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Abstract— After the acute disease, post-COVID-19 patients 

may present several and persistent symptoms, known as the new 

paradigm of “post-acute COVID-19 syndrome”. This 

necessitates a multidisciplinary rehabilitation that has been 

proposed but whose effectiveness is still to be assessed. In this 

study, convalescent COVID-19 patients undergoing pulmonary 

rehabilitation (PR) after reporting long-term symptoms were 

consecutively enrolled. Then, they were grouped by laboratory 

parameters at admission through an unsupervised Machine 

Learning (ML) approach. We aimed to identify potential 

indicators that could discriminate several phenotypes leading to 

a different responsiveness to the rehabilitation program. A k-

means clustering method was performed; then, statistical 

analysis was employed to compare clinical and hematochemical 

parameters of the obtained clusters. The dataset consisted of 78 

patients (84.8% males, mean age 60.72 years). The optimal 

number for clustering was k=2 with a silhouette coefficient of 

0.85, and D-Dimer resulted the most discriminating parameter, 

thus confirming its role as a marker of inflammation. The 

phenotypes exhibited statistically significant differences in 

terms of age (p=0.007), packs of cigarettes per year (p=0.003), 

uricemia (p=0.010), PCR (p=0.026), D-Dimer (p<0.001), red 

blood cells (p=0.005), hemoglobin (p=0.039), hematocrit 

(p=0.026), PaO2 (p=0.006), SpO2 (p=0.011). Overall, our 

findings suggest the effectiveness of ML in identifying 

personalized prevention, interventional and rehabilitation 

strategies.  

Keywords—COVID-19, machine learning, rehabilitation, 

exercise, disability, outcome 

I. INTRODUCTION 

The coronavirus disease 2019 (COVID-19) is a syndrome 

characterized by several clinical manifestations that could 

have different complications, ranging from mild to severe 

symptoms [1]. Convalescent COVID-19 patients may present 

long-term effects with persistent symptoms, thus introducing 

the new paradigm of a “post-acute COVID-19 syndrome” [2]. 

Consequently, the need for an early and multidisciplinary 

rehabilitation has been proposed [3-6], even though the 

effectiveness of this approach in the post-acute care setting is 

still to be assessed [7]. 

In the last years, Machine Learning (ML) has been widely 

used to investigate several diseases, since it has been showed 

to be an effective method to explore clinical parameters, 

predict outcomes and, consequently, identify useful indexes 

[8-10]. Recently, it proved its usefulness in several 

specialties: cardiology, neurology, rehabilitation engineering 

and in analyzing data, signals and images [11-15].

ML can be divided into supervised and unsupervised 

learning. In this paper, we are focused on the second one, 

which is useful for finding hidden patterns among unlabeled 

data based on distance criteria, while supervised learning is 

employed for classification and regression modeling [16]. 

Recently, unsupervised ML has been used for studying 

COVID-19 disease in order to find hidden patterns and 

information about most relevant factors and comorbidities 

related to a most severe form of the disease [17-19]. 

Supervised ML and classification algorithms have been 

implemented to predict COVID-19 prognosis and outcomes 

basing on hematochemical parameters [20]. Nevertheless, no 

one combined the usage of clustering methods with blood 

tests for analyzing convalescent COVID-19 patients.  

The aim of this study is to identify and analyze different 

phenotypes of post-COVID-19 patients undergoing 

rehabilitation through a clustering method by evaluating 

hematochemical parameters. This preliminary study could be 

useful to identify potential indicators that could play a 

significative role in the improvement of health conditions in 

patients affected by the above-mentioned disease.  
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II. MATERIALS AND METHOD 

A. Study Population 

The cohort was composed of 78 patients (84.8% males, 

mean age 60.72 years) admitted to a post-COVID-19 

rehabilitation program after being discharged from COVID-

19 acute care ward and after reporting long-term symptoms. 

Consecutive patients referring to the Pulmonary 

Rehabilitation Unit of the Istituti Clinici Scientifici Maugeri 

(ICS) Maugeri Spa SB, IRCCS of Telese Terme, Benevento, 

Italy, were screened for enrollment. Inclusion criteria were: 

recent history of COVID-19, confirmed by positive 

nasopharyngeal swab test for SARS-CoV-2; negativization 

of at least two swab tests within the previous two months. 

Patients aged <18 years or unwilling to enter the study were 

excluded.  

B. Study procedures 

After informed consent signature, the main demographic 

and clinical characteristics were systematically collected in 

all included patients and stored in an electronic database. 

After de-identification, all collected data were extracted for 

analyses.  

In brief, a venous blood sample was collected from all 

patients in the fasted state to measure blood count and the 

main hematochemical parameters. A blood gas analyser 

(ABL 825® FLEX BGA, Radiometer Medical Aps, 

Copenhagen, Denmark) was used to measure arterial oxygen 

(PaO2) and carbon dioxide tension (PaCO2). 

C. ML and Statistical Analyses 

Preliminary assessment through Matlab software (v. 

2021b) and unsupervised ML through KNIME Analytics 

platform (v. 4.5.0) were performed. KNIME is an already 

well-known platform for developing workflows which allow 

users to implement ML analyses and manipulations of data, 

and it has already been used for several biomedical studies 

[21-25]. 

A k-means clustering algorithm was implemented to 

evaluate if different phenotypes could be distinguished 

basing on clinical parameters of post-COVID-19 patients. K-

means is a very simple and iterative unsupervised learning 

algorithm that assigns n similar data to k clusters to identify 

hidden patterns, by minimizing the in-cluster sum of square. 

Each cluster is represented by a centroid [26, 27]. Since the 

correct number of clusters is not known a priori, the optimal 

k was determined evaluating clusters through silhouette 

criterion, a score that calculates the goodness of clustering 

technique depending on how groups are well separated and 

clearly distinguished, and its value ranges from -1 to 1 [28, 

29]. The silhouette was calculated through Euclidean 

distance. Then, parallel coordinates plot was used to visualize 

multidimensional data mapped in a 2-dimensional set [30, 

31]. 

After obtaining clustered data, a univariate statistical 

analysis was performed in IBM Spss (v. 27) to compare the 

obtained groups. The normality distribution of the data was 

assessed with the Kolmogorov-Smirnov test. The Levene’s 

test was performed to assess the homoscedasticity of 

variances between groups for normally distributed data, and 

then a t-test for independent samples was performed; 

otherwise, a Mann-Whitney was employed.  

III. RESULTS 

A. Study population 

The study population consisted of 78 convalescent 

COVID-19 patients (84.8% males, mean age 60.72 years). In 

Table 1, the baseline demographic and clinical 

characteristics, including those pertaining to the acute phase 

of COVID-19, have been reported. 

TABLE I.  BASELINE DEMOGRAPHIC AND CLINICAL FEATURES OF 

POST-ACUTE COVID-19 PATIENTS 

Patients (n) 78 

Age, years 60.72 ± 10.69 

Female, N (%) 14 (15) 

Smokers, N (%) 8 (10) 

BMIa, kg/m2 28.65 ± 5.35 

Hospitalization length, days  27.53 ± 9.04 

High flow oxygen, N (%) 24 (31) 

Mechanical ventilation, N (%) 17 (22) 

Hypertension, N (%) 35 (45) 

Hypercholesterolemia, N (%) 7 (9) 

Hypertriglyceridemia, N (%) 4 (5) 

Diabetes, N (%) 11 (14) 

Heart failure, N (%) 8 (10) 

Atrial fibrillation, N (%) 5 (6) 

History of stroke/TIAb, N (%) 3 (4) 

a. BMI: Body Mass index; b. TIA: Transient Ischemic Attack 

B. ML results  

Table 2 shows the silhouette coefficients related to the 

number of clusters from 2 to 4, where the optimal result was 

obtained for k=2.  

TABLE II.  SILHOUETTE COEFFICIENTS FOR NUMBER OF CLUSTERS 

 
k=2 k=3 k=4 

Silhouette Coefficient 0.85 0.83 0.61 

Parallel coordinates plot highlighted that the D-Dimer 

parameter well discriminated the two clusters, as shown in 

Figure 1, where D-Dimer was represented by feature 16. 

Figure 2 shows PaO2 data clustering based on D-Dimer 

values, with PaO2 representing an index for blood 

oxygenation. 



 
Fig. 1. Parallel coordinates, where the clusters are represented with 

different colours.

 

Fig. 2. Clustering for arterial oxygen tension (PaO2) depending on D-
Dimer.

C. Statistical Results 

Table 3 shows clinical and laboratory parameters of the 

two phenotypes obtained through k-means clustering. Results 

pointed out that patients belonging to cluster 0, with worst 

health conditions in admission, were older (p=0.007) and 

smoked more cigarettes per year (p=0.003). Patients of 

cluster 1 showed a lower value of PCR (p=0.026) and higher 

values of red blood cells (p=0.005), hemoglobin (p=0.039), 

hematocrit (p=0.026), PaO2 (p=0.006) and SpO2 (p=0.011). 

Furthermore, the most discriminating parameter between two 

groups was the D-Dimer: patients of cluster 0 exhibited a 

much higher value than cluster 1 with a significance at 0.001.

TABLE III.   COMPARING HEMATOCHEMICAL FEATURES BETWEEN THE TWO CLUSTERS 

Features (units of measurement) 
Cluster 0 

(n=15) 

Cluster 1 

(n=63) 
p-value 

Age, years 67.47 ± 7.00 59.21 ± 10.90 0.007 

Female, n (%) 3 (20) 11 (16) Ns 

BMIa, m2/kg 26.52 ± 3.82 29.22 ± 5.57 Ns 

Hospitalization,  

days 
19.13 ± 14.15 16.29 ± 14.75 Ns 

Cigarettes,  
packs per year 

35.80 ± 43.03 10.56 ± 19.37 0.003 

TCb, mg/dl 174.53 ± 41.68 188.14 ± 41.52 Ns 

TGsc, mg/dL 132.07 ± 52.30 164.17 ± 75.16 Ns 

Glycemia, mg/dL 108.60 ± 36.75 91.97 ± 33.51 Ns 

Creatinine, mg/dL 0.77 ± 0.18 0.81 ± 0.14 Ns 

Urea, mg/dL 42.60 ± 11.51 37.94 ± 11.97 Ns 

Uricemia, mg/dL  4.03 ± 1.54 5.23 ± 1.59 0.010 

ASTd, UI/L 23.07 ± 11.70 21.70 ± 10.90 Ns 

ALTe, UI/L 44.13 ± 19.94 58.89 ±65.34 Ns 

PCRf, mg/dL 18.68 ± 31.16 6.18 ± 7.60 0.026 

D-Dimer, ng/mL 1821.33 ± 632.67 419.84 ± 186.14 <0.001 

Red blood cells, 106/mL 4.11 ± 0.60 4.57 ± 0.53 0.005 

Hemoglobin, g/dL  12.04 ± 2.02 13.03 ± 1.54 0.039 

Hematocrit, % 36.64 ± 5.44 40.48 ± 7.60 0.026 

Platelet, 103/mL 242.20 ± 119.318 204.03 ± 66.56 Ns 

Leukocyte, 103/mL 9.16 ± 5.33 7.84 ± 2.56 Ns 

PaO2
g, mmHg 65.47 ± 13.13 77.62 ± 14.09 0.006 

PaCO2
h, mmHg 34.84 ± 3.97 36.32 ± 3.34 Ns 

SpO2
i, % 92.53 ± 4.17 95.11 ± 3.07 0.011 

a. BMI: body mass index; b. TC: total cholesterol; c.  TG: Triglycerides; d. AST: aspartate aminotransferase; e. ALT: alanine aminotransferase; f. CRP: C-reactive protein; g. PaO2: arterial oxygen tension; h. 
PaCO2: arterial carbon dioxide tension; i. SpO2: oxygen saturation. Ns: not significant. 



IV. DISCUSSION AND CONLUSION 

Our clustering model effectively identified two groups of 

convalescent COVID-19 patients according to functional and 

laboratory parameters. In line with literature evidence, 

patients in cluster 0 showed a number of clinical and 

demographic features suggesting a worse clinical status and 

an inflammatory profile [32]. In detail, higher PCR values 

were documented in this subset of patients., which was also 

characterized by an older age. Accordingly, age has been 

identified as one of the most important risk factors for severe-

to-critical COVID-19 [33]. Moreover, cluster 0 was 

characterized by lower PaO2 as well as SpO2 values, which is 

consistent with the lower hemoglobin levels and a lower 

number of red blood cells. Most importantly, D-dimer was 

the parameter showing the highest discriminating ability 

between the two clusters. The role of D-dimer as a marker of 

inflammation and coagulation is widely accepted [34]. 

Recently, it has been demonstrated that COVID-19 severity 

is associated with several laboratory modifications, including 

a consistent increase in D-dimer levels as well as other 

coagulation markers (e.g., fibrinogen, prothrombin time) 

[35]. Such blood modifications reflect the procoagulant state 

of COVID-19 patients, confirmed by the high risk of venous 

and arterial thrombosis both in the acute phase and during 

convalescence [36, 37]. 

Regarding the employment of ML, it has been used in this 

research to identify two phenotypes of post-COVID-19 

patients, but this approach could be employed also in other 

medical pathologies where the distinction among phenotypes 

has not been already defined. This study could be extended 

including parameters both in admission and in dismission to 

the rehabilitation program. Therefore, a supervised ML 

approach could be employed to validate the identified indexes 

in the current study and to evaluate further potential 

rehabilitation outcomes in convalescent COVID-19 patients. 

 Overall, our findings suggest the effectiveness of ML for 

patient stratification in the post-acute care setting (e.g., 

community, hospital, rehabilitation), thus potentially 

contributing to the identification of personalized prevention, 

interventional and rehabilitation strategies for COVID-19.  
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