
Design and Implementation of Certificateless
Cryptography for IoT Applications

Neam Fares1, Bo Wang1, and Spiridon Bakiras2

1College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
2Infocomm Technology Cluster, Singapore Institute of Technology

Abstract—This work introduces a cryptographic module for
IoT devices that addresses the security vulnerabilities that come
with their widespread adoption. Four core cryptographic mod-
ules are implemented, including data confidentiality, message
integrity, authentication, and secure communication channels.
Specifically, the SHA-256 hashing and AES128-CBC/GCM cipher
modules are very efficient, with an execution time of just a few µs.
For the key exchange functionality, we opted to leverage Elliptic
Curve Cryptography (ECC) and, in particular, the BLS12-381
curve, because it enables the implementation of certificateless
public-key cryptography. We demonstrate the performance of
the Hash to Curve and pairing operations that are required by
both the BLS12-381 digital signature scheme and the session
key agreement protocol. The pairing operation consists of two
main steps, namely, the Miller loop and the final exponentiation.
On a 10 MHz clock frequency (simulated in FPGA), a pairing
operation between two elliptic curve points takes around 3.68s
to complete. Under the BLS12-381 digital signature scheme,
the module for signing messages takes 0.76s, while the module
for verifying signatures takes 7.35s. Finally, we identified that
the parallel point-scalar multiplication technique was the most
efficient, and the module for generating a session key on an IoT
node takes around 4.03s. To summarize, this paper highlights
the importance of addressing the security risks associated with
IoT devices and presents a low-cost implementation of hardware-
based cryptography for achieving robust security.

Index Terms—Hardware security, Certificateless cryptography,
FPGA

I. INTRODUCTION

The Internet of Things (IoT) is a vast network of in-
terconnected physical objects that gather and transmit data
over the internet. The integration of sensors and networking
technologies enables these devices to exchange real-time data
without the need for human intervention. This innovation has
facilitated numerous applications, such as smart homes, au-
tonomous cars, smart healthcare, and smart city infrastructure.
According to a survey released by Fortune Business Insights,
the IoT industry is projected to grow from USD 308.97 billion
in 2020 to USD 1,854.76 billion in 2028, indicating the
industry’s continued expansion [1].

With the widespread adoption of IoT devices, there is an
urgent need to address the security risks associated with these
devices. However, software-based security solutions may not
always be effective and may consume the limited resources
of IoT devices. Hardware-based cryptography has emerged
as a promising solution for achieving robust security with-
out compromising performance or energy efficiency. Several
academic papers have demonstrated the potential benefits of

hardware-based cryptography, including improved speed and
reduced power consumption [2], [3]. Furthermore, hardware
solutions can provide cryptographic primitives in a silicon chip
that cannot be tampered by malicious actors. However, due
to typical IoT sensors’ energy budget and memory capacity
limitations, crypto modules such as AES, 3DES, and RSA
cannot be accommodated without hardware optimization [4].
Therefore, developing cost-effective and secure crypto solu-
tions that can be seamlessly integrated into low-power IoT
devices is crucial for ensuring their security.

Moreover, in contrast to the conventional public key infras-
tructure (PKI), which requires the issue of certificates by a
trusted third party, identity-based cryptography (IBC) is being
utilized in this work by enabling IoT devices to produce
public keys based on their identities. As a result, IBC makes
key management and key distribution simpler, by eliminating
the necessity for certificates that may incur a considerable
overhead. In conclusion, building a hardware-based crypto
module is a crucial step in improving the security of IoT
devices.

This paper develops a hardware-based crypto core for IoT
devices. The cryptographic modules are implemented in Ver-
ilog and consist of encryption and decryption, hashing, digital
signature, and session key agreement protocols. These modules
protect data confidentiality, ensure message integrity, provide
message authentication, and create a secure communication
channel. Implementing these hardware-based modules enables
higher security levels with minimal energy and hardware
overhead. The presented implementation is low-cost and can
be easily integrated into various IoT devices to protect against
cyber attacks.

II. DESIGN OPTIMIZATION OF THE PROPOSED
HARDWARE-BASED CRYPTO ENGINE

The proposed hardware-based crypto engine aims to provide
secure and efficient cryptographic operations for IoT devices.
To achieve this goal, it is essential to carefully design and
optimize the cryptographic algorithms. In this section, we will
discuss the design optimizations of the proposed hardware-
based crypto engine.

A. Advanced Encryption Standard (AES-128)

In this work, we have implemented two encryption modes,
namely, Cipher Block Chaining (CBC) and Galois/Counter
Mode (GCM), both using AES-128 encryption. The CBC



mode chains plaintext blocks with previous ciphertext blocks,
while the GCM mode uses counter mode encryption and
authentication via Galois field multiplication to generate a
unique authentication tag for each message. Moreover, we
have incorporated Additional Authenticated Data (AAD) in
the GCM mode. This provides an additional layer of authen-
tication to the encrypted data, guaranteeing the confidentiality
and integrity of the transmitted data. The idea is to generate
an authentication tag that depends on both the plaintext and
AAD, making GCM mode more secure compared to other
encryption modes like CBC.

B. Secure Hash Algorithm (SHA-256)
In this work, we have implemented SHA-256, a secure

cryptographic hash function that generates a unique 256-bit
hash value for any input message, using multiple rounds of
bitwise operations [5]. The process includes padding, initial-
ization, message expansion, and compression, in which the
input message is padded with additional bits, eight 32-bit
hash values are initialized, and the message is compressed
through several rounds of logical and arithmetic operations.
This ensures the resulting hash value is unique to the input
message and provides a high level of security.

C. Elliptic Curve Cryptography (ECC)
ECC is now the default choice for implementing public key

cryptographic protocols because it is more efficient and secure
compared to protocols over finite fields. The following sections
focus on the key aspects of the proposed hardware-based ECC
engine. These components play a critical role in ensuring
the security and efficiency of cryptographic operations on
resource-constrained IoT devices.

1) Curve Adopted: Identity-based cryptography (IBC) em-
ploys bilinear maps on prime order groups over elliptic curves
to eliminate the need for public key certificate storage and
management. BLS and BN are two commonly used families of
pairing-friendly curves that provide security against the elliptic
curve discrete logarithm problem. BLS12-381 was chosen due
to its balance between security and performance, as it offers
a 128-bit security level and a field modulus p that does not
hinder computational efficiency. Additionally, BN curves are
more complex than BLS curves [6]. The maximum number of
points on the curve is determined by the prime order r of the
curve, which is a 255-bit prime.

2) Coordinate System Adopted: ECC involves different
coordinate systems for representing points on the curve, in-
cluding affine and Jacobian coordinates. Jacobian coordinates,
a type of projective coordinates, use a triplet (X ,Y ,Z) to
represent a point, which enables faster point addition and
doubling operations compared to affine coordinates. Despite
being more complex—as the scaling factor Z must be kept
track of and inversion operations are required for converting
back to affine coordinates—Jacobian coordinates are widely
used in implementing all group operations in ECC due to their
computational efficiency [7]. The reason is that they allow for
point addition and doubling using only modular multiplication,
addition, and subtraction, without inversion [8].

3) Montgomery Reduction: Montgomery reduction is a
technique used to perform modular multiplication of two
large integers, where the modulus is also a large integer.
It involves converting the inputs to a special representation,
known as Montgomery form, performing the multiplication
using only addition, subtraction, and bit-shift operations, and
then converting the result back to its original form using an
inverse transformation [9]. Montgomery reduction is used to
perform all the modular multiplication operations needed in
this design.

4) Scalar Multiplication: Scalar multiplication is a funda-
mental operation in ECC that involves multiplying a point
on the curve by a scalar value. Various methods, such as
binary and fixed window methods, exist to perform scalar
multiplication. The binary method involves doubling and
adding points on the curve based on the binary representation
of the scalar [7]. The fixed window method is faster for
larger scalar values as it reduces the number of doublings
and additions, but it requires precomputing and storing base
points which can be expensive in terms of memory usage [10].
An alternative approach is the parallel scalar multiplication
method that uses two processors to perform point doubling
and addition operations concurrently, as described in [11].
After investigating all methods, the improved parallel scalar
multiplication method was found to be the fastest.

5) Pairing: The optimal ate pairing is a pairing method
for the BLS12-381 curve that is both efficient and secure.
It achieves its efficiency by utilizing a twisted Frobenius
map to reduce the exponentiation cost. The Miller loop is
a key component of the optimal ate pairing, and it involves
performing a sequence of mathematical operations on points
on the curve, including point additions, point doubling, and
a line evaluation. After iterating through the Miller loop, the
final exponentiation is performed on the output f to obtain
the final result. The output of the Miller loop operation in
the optimal ate pairing for the BLS12-381 elliptic curve is an
element in the extension field Fp12 , which can be represented
as a pair of 12 coefficients, each being an element of the base
field Fp [12], [13].

D. Digital Signature

The BLS digital signature scheme is an efficient and secure
algorithm based on ECC, which generates a signature by
multiplying the hash of the message with a secret key. The
scheme relies on the hardness of the computational Diffie-
Hellman problem to ensure resistance to forgery attacks. The
signature is verified using a bilinear pairing operation, with the
signature and public key defined in different groups G1 and
G2, respectively. The use of G1 as the group for the signature
leads to smaller signature sizes, faster signing and verification
times, and lower storage requirements, making it a desirable
choice [14].

1) Hash to Curve: Hash to curve is a function used in
the BLS digital signature algorithm to convert messages into
points on an elliptic curve, typically G1, ensuring secure and
efficient digital signatures. The MapToGroup method, also



known as hash-and-check, involves computing the hash of the
message, checking for a point on the curve with the same x
coordinate as the hash value, and performing cofactor clearing
to ensure the resulting point lies in the main subgroup of
the curve. An iterative increment of the hash value may be
necessary to find a valid point [15].

2) Signing: The BLS signature scheme is a method that
enables a signer to sign a message and generate a signature that
can be verified by anyone with access to the public key of the
signer. The process of signing a message involves computing
the hash of the message using a cryptographic hash function
and mapping it to a point on the curve G1. The resulting
point, called H(M ), is then multiplied by the private key of
the signer, resulting in the signature σ = sk ·H(M), which is
also a point on the curve G1.

3) Verifying: The BLS signature verification algorithm is
used to check the validity of a signature generated using the
BLS signature scheme. It takes as input the generator g2 of
G2, the message M , the signature σ, and the public key pk
of the signer, and outputs “1” if the signature is valid and
“0” otherwise. The algorithm first computes the hash value of
the message M using a cryptographic hash function, which is
then used to calculate the pairing of pk and H(M), and the
pairing of g2 and σ. If these two pairings are equal, then the
signature is valid, and the algorithm outputs 1; otherwise, it
outputs 0.

E. Session Key Agreement

Session key agreement is a process used to establish a
shared secret key between two parties to ensure secure com-
munication during a session. The Diffie-Hellman key exchange
protocol is a common method used for session key agreement.
In IoT, it is necessary to establish a session key between
IoT devices and the server to ensure the secure transmission
of device measurements to prevent unauthorized access or
tampering [16].

Using the BLS12-381 curve and its pairing property, session
keys can be established between IoT devices and the server.
The server will first generate a secret master key s < r. Then,
for each IoT device i, the server will assign a secret key Di =
sQi in group G1, where Qi = H(IDi), H is a function that
maps an IDi to a point in G1 (as mentioned in Section II-D1),
and IDi is the unique identifier of the device. This secret key
can be hardcoded in each IoT device. A session key can then
be established by the following steps:

1) Node i will first choose random xi < r, and send xiQi

to the server. The server will also choose xs < r and
send xsQs, where Qs = H(IDs). These messages can
be exchanged in plaintext.

2) Node i will compute the (symmetric) session key k =
e(xiDi, xsQs), and the server will compute the same
key k = e(xiQi, xsDs), where Ds = sQs is the server’s
private key.

In both parties, the computed key is k = e(Qi, Qs)
sxixs , due

to the property of the bilinear pairing. This works because
the server’s elliptic curve points are all in G2 and the nodes’

elliptic curve points are all in G1. This was chosen after
considering the low computational power of IoT devices and
that operations of G1 are much faster. Finally, in practice, the
session key will be derived by applying a hash function (such
as SHA-256) on the key k. This hash function is determined
by the desired size of k. Fig. 1 summarizes how the session
key agreement protocol works.

Fig. 1. Session Key Agreement Protocol

III. FPGA IMPLEMENTATION RESULTS

This section highlights the testing and analysis process of
Verilog implemented modules using Icarus and GtkWave. The
behavioral simulations were conducted on a personal laptop
with a 10MHz clock frequency, and the resulting waveforms
were analyzed to determine the time and number of clock
cycles required for each operation, providing insight into
module performance and efficiency.

The efficiency of scalar multiplication and pairing has a
significant impact on the overall performance of ECC. Table I
shows the performance of the distinct methods for scalar
multiplication, clearly stating that the parallel method performs
best for both curves. On the other hand, throughout all the
modules, Jacobin coordinates are used to avoid modular inver-
sion operations. However, moving back to affine coordinates
requires two inversion operations. Table II shows the time
taken and the number of clock cycles required to perform
different operations needed for the implemented protocols.
Moreover, Fig. 2 shows the waveform of the pairing operation.

TABLE I
SCALAR MULTIPLICATION METHODS ANALYSIS

Method Time Clock Cycles
G1

Binary Method 0.77s 7721112
Fixed Window Method 0.52s 5204351

Parallel Method 0.48s 4842298
G2

Binary Method 3.06s 30633615
Fixed Window Method 2.06s 20633658

Parallel Method 1.92s 19232301



Fig. 2. Pairing Waveform

TABLE II
OPERATION ANALYSIS

Operation Time Clock Cycles
Jacobian to Affine in G1 0.43ms 4311
Jacobian to Affine in G2 2.02ms 20232

Miller Loop 1.14s 11360796
Final Exponentiation 2.54s 25389316

Pairing 3.68s 36750115
Hash to Curve 0.14s 1352342

Table III summarizes the time and the number of clock
cycles taken by all the implemented protocols.

Table IV shows the difference in techniques and param-
eters used to implement the BLS12-381 curve. All pairing
execution times mentioned in Table IV are scaled to 90MHz.
Reference [17] proposes an optimized version of the Mont-
gomery reduction algorithm called coarsely integrated operand
scanning (CIOS) Montgomery reduction, which employs a
coarser scanning process to speed up the conversion of input
operands to the Montgomery representation. This results in
a reduction in the number of shifts and additions required
during the multiplication phase, leading to faster computation
times. In contrast, [18] presents the use of a 9-stage pipelined
modular multiplier, which utilizes a pipelined architecture
to enable multiple modular multiplication operations to be
performed in parallel, thereby improving algorithm efficiency.
The complexity of these techniques varies, with Montgomery
reduction having moderate complexity, CIOS Montgomery
reduction having higher complexity due to increased pre-
computation, and the 9-stage pipelined modular multiplier
having the highest complexity due to the hardware resources
required for implementing the pipelined architecture. There-
fore, our implementation is the least complex.

IV. CONCLUSION

This paper investigates the role of hardware-based cryp-
tography in addressing cybersecurity challenges and vulner-
abilities posed by IoT devices. We presented an endpoint-
secured chip that achieves hardware-based security and can
be embedded in IoT devices. The core cryptographic modules
implemented in Verilog include SHA-256, AES-128, BLS12-
381 digital signatures, and BLS12-381 session key agreement.
They were all analyzed for their efficiency and suitability for

TABLE III
PROTOCOLS ANALYSIS

Protocol Time Clock Cycles
SHA-256 6.50µs 66

AES128-CBC Encryption 2.10µs 22
AES128-CBC Decryption 2.90µs 30
AES128-GCM Encryption 6.00µs 60

AES128-GCM Tag Generation 1.70µs 17
BLS12-381 Signing 0.76s 7558411

BLS12-381 Verifying 7.35s 73493726
BLS12-381 Node’s Session Key 4.30s 43060920

Generation

TABLE IV
COMPARISON WITH EXISTING WORK

Parameter Banerjee et al. Masada et al. This
[17] [18] paper

Curve BLS12-381 BLS12-381 BLS12-381
Scalar Binary Parallel

Multipli- Method Method
cation

Modular CIOS 9-Stage Pipelined Montgomery
Multipli- Montgomery Modular Reduction

cation Reduction Multiplier
Clock 90 MHz 138 MHz 10 MHz

Frequency
Pairing

Execution 0.038s 0.000121s 0.408s
Time

real-world applications. This work emphasizes the importance
of cryptography in securing IoT devices and presents valuable
insights for implementing it efficiently and effectively.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant
NPRP13S-0122-200135 and the graduate sponsorship research
award GSRA8-L-2-0430-21021 from the Qatar National Re-
search Fund (a member of Qatar Foundation).

REFERENCES

[1] Research and Markets, “Global internet of things (iot) market: Trends
analysis and forecasts up to 2025,” https://www.researchandmarkets.
com/reports/5243477/global-internet-of-things-iot-market-trends, 2020,
[Accessed on: March 8, 2023].

[2] D. Kim, K. Park, H. Cho, and K. Rhee, “Hardware-based elliptic curve
cryptography on arm cortex-m3,” Journal of Cryptographic Engineering,
vol. 9, no. 2, pp. 83–91, 2019.

[3] M. U. Farooq, S. H. I. Jaffery, and A. Maqsood, “Hardware acceleration
of advanced encryption standard for iot devices,” in Proceedings of the
2017 International Conference on Open Source Systems and Technolo-
gies. ACM, 2017, pp. 1–6.

[4] K. Mandal, C. Parakash, and A. Tiwari, “Performance evaluation of
cryptographic algorithms: Des and aes,” in 2012 IEEE Conference on
Electrical, Electronics and Computer Science. IEEE, March 2012, pp.
1–5.

[5] A. H. Gad, S. E. E. Abdalazeem, O. A. Abdelmegid, and H. Mostafa,
“Low power and area sha-256 hardware accelerator on virtex-7 fpga,” in
2020 2nd Novel Intelligent and Leading Emerging Sciences Conference
(NILES). IEEE, 2020, pp. 181–185.

[6] S. Scott, M. B. Henry, and S. Josefsson, “Pairing-Friendly Curves,”
Internet-Draft, March 2008, https://www.ietf.org/archive/id/draft-irtf-
cfrg-pairing-friendly-curves-08.html.



[7] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography.
Cambridge University Press, 2002.

[8] D. Hankerson, J. Lopez Hernandez, and A. Menezes, “Software imple-
mentation of elliptic curve cryptography over binary fields,” in Cryp-
tographic Hardware and Embedded Systems-CHES 2000. Springer,
2000, pp. 1–24.

[9] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[10] H. Seo, H. Kim, T. Park, Y. Lee, Z. Liu, and H. Kim, “Fixed-base comb
with window-non-adjacent form (naf) method for scalar multiplication,”
Sensors, vol. 13, no. 7, pp. 9483–9512, 2013.

[11] B. Ansari, “Efficient implementation of elliptic curve cryptography.”
2005.

[12] F. Vercauteren, “Optimal pairings,” IEEE transactions on information
theory, vol. 56, no. 1, pp. 455–461, 2009.

[13] M. Scott, “Pairing implementation revisited,” Cryptology ePrint Archive,
2019.

[14] D. Boneh, M. Drijvers, and G. Neven, “Bls multi-signatures
with public-key aggregation,” URL: https://crypto. stanford. edu/˜
dabo/pubs/papers/BLSmultisig. html, 2018.

[15] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Advances in Cryptology—ASIACRYPT 2001: 7th In-
ternational Conference on the Theory and Application of Cryptology
and Information Security Gold Coast, Australia, December 9–13, 2001
Proceedings 7. Springer, 2001, pp. 514–532.

[16] M. M. Rathore, E. Bentafat, and S. Bakiras, “Smart home security:
a distributed identity-based security protocol for authentication and
key exchange,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2019, pp. 1–9.

[17] U. Banerjee and A. P. Chandrakasan, “A low-power bls12-381 pairing
cryptoprocessor for internet-of-things security applications,” IEEE Solid-
State Circuits Letters, vol. 4, pp. 190–193, 2021.

[18] K. Masada, R. Nakayama, and M. Ikeda, “Hardware acceleration of
aggregate signature generation and authentication by bls signature over
bls12-381 curve,” in 2022 IEEE Symposium in Low-Power and High-
Speed Chips (COOL CHIPS). IEEE, 2022, pp. 1–3.


