
Abstract—5G standardization has envisioned mmWave com-
munications as a promising direction to expand the capacity of
current mobile radio networks. However, communications at
high frequency are characterized by extremely harsh propaga-
tion conditions, thus requiring a high base station deployment
density. To solve this issue, from both technical and economic
perspective, 3GPP has proposed mmWave access networks
based on an Integrated Access and Backhaul (IAB) multi-hop
architecture.

IAB networks require fine-tuning of the available resources
in a complex setting, due to directional transmissions, device
heterogeneity, and harsh propagation conditions. The latter,
in particular, characterize the operations of such networks,
resulting in links with very different levels of availability. For
this reason, traditional optimization techniques do not provide
the best performance in these conditions. We believe, instead,
Reinforcement Learning (RL) techniques can implicitly con-
sider the dynamics of the network links and learn the best
resource allocation strategy in networks with intermittent links.
In this paper, we propose an RL-based resource allocation
approach that shows the advantages of these techniques in
dynamic environmental conditions.

I. INTRODUCTION

5G standardization process has resorted to high-
frequencies communications between 25 GHz and 50 GHz,
also named millimeter waves (mmWaves), as one of the
main reliefs from the global mobile traffic growth which
is challenging the capacity of communication technologies
below 6 GHz. The availability of several GHz of bandwidths
at those frequencies can potentially provide tens of Gbps for
the mobile access.

However, this attractive advantage comes at the cost of
a harsh propagation environment: very high path losses
and no propagation through obstacles (not only vehicle and
buildings, but also human bodies). The use of sophisticated
phased antenna arrays has given a big help in addressing
these issues. Nevertheless, that is not sufficient. MmWave
deployments are coverage-limited, thus 5G mmWave access
networks require a denser base station placement than
traditional mobile radio networks. This translates into high
installation costs for operators that need to backhaul many
sites with fibers.

In order to provide a technically and economically viable
solution to the network densification cost, 3GPP standardiza-
tion body has proposed a new multi-hop access architecture,
named Integrated Access and Backhaul (IAB)[1]. The idea
is to place some smaller and simpler relay nodes, called
IAB nodes, in the coverage area of the main mmWave
base station (BS) in order to forward mmWave BS’s data
packets to users (UEs). The mmWave BS, called Donor gNB

(DgNB), is in charge of managing the resources allocation
in the network of associated IAB nodes. In particular, since
the proposed MAC solution is based on TDMA, it involves
the optimization of the routing paths and the scheduling of
directional transmissions along established links.

Routing and scheduling in wireless multi-hop networks
are typically carried out via optimization techniques con-
sidering all available links [2–4]. However, the harsh prop-
agation environment at mmWave frequencies and the strong
impact of the obstacles on link availability make these
approaches inadequate for mmWave IAB networks. Indeed,
the possibility of using a link essential to provide a good
performance can be hindered by its unpredictable on-off
behavior, thus destroying the advantages of the optimization.
The optimization could in principle be performed each time
the network undergoes a change. However, optimization
algorithms are usually time consuming, which makes this
solution infeasible.

We believe that resorting to Reinforcement Learning (RL)
techniques can be a promising solution as the intrinsic adapt-
ability of these algorithms to the environment conditions
can solve the above-mentioned issues. Indeed, RL agents
can be trained to play against the environment to understand
what the best strategy is, even when the environment’s reply
is stochastic. We can perform offline training through a
realistic instance of the actual environment, or we can have
an online training and operating system that learns while
sending packets through IAB nodes to UEs.

In this paper, we introduce an RL-based approach to
tackle flow allocation and link scheduling in mmWave IAB
networks, jointly coordinating access and backhaul parts
to maximize throughput in a multi-hop network architec-
ture. We place emphasis on more realistic environments
and unreliable networks which are vulnerable to dynamic
and complicated blockages. We propose an offline and an
online version of the approach, which we evaluate against
traditional approaches via numerical simulations.

The rest of the paper is organized as follows. We first
discuss related works in Section II, then we provide a
system overview and a detailed formulation of the problem
in Section III. Our approach is detailed in Section IV, while
the results of the numerical analysis are showcased and
discussed in Section V. Finally, Section VI concludes the
paper with some final remarks.

II. RELATED WORK

The problem of resource management in mmWave net-
works has been investigated in recent literature, which can
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be divided into several categories with respect to network
scenarios, controllable network variables, optimization tar-
gets and solutions.

Considering network scenarios, only recent works fo-
cus on IAB networks [5, 6]. Some work [7–9] take into
account possible blockages in connections, for instance,
static blockages for specific propagation scenarios [7], urban
buildings [8], concise dynamic blockages in backhaul [9].
The blockage assumptions above are, in some sense, limited
when solving complicated blockages (e.g., pedestrian and
vehicle traffic).

In terms of controllable variables in mm-Wave networks,
current works pay more attention to: routing and scheduling
[2, 5, 8, 10–13], bandwidth and beamwidth assignment [7,
14], frame / slots reconfiguration [2, 11, 15] and network
formulation [7]. As for targets, plenty of works intend to
maximize throughput [2, 6–9, 11, 12, 14, 15], while some
other works prefer to minimize transmission delay [12, 13]
and consumed energy [10].

Several approaches have been introduced to solve re-
source allocation issues. Maximum independent set (MIS)
based heuristic algorithms are provided in [11], while some
other heuristic methods are proposed in [8, 15, 16].

Apart from the optimization based approaches, RL based
approaches have been raised to solve various problems.
[13] proposes a semi-distributed multi-armed bandit based
learning algorithm to minimize the end-to-end latency,
which is proven to be adaptive to load imbalance, channel
variations and link failures. [6] resorts to regret RL to
complete route selection and tackles the problem of rate
allocation by successive convex approximation method. [14]
maximizes data rate by controlling transmitter beamwidth
and transmission power allocation using risk sensitive RL.
[9] presents a DRL approach to assign backhaul resources
to users.

However, none of them considers mmWave IAB scenar-
ios, and, in particular, the problem of sending data packets
over a multi-hop mmWave network with intermittent links.

III. SYSTEM OVERVIEW AND PROBLEM FORMULATION

A. Network Scenario, Link Patterns and Blockages

An IAB scenario typically consists of a multi-hop wireless
network with one Donor gNB (DgNB), a set of relay nodes
(IAB nodes / RNs) and users (UEs) which can reach DgNB
via either direct links or multi-hop IAB nodes. The DgNB
is connected with the core network via a high capacity link
(i.e., fiber). We consider here the Fixed Wireless Access
(FWA) use case, which is expected to be the first appli-
cation of mmWave IAB networks. UEs are nodes placed
on rooftops and balconies to provide connectivity to home
customer networks.

The backhaul links between DgNB and IAB nodes or
IAB nodes and IAB nodes, and access links between DgNB
and UEs or IAB nodes and UEs, are wireless and share
the same mmWave frequency bands (i.e., in-band backhaul).
We represent the network architecture as a directed graph
G(V, E), where V includes nodes (i.e., DgNB, IAB nodes
and UEs) and E involves possible links among nodes in V .
We use R,U ⊂ V to denote the sets of IAB nodes and UEs,

Fig. 1: A toy example of network and pattern construction.
The square, triangles and black points are DgNB, IAB nodes
and UEs. The figure on the left shows the network topology:
thick blue lines are backhaul links while the others are
access links. Five example patterns are shown in different
colors in the figure on the right.

respectively. If not specified, DgNB node is also included
in IAB node set as a special node. We focus on downlink
transmission, taking care of total amount of data passed from
DgNB to UEs.

We consider a frame of T ∈ N slots with equal duration
δ, in a time domain T . Basic TDMA scheme assumes
each slot exclusively occupied by a single link, which
can hinder the performance of highly spacial-differential
mmWave signals. Compared with TDMA, we consider a
space-division multiple access (SDMA) system to make
good use of high directivity of mmWave antennas, allowing
multiple concurrent transmissions in each slot. We refer to
a set of links activated in parallel as a pattern that meets
the channel conditions (e.g., interference requirements, an-
tenna patterns), half-duplex and multi-beams limits. Figure
1 shows a toy example of a network graph model and
its corresponding pattern construction. Note that a pattern
may include both access and backhaul links. In each slot,
a pattern is selected among the set of those available and
the associated link transmissions are activated. The optimal
sequence of patterns allows to maximize the number of bits
transferred from DgNB to UE, which corresponds to the
maximization of downlink throughput in IAB networks.

We also introduce dynamic blockages to our system. Both
backhaul and access links are exposed to blockages. Link
blockages vary in a small-grained scale (e.g., slot by slot). In
each slot, each link, with a certain probability pb, is blocked,
and with the probability 1 − pb stays on. When a link is
blocked, no data can be transferred. Links with different
reliability are characterized by different values of pb. We
use different distribution of link blockage probabilities to
take into account environmental changes.

To face up to environments with blockages, RL is the
most promising approach as it can be adaptive to system
dynamics. Indeed, traditional optimization algorithms rely
on static link availability that may not be met during real
time operations.

B. Problem Formulation

We intend to jointly address flow allocation and link
scheduling to maximize the IAB network throughput, taking
care of UE fairness. Several realistic constraints need to be
considered, such as half-duplex, simultaneous multi-beams,



interference requirements, power limitations. However, re-
lying on a pattern formulation, all these issues are confined
to the generation of feasible patterns, which is discussed
in Section IV-A. Thanks to this separation, we can focus
on flow allocation and pattern scheduling for throughput
maximization. We formulate the problem as follows.

Our target is to maximize downlink cell throughput (i.e.,
the total flow of bits obtained by UEs per frame):

max
∑

r∈R,u∈U
br,u, (1)

where br,u is a variable representing the flow of bits trans-
ferred over the access link (r, u) during the overall frame.

1) UE Fairness: A min-rate constraint is set to guarantee
the fairness among users instead of maximizing the through-
put by prioritizing some well-positioned UEs, where ρmin
is the minimum data rate of every serviceable UE:∑

r∈R
br,u > ρmin · T · δ, ∀u ∈ U . (2)

2) Flow Allocation: Traffic originates from the core
network and goes to UEs via DgNB and IAB nodes. The
incoming traffic to IAB nodes (DgNB and RNs) must
equalize to the outgoing traffic in a frame, where bcore is
the traffic sent from the core network and entering DgNB
only. ∑

n∈R,n6=r

bn,r + bcore =
∑

v∈R∪U,v 6=r

br,v, ∀r ∈ R. (3)

3) Pattern Scheduling: The overall capacity provided by
link activation in a frame must support the flow allocated.
Link transmissions in scheduled patterns create a pipe
(capacity) where flows of bits can be accommodated. This
rationale is expressed below, where cin,m is the capacity of
link (n,m) compatible with SINR values when pattern i in
pattern set P is activated and xti is a binary decision variable
controlling whether pattern i should be activated in slot t.∑

t∈T ,i∈P
(cin,mδ)x

t
i > bn,m, ∀n ∈ R,m ∈ R ∪ V. (4)

Solving the optimization problem described by the above
formulation provides an optimal pattern sequence, through
xti variables, for the flow and scheduling management in
static IAB scenario. Indeed, the optimization assumes all
links are always available, and cin,m is fully guaranteed when
pattern i is selected. However, this assumption may lead to
bad performance when some links encounter static or even
dynamic blockages. This is the reason why we propose an
approach based on RL, which can automatically adapt the
best scheduling policy to a time-varying environment.

C. Deep Reinforcement Learning

Reinforcement Learning (RL) is based on an agent that
executes a sequence of interactions with an environment,
which follows an MDP (Markov Decision Process), to
gradually accumulate experience. In particular, at time step
t, the environment is in state st. Based on this state, the
agent chooses an action at to perform on the environment.
At time step t + 1, the environment transits to the next
state st+1 with some probability and gives a reward rt

back to the agent. The agent’s goal is to maximize the
long-term cumulative reward which is the expected return
Eπ[Gt] = E[

∑T
k=t+1 γ

k−t−1rk]. T is the last step in an
interaction episode and γ is a discount factor controlling
the importance of future reward to current concern. There
exist two categories of RL algorithms: value function based
and policy gradient.

Value-function-based methods choose actions based on
a value function estimated at each state. In particular, the
state value function vπ(st) = Eπ[Gt|st] is the expected
return from state s when the agent follows the policy π.
The action-value function qπ(st, at) = Eπ[Gt|st, at] is the
expected return from state s, taking action a and following
policy π afterwards. The best policy π∗, which provides the
best actions’ strategy at each state, is chosen considering
these functions and the impact of chosen actions on the
expected reward. Value functions can be written in tabular
form or being approximated with other functions, such as
linear functions, kernels, or deep neural networks (DNNs).
Deep RL employs DNNs as approximation.

Policy gradient approaches directly represent policy as
a probability function of taking an action at a state with
the vector of parameters θ, i.e., π(at|st, θ) = Pr{at|st, θ}.
Like the value function above, π(at|st, θ) could also be
represented by a DNN where θ stores the connection weights
of the network. Parameter θ is updated according to the
value function gradient, in the direction of increasing the
value determined by the policy.

The actor critic method derives from policy gradient and
incorporates the strength of value based methods. Different
from policy gradient, actor critic uses both a probabilistic
policy function and a state value function. This allows to fur-
ther drive the system towards policy functions that provide
better values for system states. The approach we proposed is
based on Advantage Actor Critic (A2C), described in details
in Section IV.

IV. RESOURCE ALLOCATION IN MMWAVE IAB
NETWORKS WITH DEEP RL

We propose an A2C-based approach which can face
complicated IAB scenario with dynamic blockages. We
separate the problem into two parts: 1) pattern generation,
considering hardware constraints, and 2) flow allocation
and pattern scheduling, in which an RL agent activates
sequences of per-slot patterns to transfer flows from DgNB
to UEs.

A. Link Patterns Generation

Optimally solving the formulation presented in Section
III-B requires us to provide as input the whole set of possible
patterns that can be activated in the network. However,
this set has a cardinality that increases exponentially with
the number of links, thus creating a formulation with a
huge number of binary variables xti, making the problem
intractable.

In order to solve this issue, the technique of Column
Generation (CG) can be applied. It consists in solving a
linear relaxation of the formulation in Section III-B (the so-
called Master Problem) with an initial set of patterns and,
using dual variables related to constraints (4) to find out



if an additional pattern can potentially improve the value
of the objective function. This additional pattern can be
found by solving a problem (the so-called Pricing Problem)
in which the best links indicated by dual variables are
activated according to physical and hardware constraints.
Pricing Problem includes all technological aspects we need
to consider: channel model, SINR values required to activate
specific Modulation and Coding Schemes (MCSs), avail-
ability of power control to reduce the interference impact,
half-duplex constraints, etc. These captured technological
aspects also include how devices are engineered such as the
number of bidimensional antenna panels and the number
of beams that can be simultaneously activated by the panel
in the pattern (i.e., time slot). The output of the Pricing
Problem is a pattern: a compatible set of links that can be
activated together without violating all the above mentioned
constraints.

Every time a new objective-improving pattern is found, it
is included in the set of available patterns and a new linearly-
relaxed Master Problem is solved, and the process iterates.
The addition of new patterns stops when no improving
pattern can be generated without violating Pricing Problem’s
constraints. Once the pattern generation has terminated,
the integer Master Problem is solved with the final set of
patterns. The CG approach provides results very close to the
optimum.

In our RL-based approach we leverage CG as a tool to
generate a good set of patterns from which the RL agent
can choose from. We have implemented a CG algorithm
by formulating Master and Pricing models and collecting
all the patterns included in the last iteration before the
generation stops. Since this is not the main focus of this
paper and it requires a long description of the models and the
constraints used, we refer to similar approaches in literature,
which optimize routing and scheduling in multi-hop wireless
networks using CG approaches [3, 4].

CG provides a set of good patterns to transfer data from
DgNB to UEs in the case of always-available links. The RL
agent will select among these patterns the best combination
to address the unreliability of some links. The generation of
the pattern set is a procedure that can be run only once, at
the beginning of the network operations.

To the purpose of our RL-based approach, we do not need
to solve the final integer Master Problem, which is a time
consuming task. However, we did it in order to compute
the quasi-optimal pattern sequence selected in ideal link
conditions to be used as a benchmark to compare against
our RL-based approach.

B. Buckets-Pipes Game Formulation

In order to perform flow allocation and pattern scheduling
slot by slot in the RL environment, we reformulate the
system model as a game the RL agent has to deal with.
DgNB, IAB nodes, and UEs are regarded as buckets that
store data bits as water. Links act as pipes connecting these
buckets. Link blockage is similar to pipe congestion which
determines the unavailability of links. The pattern activated
in each slot controls which group of pipes’ valves to be
opened. The target is to maximize the total amount of water
in UEs’ buckets in a frame.

Accordingly, the optimization objective (1) serves as the
long-term expected return RL maximizes. Flow allocation,
pattern scheduling and UE fairness depend on which pat-
terns the RL agent selects to activate and how the traffic
flows through the system. RL agent chooses one pattern
of links (pipes) to activate in each slot based on the action
probability given by the policy. The flow transmission obeys
the following rules. Data traffic can be buffered in the queues
at IAB nodes1. The total number of bits transferred from
an IAB node over outgoing links in one slot is limited
by the amount of bits in the queue, as indicated by flow
balance equations (3). The maximum number of bits each
link can transmit is limited by the link capacity allowed
by the activated pattern, which refers to pattern scheduling
constraints (4). UE Fairness (2) is achieved by equally
sharing the amount of buffered data transmitted among
activated outgoing links of each single IAB node.

C. A2C Based Flow Allocation and Pattern Scheduling

The proposed approach resorts to A2C to find resource
allocation strategy under different network conditions. We
use the buckets-pipes game formulated in previous section as
the environment interacting with the RL agent2. We consider
episodic tasks, where an episode consists of one frame
and one time slot equals to one step. The key components
involved in the interactions between agent and environment
are: state, reward, action, which are designed in details in
the following.
1. State

We label DgNB as 0-th IAB node, and the remaining
subset of IAB nodes Rsub = {1, 2, . . . , |R| − 1}. The state
at step t is a (|R| − 1)-dimensional vector of the number
of bits buffered at each IAB node n, Btn, normalized by the
number of bits that can be transferred on a link with the
minimum capacity cmin in a slot within the whole network,
cmin · δ. This normalization is to reduce the state space
so as to facilitate the exploration of RL, accelerating the
convergence of the learning process. Therefore, the state at
step t, st = [stn]n∈Rsub , is defined as:

stn =

⌊
Btn

cmin · δ

⌋
,∀n ∈ Rsub. (5)

2. Action
The patterns generated in Section IV-A are the actions the

agent can execute, which in fact contain links activation as
sub-actions. In each step (slot), the agent selects a pattern
according to the current policy and then the links in this
pattern are activated and enabled to transmit data. If we
denote the pattern set as P , then the action at step t is
at ∈ P .
3. Reward

Our objective is to maximize the total traffic volume
reaching UEs in a frame. According to this goal, the
intuitive idea on designing reward function is to use total
amount of bits users receive in each slot as the immediate
reward. However, this strongly biases the solution toward

1We assume that the sizes of the queues do not limit the performance
of the system.

2This RL agent can be implemented in a central network controller
hosted at DgNB.
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Fig. 2: A2C architecture for IAB scheduling.

UEs directly connected to the DgNB. Indeed, in IAB multi-
hop network scenarios, bits received by UEs in a certain
slot are the cumulative result of the bits moving through the
wireless backhaul in previous slots, which does not produce
any immediate data transfer. In short, the difficulties we need
to overcome in defining the immediate reward involve:
• How could we precisely evaluate the current action

only based on the immediate effect at the moment,
instead of the accumulative effect of previous actions?

• How could we simultaneously relate throughput to
reward and keep reward normalized?

• How could we avoid the bias on direct connections
between DgNB and UEs?

Based on the considerations above, the reward function
is designed in (6).

rt =


∑

∀n∈R,u∈U,
(n,u)∈at

Itn,u, if ∀(i, j) ∈ at are effective;

−λ, if ∃(i, j) ∈ at is ineffective.
(6)

We separate the links of the pattern selected at each slot into
two categories: effective and ineffective. Effective links refer
to the links which indeed transmit data. Ineffective links
indicate those links, on which there are no bits really carried.
This could happen when links are blocked by obstacles or
there are no bits in transmitters’ queues. If the entire set
of links (both access and backhaul links) in the pattern
selected is effective, the number of access links between
RNs and UEs is used as reward; otherwise, the reward is
set to a negative value −λ as a penalty to the agent, where λ
controls the extent of penalty (i.e., the bigger, the harder, by
default set to 1). Itn,u is a binary indicator of whether link
(n, u) is effective at t: it takes value 1 if the number of bits
transmitted on link (n, u) at step t is not null. This penalty
approach has shown to effectively drive the agent to avoid
the patterns which contain blocked links, and significantly
speed up the learning process.
4. Algorithm

We apply k-step Advantage Actor Critic (A2C) [17] to
our scenario rather than other RL algorithms because it can
leverage merits of both value based approach and policy
gradient and it empirically performs better than other similar
approaches, as we found out in our preliminary tests. It is
based on the state, the action taken, the reward obtained at
step t (i.e., st, at and rt). The algorithm’s goal is to tune

parameters ψ (which determines the value function) and θ
(which determines the agent policy) in order to obtain the
best actor and critic convergence. Note that vectors ψ and
θ are in the form of the weights of critic and actor DNNs,
respectively, which aim at approximating value and policy
functions.

The critic part, whose aim is to approximate value func-
tion vπ(st, ψ), is given by:

Gkπ(st; θ, ψ) =

k−1∑
i=0

γirt+i + γkvπ(st+k, ψ), (7)

Aπ(st, at; θ, ψ) = Gkπ(st; θ, ψ)− vπ(st, ψ), (8)

min
ψ
Aπ(st, at; θ, ψ)2, (9)

where (7) defines the expected k-step return Gkπ(st), based
on k-step experience, with future reward discount factor γ,
and the advantage Aπ(st, at) in (8) represents the critic
loss, i.e., the difference between real reward and estimated
value. Trying to minimize critic loss (9) leads value function
estimation to convergence.

The actor part, since the policy’s performance measure
is state value (long-term reward), has the ultimate goal of
guiding the policy parameter θ to the direction of increasing
the state value: maxθ vπθ (s, ψ).

These two parts collaborate to converge to the best policy.
The policy determines collected rewards, which in turn
define the value function that drives the policy improvement.

The parameters’ updates in critic and actor networks
are based on the corresponding gradients. These two gra-
dients perform updates according to (10) and (11) where
H(π(st; θ)) is the entropy of the actions considered by
the probabilistic policy function π at state st and hyper-
parameter β controls the importance of the entropy regular-
ization term.

dψ ←dψ + ∂(Aπ(st, at; θ, ψ))2/∂ψ, (10)
dθ ← dθ +∇θ log π(ai|si; θ)Aπ(st, at; θ, ψ)+

β∇θH(π(st; θ)). (11)

The architecture of A2C is shown in Figure 2. The upper
and lower parts respectively show an example of critic
network and actor network. They take state vector as input.
The critic network computes the input state’s value, so its
output layer only embraces one neuron. The actor network
outputs the action probabilities which are the basis of action
selection, thus its output layer has the same number of
neurons as the candidate actions.

The learning procedures incorporate the flow allocation
and pattern scheduling process to compute state transition
and reward (see Algorithm 1). The critic and actor param-
eters get updated every tmax steps while the length of the
learning period is Tmax steps. Lines 6-16 collect data for
updating gradients and parameters. A pattern (action) is
chosen according to the current policy (see Line 7). The
blocked links in set Lb are eliminated from the pattern
chosen (Line 9), so that the remaining links can transmit
an equal share of bits, limited by link capacity (Line 12)
and the number of bits in the transmitter’s buffer (Line 11).
Reward and state transition are computed in Lines 13-15.
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Lines 17-18 set the initial value of k-step return G. Then
the gradients are updated in Lines 19-23. Finally, actor and
critic parameters θ and ψ are updated in Line 24. The above
operations are repeated until the learning phase ends, after
Tmax steps. This is an offline training procedure, which
requires some computational effort but must be run only
once to set the proper θ and ψ values. Then, the trained
networks can be used during the IAB network operations,
with much less effort, to properly drive the pattern selection.

Algorithm 1 Learning Procedures on IAB Resource Allocation
Parameters: training steps Tmax, update steps tmax.

1: Initialize actor network π(a|s, θ), critic network v(s, ψ);
2: Initialize step t← 1;
3: while t < Tmax do
4: tstart ← t;
5: Get state st; Reset gradient dθ ← 0, dψ ← 0;
6: while t− tstart < tmax and st is not terminal do
7: Choose action (pattern) at based on π(a|st, θ);
8: rt ← 0;
9: Eliminate blocked link set at ← at \ Lb;

10: for each i ∈ (i, j) ∈ at do
11: if Bti > 0 then
12: Btj ← Btj + min{ Bti

|{(i,·)}| , ci,j · δ};
13: if i ∈ R, j ∈ U then rt ← rt + 1;
14: if Lb 6= Ø or ∃Bti = 0 then rt ← −λ;
15: st+1 = [

⌊
Btn

cmin·δ

⌋
]n∈Rsub ; . w.r.t. (5)

16: t← t+ 1;
17: if st is not terminal then G← v(st, ψ);
18: else G← 0;
19: i← t− 1;
20: while i > tstart do
21: G← ri + γG;
22: Update gradients dθ and dψ; . w.r.t. (10),(11)
23: i← i− 1;
24: Update θ and ψ using dθ and dψ;

5. Online Model Framework
Here we present an online learning scheme based on

Algorithm 1. In offline case, a model is pre-trained offline
and hereafter applied to a network scenario, which meets
challenges if the network status drastically changes. Note
that here we do not refer to the mere link availability
change, which, provided its blockage probability pb does not
significantly change, can be addressed by an offline training.
We rather refer to a more dramatic change in which the
entire distribution of link blockage probability does change.

One feasible but time-consuming solution is to train a
model again from the very beginning. However, a more
attractive choice is to conduct training and application of
a model in parallel. The data collected from the application
is directly used in the training course, while at the meantime,
the trained model so far is applied to the network scenario.
In this way, the model can catch system dynamics on-
the-fly and adjust the training part to adapt to the new
environment. We believe that the online model update can
be implemented on a time slot basis with optimized coding
and specialized hardware, like GPUs that would allow to

set the per-slot computation time much below the 1 ms
required by our general-purpose system. This is even more
realistic considering the limit of 10 IAB nodes proposed
by the standardization. Nevertheless, our approach can be
adapted by considering the time granularity of a small set
of slots, lasting enough to complete the update.

Experimental results in Section V demonstrate that this
framework makes the model more robust to the dynamic
environments. Online trained model can work seamlessly
for low-impact changes and recover fast (w.r.t. the physical
network timing) from the drop caused by strong changes.

V. EXPERIMENTAL RESULTS

In this section, the proposed A2C based approach on IAB
flow allocation and pattern scheduling is evaluated. We first
introduce testing scenarios and model settings. Then we
evaluate our approach by applying the offline algorithm to
scenarios with and without blockages and comparing with
random pattern selection method (RANDOM) and optimiza-
tion CG-based method (OPT) described in Section IV-A in
terms of achieved throughput. Finally, we test the online
algorithm which is able to adapt to dynamic IAB networks
where different number of links exhibit random blockages.
In particular, we compare the offline and online model,
demonstrating that the online model can automatically re-
cover from sudden changes, outperforming the solution
based on offline algorithm. The models are trained on a
machine with an Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz, RAM 126GB.

A. IAB Network Scenario

The tests presented are based on random scenarios
produced by an instance generator for FWA playground
provided by a worldwide mmWave device manufacturer.
The generator is compliant with 3GPP NR IAB simulation
guidelines [1]. We consider 300 × 300 square cell with 1
DgNB, 4 and 30 randomly deployed IAB nodes and UEs.
The 3GPP NR TR 38.901 channel model [18] is adopted.
In-band IAB is at 28 GHz, 400 MHz of bandwidth, and
NR Numerology #3 (120 kHz subcarrier spacing). Each
frame embraces 80 slots, each of which lasts 125 µs. We
consider fixed MCSs as 16 and 8 respectively for backhaul
and access. MCS 16 corresponds to SINR threshold 5.60
dB and capacity 525.9 Mbps, while MCS 8 can achieve
capacity 121.4 Mbps with SINR threshold -3.77 dB.

B. Model Settings

RMSOptimizer is used in DNN training. Offline and
online models use different DNN settings including neurons
N , layers L, learning rate lr, batch size bs, and RL settings
like discount factor γ . Respectively, 32, 8, 0.002, 200, 0.99
are for offline and 32, 4, 0.0007, 500, 0.99 are for online.
Note that critic and actor networks use the same DNN
settings in each model. The output layers in critic and actor
networks employ respectively linear and softmax functions.

C. Performance Analysis on Offline Model

In these tests, the proposed A2C-based model (DRL) is
trained offline and then applied to specific network scenar-
ios. We first analyze the case with all the links available. And
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(f) Episode reward in real time.

Fig. 3: Performance of offline and online models. (a)-(d) show the comparison between offline DRL, RANDOM and OPT.
(e)-(f) focus on DRL and compare its online and offline versions in terms of transferred volumes and episode reward.

then we randomly block several links (e.g., 4 links out of
around 80 links) with different probability (i.e., 0.2 and 0.8),
hence these links behave up and down. We employ random
pattern selection strategy (RANDOM) and optimization CG-
based method (OPT) as benchmarks. OPT provides the
near-optimal benchmark when dealing with static and ideal
networks. The tests are performed on 10 randomly generated
instances.
1. UE Data Rate CDF

The cumulative distribution functions (CDFs) over UEs’
achievable data rates are shown in Figures 3(a)-3(c). The
vertical dashed lines indicate the average UE data rates that
are also reported in the tables attached to the figures.

As we can see, under both non-blocked and blocked
conditions, the maximum rates achieved by DRL and OPT
are near 121.4 Mbps, the maximum rate achievable with
MCS 8. Whereas, RANDOM obtains at most around 60
Mbps. Comparing OPT and DRL CDFs, we can see that
maximum data rates do not significantly differ, which is
reasonable because a few link blockages are less likely to
prevent the other links to provide maximum rates to UEs.
In terms of average UE rates, DRL can approximate OPT,
while RANDOM performs much worse. As we randomly
pick 4 links to impose blockages with probability 0.2,
the gap between DRL and OPT is reduced. Due to the
mild blockages, OPT still has a small lead, as the actual
scenario is still very similar to the one assumed in the
optimization, i.e., all links are always available. However,
after the probability is raised to 0.8, DRL outperforms OPT
by about 10%, even if the blockages involve only 4 links
over the entire set of about 80 links.
2. Traffic Volumes

A more direct way to evaluate models’ quality is the
traffic volume transferred from DgNB to UEs in a frame.
Figure 3(d) shows clear differences between the three meth-
ods and their behaviors in the three blockage cases. 1) For
all three methods, the total amount of bits delivered to
UEs decreases as more blockages are introduced into the
network. The descending order of the throughput reduction
degree for the three methods is OPT > DRL > RANDOM.
This is because the method with better performance is more
likely to be scenario-specific. 2) DRL transfers more bits
than OPT after the blockage probability is raised to 0.8.
This is due to the adaptability of the DRL to scenarios with
blockages, considering system dynamics. The RL agent can
learn the availability level of each link during the training
phase and tune the pattern selection strategy accordingly.
3) The standard deviations marked by black vertical lines
on the top of bars tell us the range of values assumed by
the solutions of different network instances. With blockage
probabilities varying in {0, 0.2, 0.8}, apart from RANDOM
whose oscillation is constant, DRL and OPT display increas-
ing oscillations as the blockage probability increases. This
is due to the cases in which blockages involve critical links,
causing a larger performance decrease.

D. Performance Analysis on Online Model

In this final experimental analysis, we test the online
training framework where a model is simultaneously trained
and applied to the IAB network. We intend to assess whether
the model can on-the-fly adapt to the dynamic networks
with consecutive changes in the link blockage probability
distribution. We show here an example on a single instance
used in offline experiments, however similar conclusions can



be made for the other instances. Our goal is to understand
whether the online model can keep stable and possibly re-
adapt when more and more network links are exposed to
interruption.

We plot episode rewards and traffic volumes to, respec-
tively, evaluate the model learning process and its perfor-
mance in practice. Figures 3(f)-3(e) show the variations
of these two metrics as time goes on. Vertical dashed
lines indicate the moments when we change the blockage
situation. Here we keep the same blockage probability 0.8
in the whole process and block 4 links at the beginning,
t = 0. At this starting point, both approaches have reached a
stable working point: the offline model has been pre-trained
using this initial environment, while the online model has
converged to a stable condition. At the first vertical line,
we introduce blockages into another 4 heavily-used links,
so till now 8 links are blocked. At the second vertical line,
we impose blockages on further 4 links that are not very
often used, hence totally 12 links are blocked.

We can notice that the first change causes to both online
model and pre-trained offline model a big performance drop.
However, online model can quickly recover while offline
model’s performance remains low. After the second change,
only the offline model sees a decrease, while the online
model proceeds with actual no variation. These evidences
prove that the online model could effectively capture system
dynamics and make decisions based on a long-term merit,
while the offline model loses its learning capability.

VI. CONCLUSION

In this paper, we have proposed an RL-based resource
allocation algorithm which is able to cope with the dynamics
of the link status in mmWave 5G IAB networks. The results
have shown that this approach can outperform the traditional
optimization approaches typically used in wireless multi-hop
networks. Indeed, our algorithm can automatically adapt to
environmental changes and rapidly recover from blockage
situations. We are currently investigating some extensions
of our approach to consider alternative channel blockage
models and potential correlations among link failures.
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