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Abstract—Spike sorting algorithms are used to separate ex-
tracellular recordings of neuronal populations into single-unit
spike activities. The development of customized hardware imple-
menting spike sorting algorithms is burgeoning. However, there
is a lack of a systematic approach and a set of standardized
evaluation criteria to facilitate direct comparison of both software
and hardware implementations. In this paper, we formalize a
set of standardized criteria and a publicly available synthetic
dataset entitled Synthetic Simulations Of Extracellular Recordings
(SSOER), which was constructed by aggregating existing syn-
thetic datasets with varying Signal-To-Noise Ratios (SNRs). Fur-
thermore, we present a benchmark for future comparison, and
use our criteria to evaluate a simulated Resistive Random-Access
Memory (RRAM) In-Memory Computing (IMC) system using
the Discrete Wavelet Transform (DWT) for feature extraction.
Our system consumes approximately (per channel) 10.72mW and
occupies an area of 0.66mm2 in a 22nm FDSOI Complementary
Metal–Oxide–Semiconductor (CMOS) process.

Index Terms—Spike Sorting, RRAM, IMC, CMOS, DL

I. INTRODUCTION

ELECTROPHYSIOLOGY, extracellular recordings of neu-
ronal populations, has become a cornerstone for neuro-

science research due to its ability to measure action potential
and neuronal activities in the vicinity of electrodes. However,
extracellular recordings are the summation of action potentials
fired by a variety of neurons within the recording vicinity,
and consequently require decoding. Advances in CMOS and
emerging IMC technologies [1], such as RRAM, allow for
an exponential increase in number of neurons that can be
simultaneously recorded, which calls for development of fast,
efficient, and automated spike sorting algorithms to decode the
recorded information.

Extracellular recordings paired with spike sorting are pre-
requisites for both commercial applications, such as Brain-
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Fig. 1: Number of publications related to spike sorting over
the decades since its pioneering in the 1950s.

Machine Interfaces (BMIs), which can restore motor func-
tions or damaged sensory functions [2], and for research
applications, where interactions between different neurons and
their network effects that give rise to complex higher order
functions such as movement, perception, and memory are
studied. Since the pioneering work of the spike sorting field in
the 1964 [3], the field has attracted an exponentially growing
attention from the neuroscience and engineering community,
as demonstrated in Fig. 1. However, there lacks a standardized
set of criteria for evaluating spike sorting algorithms, which
poses a challenge for researchers when comparing algorithms
and hardware combinations to suit specific applications. In this
paper, our specific contributions are as follows:

1) We formulate a set of criteria and standardized datset
for evaluating spike sorting algorithms and hardware;

2) We present a case study using our criteria to benchmark
a RRAM IMC and compare performance to a traditional
CMOS hardware implementation.
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TABLE I: Overview of criteria and algorithms used by spike sorting publications in the literature.

Paper Year Criterion(s) Main Algorithm(s)

[5] 2000 Accuracy, noise tolerance. Neural network spike classification.
[6] 2004 Accuracy. Wavelet feature extraction and superparamagnetic clustering.
[7] 2006 Accuracy, computational complexity, power consumption on custom

hardware.
Integral Transform.

[8] 2010 Accuracy, custom FPGA execution speed and precision, resources
associated with each computing component.

Hardware implementation of neural network spike sorting on custom
FPGA.

[9] 2011 Accuracy, alignment invariance. Fuzzy logic spike sorter.
[10] 2012 Accuracy. Adaptable feature extraction.
[11] 2012 Accuracy, computational complexity, power consumption on custom

hardware.
ZCFs and hardware architecture.

[12] 2013 Power consumption on custom system architecture, memory require-
ment, accuracy.

16-channel online spike sorting algorithm and implantable hardware
design.

[13] 2018 Accuracy, execution time. Spike sorting based on shape, phase, and distribution features, and
K-Tops clustering.

[14] 2019 Accuracy, firing rate and noise tolerance, requirement for manual
intervention.

Normalized template matching for spike sorting.

[15] 2020 Accuracy, memory requirement. Salient feature extraction and on-implant module design.
[16] 2020 Accuracy. Spike sorting with DL.
[17] 2020 Noise tolerance, accuracy, computational complexity. Feature extraction with feature denoising filter preserve maximum

information.

II. RELATED WORK

Table I shows an overview of several noteworthy pub-
lications from the past decade, and the criteria each used
for evaluation. While all studies evaluate the classification
accuracy of their algorithm, only some also investigate the
algorithm’s performance over a variety of other criteria. Due
to the relatively recent re-emergence of the spike sorting field,
there is currently no consensus on a standardized method to
use. Additionally, unlike other well established signal process-
ing techniques, such as power spectral analysis, accuracy is not
the only criteria of consideration due to the highly demanding
nature of spike sorting applications and experimental settings.

We note that this paper is not intended to serve as a survey
or review paper like [4], and that while many of the formalized
criteria have been previously reported in related works, as a
collective, they have not been done so systematically.

III. PRELIMINARIES

Spike sorting refers to algorithms that detect individual
spikes (action potentials) from extracellular neural recordings
and classifies them according to their shapes, which attributes
detected spikes to the originating neurons. This technique
operates on the principal that different neurons tend to produce
spikes of varying shapes, due to their varying proximity
to the electrode, as well as their varying morphology of
dendritic trees [18]. Current spike sorting techniques generally
involve 3 steps: 1) Spike detection; 2) Feature extraction;
3) Classification. A general processing pipeline is shown in
Fig. 2. Bandpass filtering is generally used to eliminate high
frequency artefacts and low frequency noise. For online appli-
cations, a causal filter is required, while non-causal filters are
preferred for offline analysis. Spike detection isolates single
spike waveforms, typically of duration 1-3ms, and aligns them
accordingly. Next, 2 or 3 features that best distinguish between
different spike classes are extracted, which alleviates the prob-
lem of ”curse of dimensionality”. The extracted features are
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Fig. 2: A general processing pipeline for spike sorting.

TABLE II: Proposed spike-sorting criteria.

Criterion Description

1 Detection Accuracy (%) Spike detection accuracy.
2 Detection AUROC Spike detection Area Under the

ROC (AUROC).
3 Feature Extraction and Classifi-

cation Accuracy (%)
The overall sorting accuracy out of
the correctly detected spikes.

4 ICV Measurement of the compactness of
each cluster.

5 Power (W/Ch) Power (per channel).
6 Energy (J/Ch) Energy (per channel).
7 Area (m2/Ch) Area (per channel).
8 Latency (s/Ch) Latency (per channel).

then used as inputs to supervised or unsupervised classification
algorithms which output the corresponding class for each
spike.

IV. PROPOSED SET OF FORMULATED CRITERIA

In Table II, our proposed spike-sorting criteria is summa-
rized. In this section, we discuss each criterion in more detail.

A. Accuracy Performance

Accuracy is the most commonly used criterion across almost
all spike sorting publications, as it is the most direct indication
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Fig. 3: (a) The impact of spike alignment techniques on classification accuracy for both algorithms. It can be seen that alignment
slightly improves the wavelet but hinders the integer filter technique. (b-c) A comparison of the ICV and accuracy metrics when
both algorithms are used for different SNRs. Between ICV and accuracy metrics, a Pearson Correlation Coefficient (PCC) of
0.7232 is reported, which indicates weak correlation.

of an algorithm’s performance. As previously mentioned, most
spike sorting algorithms are comprised of 3 stages: spike
detection, feature extraction, and clustering. Amongst these,
spike detection is often isolated and its accuracy (the 1
spike detection accuracy) is evaluated independent of later
steps. Likewise, feature extraction and clustering are often
combined and tested for classification accuracy, independent
of detection accuracy. This accuracy evaluation scheme is
to ensure that the user can accurately determine how each
stage contributes to the accuracy and make necessary changes
if required. Additionally, noise tolerance metrics should be
included to assess performance degradations.

1) AUROC: In addition to reporting the spike detection
accuracy, many works also construct ROC curves and report
the 2 detection AUROC for discrimination evaluation [4].

2) Feature Extraction and Classification Accuracy: To
eliminate any confounding effects from the spike detection
step, when evaluating the 3 feature extraction and classifi-
cation accuracy, ground truth spikes should be used if they
are available. When ground truth labels are not available, in
lieu of the classification accuracy, the 4 ICV [19] metric, as
defined in (1), can be used.

ICV =
1

Ni

Ni∑
j=1

(vj − µi)
2 (1)

The ICV metric was originally used to measure the compact-
ness of each cluster, where vj is the jth spike in the ith
cluster, µi is the mean waveform, and Ni is the number of
spikes in cluster i. For more comprehensive accuracy testing,
performance on real data sets can be evaluated.

3) Noise Tolerance: Noise tolerance is crucial to consider
when choosing spike sorting algorithms, as noise can signifi-
cantly hinder some algorithms while others remain relatively
more robust [17]. Different datasets used by various studies
have vastly different noise levels presenting challenges to

TABLE III: Hardware performance of our simulated system
adopting the DWT for feature extraction. �Not reported.

Criterion Our Reported Values 65-nm CMOS [20]

Power (mW/Ch) 10.72 0.000175
Energy (mJ/Ch) 1.45 N/R�

Area (m2/Ch) 0.66 4.14e-7
Latency (ms/Ch) 135.53 N/R�

direct comparison, hence a standardized dataset with varying
noise level should be used such as the one used in this work.

4) Alignment Requirements: Alignment is an additional
spike sorting step that refers to aligning spikes before the
feature extraction and classification. Some algorithms benefit
significantly from this additional step, while some do not [9].
Alignment benefits should be compared when evaluating 1 ,
2 , 3 , and 4 .

B. Power, Energy, Area, and Latency

The 5 power, 6 energy, 7 area, and 8 latency (per
channel) should be reported for all stages (a)-(e) in Fig. 2 for
a specific hardware implementation technology. In addition
to facilitating direct comparison, these metrics can be used
to evaluate the online applicability of a given system under
different resource constraints.

V. THE SSOER DATASET

One of the greatest challenges facing spike sorting algorithm
development is the lack of labelled experimental data, which
gives researchers the ability to validate their algorithms and
measure evaluate performance. Hence, synthetic extracellular
recordings have been developed to simulate neural recordings,
constructed from known spike shapes as ground truths. In this
paper, we formulate a dataset for unsupervised and supervised
spike sorting algorithms entitled SSOER [21], which is the
amalgamation of five smaller synthetic datasets with varying



SNRs, which were originally presented in [22]. These datasets
are comprised of spikes from a database with 594 different
average spike shapes, taken from real recordings from monkey
neocortex and basal ganglia. Recordings are sampled with
a sampling frequency of 96 kHz, filtered, and then down-
sampled to 24 kHz. SSOER is made openly accessible1.

VI. CASE STUDY: A RRAM IMC SYSTEM

To demonstrate the robustness of our formalized approach,
we present a case study evaluating a simulated RRAM IMC
system implemented using a 22nm FDSOI CMOS process
with device integration at the Back-End-Of-The-Line (BEOL).
RRAM devices can be arranged in crossbar configurations
to efficiently perform analogue Vector-Matrix Multiplications
(VMMs) in-memory [1], [23], [24], which is the most domi-
nant operation in many popular algorithms. For spike-sorting
applications, RRAM is preferable over charge-based memory
such as SRAM and DRAM due to its scalability down to
nanometer scale [25]. We use a crossbar model proposed by
Primeau et al. 2021 [26], which is based on existing semi-
passive crossbar models [24], [27], to simulate the feature
extraction stage of the spike sorting pipeline. To compute
the DWT, five unique decomposition levels (iterations) were
used, each comprising of many VMM operations. These were
mapped onto a singular crossbar made-up of 64 modular tiles
of (8 × 8) RRAM devices. More comprehensive system- and
circuit-level information, all simulated models, and detailed
hardware evaluation methodologies are made accessible1. In
Fig. 3, the performance of our IMC implemented DWT, i.e.,
metrics 1 – 4 , is compared against a digital integer filter
algorithm from [20]. Metrics 5 – 8 are reported in Table III.

From Fig. 3 (a), for both algorithms, it can be observed that
alignment improved classification accuracy across all datasets
in most cases, while integer filter generally benefited more
from the alignment. In Figs. 3 (b-c), a PCC of 0.7232 was
reported between both metrics, indicating weak correlation.
This, however, is still deemed significant, considering that the
ICV metric can be determined without the need to label data.
The classification accuracy decreased for both algorithms with
increasing noise level, less so with the wavelet technique.

In Table III, the total reported power and area values of the
simulated IMC RRAM system are significantly larger than that
reported by [20]. As this case study was designed to demon-
strate the effectiveness of our formalized approach, and not
to investigate the feasibility of IMC RRAM systems for spike
sorting applications, no architectural hardware optimizations
were performed, such as gating and latency balancing.

VII. CONCLUSION

In this work, a formalized approach for spike sorting
algorithms and hardware evaluations was proposed and a
case study has been performed to demonstrate the efficacy
of such methodology. With the consolidated SSOER dataset,
the critical challenge of direct comparison between systems

1https://github.com/TimothyZh/MWSCAS2022SpikeSortingCriteria

have been addressed which should aid future researchers with
selecting the appropriate spike sorting systems as well as
identifying areas for improvements.
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