction. The performance
of the model was evaluated via calculation of the F1 score and
accuracy metrics. The system received an F1 score of 90.57%
and an accuracy of 96.23%. Our Deep Learning system is not
computationally expensive and has the ability for integration
within several applications. When used in a clinic, this system has
the capability of preventing misdiagnosis and gives practitioners
a second opinion that can be useful in the evaluation of PAD.

Index Terms—Waveform Phasicity, Handheld Doppler, Deep
Learning, Spectrogram, Convolutional Neural Networks

I. INTRODUCTION

Peripheral Arterial Disease (PAD) [1] is the narrowing or
blockage of arteries supplying the lower extremities due to
atherosclerosis (Figure 1). According to the Center for Disease
Control (CDC) over 6.5 million people who are 40 years or
older have PAD in the United States alone [2]. If not diagnosed
and treated early, PAD can lead to limb loss. After clinical
examination for a pedal pulse, the most common point-of-care
tool utilized for evaluation of PAD is a low-cost hand-held
doppler [3]. When pointed at the direction of blood flow of a
target artery, this device allows the provider to audibly “listen”
to the circulation. Providers are then expected to subjectively
assess whether the sound characteristics are consistent with
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Monophasic, Biphasic, or Triphasic waveforms to diagnose the
severity of PAD. This is a technically challenging procedure
as waveforms can be difficult to predict. Thus when man-
ually assessing these sounds mistakes can be made leading
to misdiagnoses. With any question in sound interpretation,
practitioners will often refer patients for further testing to a
formal vascular ultrasound laboratory which can lead to delays
in definitive treatment. Within the vascular laboratory, the
Ankle-Brachial Index (ABI) is calculated and/or direct arterial
ultrasound imaging can be performed to diagnose the severity
of PAD. For this, large and expensive devices are utilized.
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Fig. 1: CDC PAD Artery Illustration [2]

Taking into account the subjectivity when assessing arterial
sounds and predicting waveform phasicity, there is a clear need
for an effective method for practitioners to cross-check their
prediction and increase their confidence in order to provide
more timely treatment of PAD. This paper presents a novel
Deep Learning system that has the ability to predict waveform
phasicity through analysis of hand-held doppler sounds. Deep
Learning is becoming increasingly popular in the medical field
for its ability to mimic the human brain structure, learn from
data and make clinically useful predictions [4].

With current computational resources, Deep Learning is
being widely utilized for multiple tasks. Most clinical imple-
mentations of Deep Learning solutions are centered around
image classification and object detection for medical imaging
purposes [4]. Our method employs similar Deep Learning
techniques but for the classification of arterial sounds. This



classification is made possible by firstly converting input sound
into a spectrogram image. This is done to visualize features
and convert frequency and amplitude variance into visual
temporal changes. With this conversion, visual differentiation
is present between the phasicity classes opening up the abil-
ity for classification through a Deep Learning approach. A
custom Convolutional Neural Network (CNN) [5]] trained on
spectrogram images spanning the three waveform phasicity
classes is used for prediction. The CNN model revealed
high accuracy rates when tested on new data. This system
can enhance the capabilities of low-cost hand-held dopplers
and aid practitioners at the point-of-care leading to more
timely clinical decisions. Figure 2 shows the three phasicity
waveforms. The Triphasic waveform consists of three phases,
Biphasic has two phases and the Monophasic waveform has
one phase. The spectrogram visual differentiation is similar to
the waveforms visual differentiation.
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Fig. 2: Waveform Phasicity Comparison
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II. RELATED WORK

A large amount of research has been conducted around
the usage of Deep Learning, Machine Learning (ML) and
Computer Vision (CV) based techniques and algorithms for
the interpretation of data to classify cardiovascular conditions
and diseases. We have highlighted a paper that utilizes a sound
classification system for the classification of heart sounds (eg.,
murmurs). Li et al. proposed the use of a custom trained CNN
for the classification of heart sounds as either abnormal or
normal [|6]. This research utilized the PhysioNet cardiology
dataset [7]]. They used various signal processing techniques for
the plotting of Mel-frequency Cepstral Coefficients (MFCC).
They utilized a custom CNN to analyze the MFCC’s and make
the binary classification. The proposed algorithm received
around a 72.1% to 86.8% accuracy rate in classification.

Our method differentiates from Li et al. in two main factors.
Firstly, our method targets peripheral arteries affected by
PAD and not the heart itself. Thus our research required
different means for both data collection, generation, and model
development. Additionally, in our opinion, making a binary
classification such as normal or abnormal likely does not
provide a detailed enough result for practitioners to interpret
and utilize. Our system predicts waveform phasicity, a widely
utilized metric for the diagnosis of PAD and other cardio-
vascular diseases. With a predicted phasicity, practitioners
can differentiate between mild, moderate, and severe arterial
disease. This can help in making a more robust diagnosis. Our
system has also achieved an accuracy rate of over 90%.

III. METHODS

The following order and methodology has been used to
develop and validate our full end-to-end sound classification
system. Firstly, audio data was collected and labeled within
a clinical setting by a vascular technologist during formal
ABI examinations. After the collection of data, spectrogram
images were generated by inputting all collected sound files
through a signal processing conversion method. This converted
frequency changes into temporal changes. As the dataset was
not very large in size, artificial data augmentations were
added to increase dataset size and possible learned features.
After data preparation, a Deep Learning model was developed
and constructed through a Transfer Learning [8] approach
enabling high accuracy rates and less training time on lower
amounts of data. Lastly, the model was validated with a
separate set of doppler audio data through calculation of the
F1 score and accuracy metrics. Figure 3 depicts the fully
constructed sound classification system flow. The end-to-end
system works by converting input sound into a spectrogram
image and then sending the image through a custom trained
CNN which predicts the waveform phasicity through learned
visual features.
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Fig. 3: Full Sound Classification System Flow

As follows are each of the development stages consisting
of a detailed explanation which walks through the exact
methodology as well as well as specific tools and formulas
used for implementation of the full sound classification system.

A. Data Collection

Hand-held doppler sounds were generated using the Parks
Flo-Lab 2100 doppler machine pencil doppler [9]]. Four-second
recordings were taken during formal vascular lab studies in
patients being evaluated for PAD. An iOS application was
developed to efficiently and securely create and label the
recordings through an iPhone within the clinic. The vascular
technologist performing the study labeled the waveforms us-
ing the Parks Flo-Lab digital waveform display as a robust
reference to maintain accuracy and data consistency. The
i0S iPhone application was developed within Apple’s Xcode
Integrated Development Environment (IDE) with the Swift
5 programming language. The app was linked to a Cloud
database via Google’s Firebase [10] allowing for real-time and
secure data transmission. Within the Firebase system, a real-
time Database [[10] was created for storage of input values
such as waveform phasicity and arterial position, and a Storage



bucket was created for storage of sound files. Phasicity and
artery names were also appended to the sound file titles for
fast referencing of data for cross-checking.

After data was collected within the database, the Python
3 programming language and the Pyrebase third-party data
extraction library was used to create a data downloading script
utilized for downloading all files from the real-time database
and storage bucket at once. Shown in Figure 3, is the dataset
distribution after all data was extracted from the database.
A total of 268 sound files were collected. The dataset was
split into an 80% training and a 20% testing standard split.
This was to ensure data was available after model training for
validation/testing of the system.
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Fig. 4: Dataset Distribution Chart

Diverse data with background interference and noise was
intentionally included in the final dataset. This was to ensure
that in later stages, the model would potentially develop
resilience to these factors as they will likely be present in
a clinical setting due to noise from other machines and tools.

B. Data Generation

All sound files were converted into spectrogram images that
represent frequency changes visually over the four-second time
span. The color variance in the spectrogram represents ampli-
tude changes. These changes clearly visually differentiate the
Monophasic, Biphasic, and Triphasic classes. Shown in Figure
4, are spectrograms representing each of the three phasicity
classes. The Monophasic class does not have a lot of definition
in the amplitude variance but in the Biphasic and Triphasic
classes the amplitude variance increases showing clear visual
class differentiation. This differentiation is a representation
of the increased blood flow and pulsatility present in the
Biphasic and Triphasic waveform phasicity classes. Also, note
that interference, as well as background noise, is present in the
selected spectrogram samples but differentiation remains.

Sound file to spectrogram conversion was implemented in
the Python 3 programming language with the Librosa library
(TT]. Librosa is a popular library for sound and signal process-
ing as it holds a lot of useful features within a minimal and
simplified codebase. Spectrogram generation was done within
a loop function. This function converted input sound into a
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Fig. 5: Spectrogram Phasicity Comparison

spectrogram image by sending it through a Short-time Fast
Fourier Transform (STFT) [12]. The STFT is a widely used
and standard conversion method for spectrogram generation.
At a high level, this type of Fast Fourier Transform (FFT) [13]]
divides a time signal into shorter equal segments/windows,
runs a standard FFT, and plots the spectrogram in the time-
frequency domain. Shown in Equation 1 is the mathematical
formula for the STFT. In this formula, the signal is represented
as x[n] and the window as w[n]. The standard FFT converts the
input signal from its original domain into a frequency domain
representation. Doing this within the STFT method allows
for spectral plotting. After the generation of spectrograms, all
images were converted into a [224, 224] constant size as this
is required by the specific model developed in later stages.
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C. Data Augmentation

After all spectrogram images were generated, the dataset
was artificially augmented to increase the size and possible
knowledge gained by the model in later stages. The Keras
Python library was used for adding data augmentations as
sequential layers. Keras is a widely used framework for Neural
Network construction as well as image pre-processing. One
simple data augmentation was added due to the system taking
in clean spectral images in the end-stage. Randomized zoom
(20%) was chosen as the primary augmentation for this dataset.
Randomized zoom maintains valuable features as well as
orientation. Figure 5 shows an example Triphasic spectrogram
image with randomized zoom applied. Amplitude variance is
still visible in the image. This can possibly be valuable.

Fig. 6: Randomized Zoom Data Augmentation



D. Model Development

Deep Learning is emerging as a powerful technology that
is being used widely in the medical field to aid practitioners.
Deep Learning gives computers the ability to learn from
data and make clinically useful predictions by mimicking the
human brain’s neural structure and enabling the development
of Artificial Neural Networks (ANNs). CNNs, a form of Deep
Neural Networks (DNNs) have revealed high accuracy rates
when analyzing visual imagery due to their unique capability
of extracting features through convolutions. As with many
medical projects, our dataset was small, and training a CNN
from scratch would not be ideal and high accuracy rates would
not be achievable. To compensate for the lack of data, a
Transfer Learning approach was leveraged. Transfer Learning
is a popular Deep Learning methodology that allows for the
retraining/relearning of existing models. These models usually
have deep architectures consisting of multiple layers and have
been trained on large amounts of images. The prior knowledge
gained from the model helps with the differentiation of new
classes thus gaining the ability to achieve high accuracy rates
on minimal amounts of data. This approach also enables faster
training time (fewer epochs/iterations) compared to developing
a Neural Network from scratch with no prior knowledge.

Inception V3 [[14] is a popular CNN model architecture that
has received fairly high accuracy for image classification prob-
lems (ImageNet). Inception V3 builds upon previous Inception
CNN versions due to its ability to reduce computation and
enable deep networks through dimensionality reduction tech-
niques. Inception V3 is a vast network architecture consisting
of multiple layers of convolution, pooling, concat, dropout, etc.
The Inception V3 model utilized for this project has gained
prior knowledge through being trained on around a million
images from the ImageNet dataset/competition [15]]. Because
of this, the model has gained weights that can help with the
differentiation of newly trained classes. To accommodate the
new spectrogram image dataset, two layers were added to the
end of the Inception V3 architecture. The modified Inception
architecture consists of both a Flatten layer and a Dense layer
for final probability class prediction. The Flatten layer converts
the output of the original Inception V3 architecture into a one-
dimensional representation. The Dense layer is used for final
probability class prediction through the softmax activation
function (Equation 2). Softmax is commonly used in Neural
Networks for multiple class predictions. Our softmax function
contained three nodes for the phasicity classes.
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The CNN model was constructed and implemented sequen-
tially in Keras. Compilation and training were done with Ten-
sorflow [16]. The Google Colab Pro Integrated Development
Environment (IDE) [17] was leveraged for Cloud develop-
ment allowing for fast model training with large amounts
of available compute. The Python 3 programming language
was utilized. Within Colab, the Tesla P100 GPU [18]] was

leveraged. The modified Inception V3 architecture is shown
in Figure 7. The full Inception V3 model was downloaded
from Google Storage with the ImageNet weights initialized.
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Fig. 7: Modified Inception V3 Model Architecture

E. Model Training

The model was compiled first and then trained across 10
epochs using Tensorflow. When training a Neural Network
from scratch, epochs can be up to 100 but in our case due
to the usage of Transfer Learning, 10 epochs was sufficient
for gaining high accuracy. The model was fed both training
and testing data. For compilation, the Adam optimizer [[19]]
was utilized. Sparse Categorical-cross entropy was the loss
function chosen. At each epoch in model training F1 score
and accuracy, metrics were calculated as shown in Equation 4
and Equation 5. Additionally, the model’s training and testing
accuracies were graphed over the 10 epochs along with loss.
This data when interpreted can show us if the model is learning
from the data properly and if overfitting is present.

2 % Precision x Recall TP
F1= — = i 3)
Precision + Recall TP+ 5(FP+FN)
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IV. RESULTS AND DISCUSSION

After the system was fully developed, validation was done
through calculation of the F1 score and accuracy metrics.
The F1 score is a standard validation metric that takes into
account both precision and recall. It is widely used in the
validation of Deep Learning and ML systems. Accuracy was
also calculated and used in the validation of the system.
Accuracy is the percentage of predictions that the model made



correctly through all of the testing data. Our system received
a validation accuracy of 96.23% and an F1 score of 90.57%.
As these metrics are over 90%, it clearly shows that the model
is highly accurate in predicting phasicity through sound and
that the proposed sound classification system is accurate.

To further validate the system and its learning rate, graphs
created during model training were interpreted. These graphs
represent training and validation accuracy and loss over the
10 training epochs. As the loss is consistently decreasing
through the iterations consistently, overfitting is not present
and the model has a good learning rate. The accuracy graph
consistently increases without any dips indicating that the
model is learning at a good rate. Additionally, the validation
accuracy as well as training accuracy are close together. Figure
9 shows the loss and accuracy graphs over the 10 epochs.

Similar to most medical studies, data is limited and we
could have benefited from having more data from multiple
sites to help avoid any potential biases intrinsic to the patient
population characteristics. FFT analysis to classify doppler
signals has been attempted but never for doppler sounds of the
tibial vessels [20]. The power of such analysis is particularly
evident in the setting of a calcified tibial vessel which does
not allow for accurate ankle-brachial index measurement.
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Fig. 8: Model Accuracy and Loss Graphs

V. CONCLUSION

We have successfully developed an end-to-end sound clas-
sification system that can predict arterial doppler waveform
phasicity with high accuracy. Vascular specialty care is limited
as are vascular labs to formally rule out PAD. This model
and method can be implemented in primary care, podiatry,
and wound care clinics to provide a more objective peripheral
vascular assessment and assist in real-time treatment decisions
and avoid delays in care. Our next steps are to study the
prediction of ABIs and to integrate this model into a low-
cost mobile application and hardware platform which can be
used at the point-of-care ubiquitously.
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