
A Model-Based Approach to Anomaly Detection
Trading Detection Time and False Alarm Rate
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Abstract—The complexity and ubiquity of modern computing
systems is a fertile ground for anomalies, including security and
privacy breaches. In this paper, we propose a new methodology
that addresses the practical challenges to implement anomaly
detection approaches. Specifically, it is challenging to define
normal behavior comprehensively and to acquire data on anoma-
lies in diverse cloud environments. To tackle those challenges,
we focus on anomaly detection approaches based on system
performance signatures. In particular, performance signatures
have the potential of detecting zero-day attacks, as those ap-
proaches are based on detecting performance deviations and do
not require detailed knowledge of attack history. The proposed
methodology leverages an analytical performance model and
experimentation, and allows to control the rate of false positives
in a principled manner. The methodology is evaluated using the
TPCx-V workload, which was profiled during a set of executions
using resource exhaustion anomalies that emulate the effects of
anomalies affecting system performance. The proposed approach
was able to successfully detect the anomalies, with a low number
of false positives (precision 90%–98%).

Index Terms—anomaly detection, security, modeling, virtual-
ization

I. INTRODUCTION

Complex computing systems, such as cloud solutions [1],
are ubiquitous. Such ubiquity, in turn, is a potentially fertile
ground for security and privacy breaches [2]–[5]. Efficiently
detecting and mitigating such attacks is an important step to
counter the threat that they pose to the existing IaaS systems
and, more broadly, to the virtualization culture that supports a
significant fraction of today’s systems [6].

The design of intrusion detection systems (IDSs) for de-
tecting anomalies, such as zero-day attacks and advanced
persistent threats (APTs) [7] in virtualized environments, poses
several domain-specific challenges [8], [9]. In particular, (i)
it is challenging to comprehensively define normal behavior
in a diverse cloud environment, (ii) malicious attackers may
adapt their behavior to fit the domain definition of “normal
behavior”, and (iii) data availability on anomalies at cloud
environments, which would be key for training, is hard to
obtain [10], [11]. To tackle those challenges, we focus on
anomaly detection approaches based on system performance
signatures. In particular, performance signatures have the
potential of detecting zero-day attacks [8], [9], as those
approaches are based on detecting performance deviations and
do not require detailed knowledge of attack history [12].

In this paper, we propose a methodology for anomaly de-
tection based on performance deviations caused by anomalies
in complex virtualized systems. The proposed tuning of the

anomaly detection mechanism leverages an analytical per-
formance model and experimentation, and allows to con-
trol the rate of false positives in a principled manner [8].
After a careful analysis of every kind of transaction in the
target system, the methodology profiles the system operation
under normal conditions for its key transactions. Then, dur-
ing system operations performance monitoring, performance
deviations from the baseline are reported as anomalies.

To validate the proposed methodology, we ran an extensive
experimental campaign using the TPCx-V workload [13],
which is representative of a large virtualized infrastructure that
supports a business that relies on transactional systems. Fault
injection was used to emulate the effects of anomalies, e.g.,
due to attacks, impacting system performance. Experience and
practice show that injecting the effects of faults and attacks is
an effective way to check systems dependability [14], [15].

The experiments showed the applicability and effectiveness
of the proposed anomaly detection methodology. In our ex-
periments, it was possible to detect most of the performance
deviations, with a low number of false positives (precision
of 90% and 98% for the worst and best configurations). In
addition, given the model-based nature of the solution, it is
amenable to what-if analaysis so as to trade between the rate
of false positives and detection time.

In summary, the paper’s contributions are the following:

(i) An analytical model to support anomaly detection
designs, which allows conducting principled parameterization.
The model can be used to cope with the tradeoff between time
to detect an anomaly and the rate of false alarms (Section III).

(ii) An experimental assessment of the methodology in
practice using a representative system. We established the
feasibility of detecting anomalies based on non-intrusive user-
level performance metrics that are available in production
environments (Sections IV and VI).

(iii) A model-driven principled mechanism design that
allows revisiting the experimental results and conduct what-
if analysis to assess different performance metrics of the
considered anomaly detection algorithms as a function of the
parameterization (Section V).

The remainder of the paper is organized as follows. Sec-
tion II covers related work, followed by our contributions in
Sections III-VI as indicated in the summary of contributions
above. Finally, Section VII concludes the paper.
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II. RELATED WORK

In this section, we revise related literature indicating how
the current work relates to prior art.

A. Anomaly detection for cybersecurity

An approach for anomaly detection consists in running
sequential hypothesis tests [16], [17]. In [17], sequential
hypothesis tests are used for the detection of malicious port
scanners. The authors have developed a link between the
detection of malicious port scans and the theory of sequential
hypothesis testing. They have also shown that port scanning
can be modeled as a random walk. The detection algorithm
matches the random walk to one of two stochastic processes,
which correspond to malicious remote hosts or to authorized
remote hosts. The approach considered in this paper is similar
in spirit to that considered in [16], [17], as our analytical
results are derived from a birth-death Markov chain. Such
Markov chain can be interpreted as a random walk through
buckets which fill as the system degrades, and empty as the
system recovers (see Section III-C).

A number of previous works have considered anomaly
detection approaches using performance signatures [18]–[21].
In [19] an approach for the mitigation of worm epidemics in
tactical Mobile Ad-Hoc Networks (MANETs) using perfor-
mance signatures (response time) and software rejuvenation
was introduced. The work in [20] introduced a framework that
detects anomalous application behavior using regression-based
models and application performance signatures. Then, [21]
builds on top of previous work on performance signa-
tures [18]–[20] and proposes an anomaly detection approach
based on performance signatures based on CPU, I/O, memory
and network usage for the detection of security intrusions.

B. Bucket algorithm and sequential decision making

The performance of signature-based intrusion detection sys-
tems relies on intrusion detection algorithms that account for
workload variability to avoid a high rate of false positive
alerts. An example of such workload-sensitive algorithms is
the Bucket Algorithm (BA) that was introduced in [18] and
is presented in detail in Section III.

In Section III we revisit the BA mechanism, and present an
analytical model that is instrumental to parameterize the BA
from experimental data. A statistical analysis of the behavior
of a family of BAs has been described on [22], without
accounting for the tradeoff between detection time and false
alarm rate. One of the goals of this paper is to fill that gap. In
the previous cited research [18], [19], simulations were used
to support the analysis of the BAs algorithms. In contrast,
in this work we introduce an analytical model of the BAs
algorithms that can be used to support anomaly detection
designs, and an experimental assessment of the methodology
in practice using a representative system.

III. ANOMALY DETECTION MECHANISM AND MODEL

In this section we describe the anomaly detection mech-
anism considered in this paper followed by the proposed
analytical model.

A. Anomaly Detection Mechanism

The bucket algorithm for anomaly detection based on per-
formance degradation works by continuously measuring the
throughput, x, and maintaining B buckets of depth D each.
Samples are added to and removed from buckets as a function
of the history of most recent throughput measurements, as
shown in Fig. 1, wherein each ball corresponds to a throughput
sample. The scalar value b is a pointer to the current bucket,
b = 1, . . . , B and d is the number of recent throughput samples
stored in the current bucket, d = 0, 1, . . . , D.

bucket 1 bucket 2 bucket B

Current bucket

bucket b

D

Full buckets Empty buckets

d tokens

Fig. 1. System of buckets representing the dynamics of the anomaly detection
algorithm. D and B must be properly parameterized for adequate operation.

Let µ be the baseline average throughput, and σ be the
baseline standard deviation. Both µ and σ can be derived from
the execution of controlled experiments without anomalies (i.e.
golden runs). The pointer b to the current bucket is used
to determine the current target throughput, which is given
by x = µ − (b − 1)σ. Once the current bucket overflows
(resp., underflows), the target throughput is shifted upward
(resp., downward) by one standard deviation. When all buckets
overflow the algorithm detects a performance degradation
and triggers an anomaly alarm. The performance degradation
detection algorithm, that we will refer hereinafter as Bucket
Algorithm (BA), is given as follows:

Initialization: {b← 1; d← 0}, with all buckets empty.
Main loop: for each sample x̂ of throughput, execute the

steps below.
1) if x̂ < (µ − (b − 1)σ) then {d ← d + 1}, through-

put smaller than reference value, add token to current
bucket;

2) else do {d ← d − 1}, throughput larger or equal than
reference value, remove token from the current bucket;

3) if (d > D) then do {d← 0; b← b+ 1}, current bucket
overflow, go to next bucket;

4) if
(
(d < 0) and (b > 1)

)
then do {d← D; b← b− 1},

current bucket underflow, go to previous bucket;
5) if

(
(d < 0) and (b == 1)

)
then do {d← 0} all buckets

empty, system recovered from transient performance
degradation;

6) if b > B, all buckets overflow, trigger performance
degradation alarm.

The performance degradation detection algorithm can be
tuned by varying the bucket depth, D, and the number of
buckets, B. The larger the product D×B the smaller the rate
of false alarms but the longer it takes for the algorithm to
detect the performance degradation.

B. Hypothesis Testing

The system administrator continuously considers two alter-
native hypothesis: (i) null hypothesis H0 corresponding to
a situation where there is no anomaly taking place and (ii)
alternative hypothesis H1 meaning that there is an anomaly,



e.g., the system is under attack. Then, the key quantities of
interest can be defined as a function of H0 and H1. To simplify
presentation, in what follows time is measured in number of
collected samples.

Definition 1: The mean time until a false alarm under H0

is denoted by AB(D).
As discussed in the following section, AB(D) is given by

the mean time to reach the absorbing state of a Markov chain
characterizing the bucket algorithm. When B = 2, we provide
closed-form expressions for AB(D).

Definition 2: A lower bound on the number of samples until
a true positive under H1 is denoted by L. Assuming all buckets
are initially empty, we let L = BD.

Definition 3: The probability of false alarm under H0 is
the probability that an alarm is triggered outside an anomaly,
fB(D) = P(R < T ), where R is a random variable with mean
AB(D) characterizing the time until an alarm is triggered, and
T is a random variable with mean 1/α characterizing the time
until an anomaly occurs.

In this paper, except otherwise noted we assume that fB(D)
depends on R and T only through their means.

Definition 4: The expected cost of a given system parame-
terization is a weighted sum of the probability of false alarms,
computed under H0, and a lower bound on the number of
samples to detect an anomaly, computed under H1,

C(p, w,D,B, α) = BD + wfB(D). (1)

Table I summarizes the notation introduced in this section.
Additional details about how to estimate AB(D) and fB(D)
are provided in Sections III-C and III-D, respectively. Then,
the cost function (1) (Definition 4) will be instrumental to
parameterize the bucket algorithm in Section III-E.

TABLE I
TABLE OF NOTATION

variable description
B number of buckets
b current bucket, b = 1, . . . , B
D maximum bucket depth
d current depth of bucket b, d = 0, . . . , D
AB(D) mean time to false alarm, under H0 (no anomaly), i.e.: mean

number of collected samples to reach absorbing state
fB(D) probability of false alarm
F target probability of false alarm
α anomaly rate
pi probability that sample adds ball to bucket, when b = i

C. Analytical Model

Simple algorithms to detect anomalies, such as the bucket
algorithm, can be tuned using first principles. The larger the
depth of the bucket, the lower the false alarm probability, but
the longer it takes for a true positive to be identified. To
simplify the analysis, we work under the assumption that
anomalies will change the throughput distribution, and will
always be detected. However, the number of samples to detect
the anomaly may vary depending on the depth of the bucket.
Our second key simplifying assumption is that the number
of samples to detect the anomaly is much smaller than the
number of samples collected before getting a false alarm. The
two assumptions above are mild, and should typically hold in
real settings as the time until a false alarm in practical systems

should be much longer on average than the time until a true
positive [7], [19]. Then, we aim at answering the following
question: what is the smallest bucket depth to produce a false
alarm probability upper bounded by a given threshold?

Next, we introduce a discrete time birth-death Markov chain
(DTMC) to characterize the behavior of the BA. State (b, d)
of the Markov chain corresponds to the setup wherein there
are d balls in bucket b, and D balls in buckets b− 1, . . . , 1.

Each transition of the DTMC corresponds to the collection
of a new sample. Such sample causes the system to transition
from state (b, d) to one of its two neighboring states. Let pi be
the probability that the number of balls at bucket i increases
after a new sample is collected. Then, pi = P(x̂ > x + (i −
1)σ), for 1 ≤ i ≤ B. The entries of the transition probability
matrix are readily obtained from Fig. 2.

b=1
d=0

b=1
d=1

b=1
d=D

b=2
d=1

b=2
d=2

b=B
d=D A

p1 = P(x̂ > x) p2 = P(x̂ > x + �) 1

1� pB1� pB

p1p1 p1 pB pB

Fig. 2. Discrete time Markov chain characterizing the behavior of the BA.
Each transition corresponds to the collection of a new sample.

Once the terminal absorbing state is reached an alarm
is triggered (state A in Figure 2). The number of samples
collected until absorption accounts for a tradeoff between the
mean time until (a) a false alarm, in the absence of anomalies,
and (b) detection, in the presence of an anomaly. Larger values
of bucket depth D favor the reduction of the former but
increase the latter.

Let ÃB(D; p1, p2) be the time until absorption, measured
in number of collected samples, accounting for B buckets of
depth D each. We denote its mean by AB , E(ÃB) = AB .
Under the hypothesis of no anomaly, ÃB is the time to a false
alarm. We derived in [23] a closed-form expression for AB ,
which is instrumental to handle tradeoffs in the choice of the
bucket depth D as illustrated in the upcoming sections. In
particular, for B = 2, the resulting expression is given by

A2(D; p1, p2) = A
(1)
2 (D; p1, p2) +A

(2)
2 (D; p1, p2) (2)

where A(i)
B is the mean time to fill the i-th out of B buckets,

A
(1)
2 = ∆1 (δ1 −D) (3)

A
(2)
2 = ∆2 (δ2 −D) + ∆1

(
1− ρD+1

1

ρD+1
1

)
δ2 (4)

and

ρi =
1

pi
− 1, ∆i =

1 + ρi
1− ρi

, δi =
1− ρ−Di
ρi − 1

. (5)

Our experimental results indicate that B = 2 suffices in the
considered scenarios (see Section IV). For this reason, in the
remainder of this paper all numerical results derived from the
proposed analytical model are reported letting B = 2, making
use of equations (2)-(5). In what follows, we illustrate how
to leverage the proposed model to estimate the probability of
false alarms.



D. Modeling the Probability of False Alarms

Next, we leverage the proposed model to estimate the
probability of false alarms. To that aim, we assume that
anomalies, e.g., due to attacks, arrive according to a Poisson
process with rate α. Recall that fB(D) denotes the probability
of a false alarm (Definition 3). In what follows, we derive
expressions for fB(D) under different assumptions on the
distribution of ÃB(D).

Assuming that ÃB(D) can be roughly approximated by a
constant, and that the time between anomalies is exponentially
distributed with mean 1/α,

fB(D) = e−AB(D)α. (6)

Alternatively, if we approximate ÃB(D) by an exponential
distribution,

fB(D) =
1/AB(D)

1/AB(D) + α
=

1

1 +AB(D)α
. (7)

In the expressions above, we made the dependence of fB and
AB on the bucket depth D explicit as one of our goals is to
study the relationship between D, fB and AB . The closed-
form equations (6) and (7) are instrumental to get insights
about the interplay between the different model parameters.
In particular, as D increases AB increases and fB decreases
(Definition 1), but the time to detect an anomaly increases
(Definition 2). As indicated in the sequel, the equations above
allow us to find the minimum D such that fB(D) is below
a given threshold. Then, in Section IV we experimentally
validate that the values of D obtained through the proposed
model produce the desired probability of false alarms in
realistic settings.

E. Parameterization of the Anomaly Detection Mechanism: a
Model-Driven Optimization Approach

Next, we show how to use the proposed model and the
obtained expressions of probability of false alarm for the
purposes of running statistical hypothesis tests to determine
whether there is an ongoing anomaly in the system.

Given a target false alarm probability, denoted by F , the
system administrator goal is to determine the optimal number
of buckets and bucket depth so as to minimize the lower bound
on number of samples to detect an anomaly, L, while still
meeting the target false alarm probability.

PROBLEM WITH HARD CONSTRAINTS:
min L = BD (8)
subject to fB(D) ≤ F (9)

In what follows, we assume that B is fixed and given. Then, as
fB(D) is strictly decreasing with respect to D, the constraint
above will be always active and the problem translates into
finding the minimum value of D satisfying the constraint.
The problem above is similar in spirit to a Neyman-Pearson
hypothesis test, for which similar considerations apply, i.e., the
optimal parameterization of the test is the one that satisfies a
constraint on the false alarm probability.

Alternatively, the problem above can be formulated through
the corresponding Lagrangian,

PROBLEM WITH SOFT CONSTRAINTS:
minL(D) = BD + w(fB(D)− F ) (10)

where w is the Lagrange multiplier. The Lagrangian naturally
leads to an alternative formulation of the problem, wherein
the hard constraint in (9) is replaced by a soft constraint
corresponding to the penalty term fB(D) − F present in the
cost Lagrangian. The Lagrangian is a cost function, motivating
Definition 4. Note that as wF is a constant, minimizing (10)
is equivalent to minimizing (1).

IV. EXPERIMENTAL SETUP AND FAULT MODEL

To illustrate and validate the methodology presented in
Section III, we ran an experimental campaign using the
TPC Express Benchmark V [13] (TPCx-V), as described in
Sections IV-A and IV-B. A fault injection approach was used
to emulate the effects of performance affecting security intru-
sions, as described in Section IV-C. Then, the model-based
calibration of the anomaly detector is reported in Section V.

A. System Under Test

The TPCx-V is a publicly available, end-to-end benchmark
for data-centric workload on virtual servers. The benchmark
kit provides the specification, implementation, and tools to
audit and run the benchmark. Details can be found in [24],
[25]. TPCx-V models many features commonly present in
cloud computing environments such as multiple Virtual Ma-
chines (VMs) running at different load demand levels, and
significant fluctuations in the load level of each VM [24]. We
use the workload and software provided by the TPCx-V [25]
to emulate a context closely related to a real-world scenario of
brokerage firms that must manage customer accounts, execute
customer trade orders, and be responsible for the interactions
of customers with financial markets.

The goal of TPCx-V is to measure how a virtualized server
runs database workloads, using them to measure the perfor-
mance of virtualized platforms, specifically the hypervisor, the
server hardware, storage, and networking. The minimal de-
ployment of the TPCx-V comprises four groups of three VMs,
representing four different subsystems. Table II summarizes
the considered experimental setup. In Table II, tpc-gn refers
to a VM of group n. Each group was defined according to the
benchmark recommendations [13].

The TPCx-V workload is made up of 12 types of transac-
tions that are submitted for processing at multiple databases
(market, customer, and broker) following a specified mix of
transactions per load phase. A typical run consists of 10 dis-
tinct load phases of 12 minutes each. Transactions simulate
the stock trade process. When a trade finishes, a transaction
named Trade-Result is issued. The primary performance metric
for the benchmark is the business throughput (tpsV). It
represents the number of completed Trade-Result transactions
per second.



TABLE II
EXPERIMENTAL SETUP

VM MB vCPU VM MB vCPU VM MB vCPU

tpc-g1a 1024 1 tpc-g1b2 4096 4 tpc-g1b1 8192 2
tpc-g2a 1024 1 tpc-g2b1 12288 2 tpc-g2b2 6144 6
tpc-g3a 1024 1 tpc-g3b1 16384 2 tpc-g3b2 8192 8
tpc-g4a 1024 2 tpc-g4b1 20400 2 tpc-g4b2 10240 8

tenant A 1532 2 tenant B 1532 2 tenant C 1532 2

dom0 1962 4 tpc-driver 1882 2

B. Experimental Setup

Our experimental setup is a deployment of the TPCx-V over
two physical servers. The first server is a Dell PowerEdge
R710 with 24 Cores, 96 GB RAM, and 12 TB disk, and
is managed by a Xen hypervisor (4.4.1). It has a privileged
domain (dom0) with a dedicated VM, and 15 additional VMs.
One set of 12 VMs is dedicated to TPCx-V, with four
groups of three VMs each (tpc-xxx). Another set of 3 VMs
corresponds to an additional group running the compromised
system. The second server (2 Cores, 8GB RAM and 1 TB
disk) runs the same software and a single VM used for the
driver component as prescribed on the TPCx-V specification.
The details of each VM are described in Table II.

C. Tools Set and Fault Model

Each single experiment lasts roughly 4 hours comprising
a minimum of 2h as demanded by the benchmark specifi-
cation and additional 2h to track the restoration of the full
environment to its initial state after performance degradation.
Initial state restoration is achieved by rebooting the servers and
recovering the system and databases, including the restoration
of all virtual disks.

Next, we describe the considered fault model. Our goal is
to account for resource exhaustion faults [26]. To that aim, we
make use of the Stress-NG module [27], which was designed
to “exercise various physical subsystems of a computer as
well as the various operating system kernel interfaces”. In
particular, we have defined three reference configurations to
emulate resource exhaustion anomalies, e.g., due to attacks.

(H): A high intensity workload consists of I/O intensive
tasks executed by eight parallel processes for 300 seconds.

(L): A low intensity workload comprises the execution of
ten intervals, where each interval consists of 15 seconds of I/O
intensive tasks executed by two parallel processes followed by
15 seconds in idle mode.

(Ls): A shorter low intensity workload is similar to a low
intensity workload configuration except that it comprises the
execution of three intervals.

Recall from Section IV-A that TPCx-V comprises 10 load
phases with diverse load demands. We emulated resource
exhaustion anomalies on phases 4 and 6, which correspond
to phases wherein the usage of physical resources and the
reference tpsV reach their maximum values, respectively.
Combining the observations above, we have a total of six
fault models, which we will refer to using the corresponding
phase number followed by the reference configuration: 4H, 4L,
4Ls, 6H, 6L, and 6Ls. An execution of the system without
fault emulation is referred to as a golden run. The model
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Fig. 3. Model based calibration of anomaly detector: (a) probability of false
alarm and (b) cost given by Equation (1) as a function of bucket depth.

based calibration of the anomaly detector introduced in the
upcoming section is solely based on golden runs, whereas the
results presented in Section VI leverage the calibrated anomaly
detector together with the fault model introduced above.

V. MODEL BASED CALIBRATION OF ANOMALY
DETECTOR AND COUNTERFACTUAL ANALYSIS

This section provides insights on the experimental results
using the proposed model. Our goals are to (a) illustrate the
applicability of the model in the real experimental setting
described in the previous section; and (b) indicate how the
model can be used to trade between contending aspects such
as false positive rate and time to detect anomalies.

To exemplify the general process, we focus on one of the
twelve transactions referred to in Section IV-A, namely the
TRADE LOOKUP transaction, for which we identify that
p1 = 0.46 and p2 = 0.71 considering the emulation of the
system without anomalies (i.e., considering golden runs). We
assess the expected number of samples until a false alarm,
obtained from (2), letting B = 2 and D vary between 1 and
30. For D = 15, for instance, the number of samples until a
false alarm as estimated by the model already surpasses 107.

Fig. 3(a) shows the probability of false alarm as a function
of the bucket depth. Fig. 3(a) accounts for a fault model
wherein the mean time between anomalies is 1/α = 5× 105

samples. The dashed (resp., dotted) line corresponds to the
exponential (resp., deterministic) approximation for the time
between anomalies, corresponding to (7) (resp., (6)). As the
bucket depth increases, the probability of false alarm de-
creases. For D ≥ 12, the probability of false alarm is close
to zero.

As discussed in Section III, there is a tradeoff between the
probability of false alarm and the time to detect anomalies
once they occur. To cope with such a tradeoff, we consider
both approaches introduced in Section III-E, namely the hard
and soft constraint problems. Under the hard constraint prob-
lem, a target probability of false alarm is determined, and the
minimum value of D that satisfies such target is sought. For
instance, if we set F = 0.03 in (9) then the minimum values
of D satisfying the constraint are D = 15 and D = 13 under
the exponential and deterministic fault models, respectively.

Next, we assess the cost C(p, w,D,B, α) introduced in
Definition 4. Figure 3(b) shows how the cost varies as a
function of D, letting B = 2, p1 = 0.46, p2 = 0.71 and
α = 2× 10−6. To generate the plots, we let w = 909, which
corresponds to the Lagrange multiplier of the constrained



problem under the deterministic model (see also (10)). In
that setting, the optimal bucket depth equals D = 13 (see
dotted line in Figure 3(b)), which is in agreement with the
result presented in the previous paragraph. Note that for the
exponential model the minimum cost is attained at D = 18
(dashed line in Figure 3(b)), which is slightly larger than D =
15 obtained in the previous paragraph. This is because the
Lagrange multiplier corresponding to the exponential model
is w = 57. Using such a smaller weight favors a reduction in
the optimal bucket depth to D = 15, again in agreement with
the results discussed in the previous paragraph.

Take away message and engineering implications: the anal-
ysis presented in this section is instrumental to perform what-if
counterfactual analysis and execute utility-driven model pa-
rameterization. If the system administrator implements global
countermeasures against attacks, for instance, it is expected
that the rate of anomalies will decrease. In that case, the
bucket depth can be adjusted accordingly using the approach
introduced above.

The results presented in this section are also instrumental
to reverse engineer the utility function subsumed by existing
systems. As indicated in the following section, letting D vary
between 12 and 15 performed well in the considered real
scenarios. The analysis presented above shows that a system
operating with B = 2 and D = 15 is optimal, for instance, in
case 5 × 105 samples are collected inbetween anomalies and
w = 57, leading to a false positive probability of roughly 0.03.
Knowing that this is the case, one can tune the utility function,
e.g., to account for anomalies that occur at different rates, and
verify when/if the parameters of the bucket algorithm should
be adjusted.

VI. EXPERIMENTAL ASSESSMENT OF THE CALIBRATED
ANOMALY DETECTOR IN FACE OF FAULTS

In what follows, we provide additional experimental evi-
dence of the effects of the bucket depth D on different system
metrics. Motivated by the model-based analysis presented
in Section V, we focus most of our attention on values of
maximum bucket depth D varying between 12 and 15. Our
goals are to (a) analyze the residual effects that can arise
after the anomalies; and (b) assess the effectiveness of the
proposed anomaly detection approach through two case studies
and accounting for standard performance metrics as detailed
next.

Our results are discussed using three metrics widely adopted
in classification assessment [28], namely precision, recall and
F-measure, which are defined as a function of true positives
(TP), false positives (FP) and false negatives (FN) as follows,

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 =

2× Pr× Re
Pr + Re

.

Precision (Pr) measures the impact of FP in the method’s
positive prediction. Recall (Re) reflects the sensitiveness of
the algorithm, capturing the fraction of correct predictions. F-
measure (F1) is the harmonic mean of precision and recall.

A. Residual Effects and Survivability Analysis

In our experiments we observed that the number of bucket
overflows after an attack ends was significantly greater than in
other non-attack periods. This phenomenon is typically studied
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Fig. 4. Post-attack alerts distribution for bucket configuration with B=2 and
D=[12,15]. Note that x scale is cropped to improve readability.

in the realm of survivability analysis, which focuses on system
behavior from failure up to full recovery, including transient
performance degradation [29], [30]. In this section, we refer
to the event of an overflow of the B-th bucket as an alert, and
explicitly distinguish alerts from alarms. Intuitively, after an
alarm is triggered during an attack, the set of alerts caused by
transient effects should not trigger additional alarms.

Fig. 4 shows the number of alerts as a function of time.
Following the survivability perspective, time is measured in
seconds after an attack ends. Note that a significant fraction
of alerts occurs a few seconds after the attack, which suggests
that those alerts are due to residual effects of attacks.

Next, we propose a simple heuristic to determine when a
set of alerts should be aggregated into a single alarm. To that
aim, let δ be the meantime until the first alarm is triggered
during an attack phase. Table III reports how δ varies as a
function of D for two of the twelve transactions considered
in our workload. The values of δ are relatively stable across
transactions and bucket depths. Note that δ increases as D
grows, up to D = 12. Correspondingly, as D grows the
overall number of alerts decreases (see Definition 2). Together,
Figure 4 and Table III suggest the following heuristic: after
an alert at time t0, any additional alerts during the interval
[t0, t0 + cδ] are due to residual effects (e.g., emptying of
queues and recovery of error states) and are discarded. In
our experiments we let c = 3. It is also worth noting the
slight decrease in δ when D varies from 12 to 15. We are
currently investigating such a decrease, noting that it may not
be statistically significant as the number of alerts decreases
from 78 and 88 to 65 and 71, respectively, when D varies
from 12 to 15 for the two transactions in Table III. Together,
Figure 4 and Table III suggest the following heuristic: any
alert that occurs at time t < δ is due to residual effects (e.g.,
emptying of queues and recovery of error states).

Fig. 5 shows the number of residual alerts as a function of
D, for the six fault models introduced in Section IV-C. The
proposed heuristic yields residual alerts under high intensity
faults (6H and 4H, corresponding to blue dashed lines and
red dotted lines). In addition, the number of residual alerts
decreases as D grows, as the the larger the value of D the

TABLE III
MEAN TIME TO FIRST ALARM (δ) DURING THE ANOMALY INJECTION (IN SECONDS)

Transaction D=6 D=9 D=12 D=15

TRADE LOOKUP 31.03 50.06 69.18 61.63
MARKET WATCH 36.08 54.11 60.38 59.51



higher is the tolerance for transient faults.
Under the scenarios considered in this paper, the proposed

heuristic accurately classified all alerts due to residual effects
as spurious, and did not misclassify any non-residual alert
and the heuristic is subsumed under all the reported results
in the sequel.
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Fig. 5. Distribution of the residual effects by failure mode and bucket depth.

B. Experimental Assessment of Parametrization Impact on
Performance

Next, our goals are to (a) assess the performance of the BA
over the six considered fault models and (b) indicate how its
parametrization affects performance.

We consider the same bucket depth D across all operations.
Anomalies are detected per transaction and per VM group.
Noting that 9 out of the 12 transactions referred to in Sec-
tion IV-A turned out to be representative, and that we have 4
groups of VMs (4 first rows of Table II), the bucket algorithm
counts with 9×4 sets of buckets, one set for each transaction-
group pair. Each set of buckets comprises B = 2 buckets.

According to the cost function and the fault model con-
sidered in Section V, the optimal bucket depth D resides
between 12 and 15. Table IV reports the performance metrics
obtained from our experimental campaign, divided into two
groups corresponding to D = 12 and D = 15. The first line
of each group accounts for all fault models, and the subsequent
six lines correspond to the six fault models described in
Section IV-C.

TABLE IV
PERFORMANCE METRICS, INCLUDING RESIDUAL EFFECTS COUNTS (RE),

PRECISION, RECALL AND F-MEASURE (F1)

Table IV indicates that the proposed parametrization in-
deed yields a small number of false alarms (column FP), as
suggested by the analytical model, and that the F-measure
is typically greater than 0.78 (two notable exceptions being

under fault models 4Ls and 6Ls). In addition, Table IV
also shows that BA performance varies as a function of the
anomaly intensity and algorithm configuration. In particular,
letting D = 12 or D = 15 the algorithm is effective to
detect high intensity anomalies (4H and 6H) and low intensity
anomalies of long duration (4L and 6L). In those scenarios,
the performance of the anomaly detector under D = 12 and
D = 15 is similar, suggesting robustness of the solution with
respect to its parametrization.

To deal with short anomalies of low-intensity (4Ls and
6Ls), we found that D must be fine tuned. In the 6Ls
scenario, setting D = 12 is key to control the number of false
negatives. Indeed, D = 12 produces an F-measure of 0.82
which significantly outperforms an F-measure of 0.5 under
D = 15. In the most challenging setup 4Ls, we must vary D
in a broader range beyond 12 and 15 to detect short bursts of
faults. Such observation, in turn, motivates a transaction-based
parametrization of the anomaly detector in those settings.

In this work we consider the same value of D for all
transactions in order to show the effectiveness of the proposed
approach in its simplest configuration. Our preliminary results
(not shown in this paper) indicate that allowing a distinct
parametrization per-transaction suffices to deal with scenarios
such as 4Ls. The decision between tuning the parameters in a
system wide manner or in a per-transaction basis must balance
between simplicity and effectiveness, and we leave its detailed
experimental analysis as subject for future work.
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Fig. 6. Performance metrics under the six fault models.

Fig. 6 shows how precision, recall and F-measure vary as a
function of D, for D varying between 6 and 18. Larger values
of D favor higher tolerance to performance variability under
normal conditions. Therefore, the number of false positives
(FPs) decreases and precision increases as D grows. Recall
(Re), in contrast, decreases and the number of false negatives
(FNs) increases as D grows, as such growth produces longer
detection times. The F-measure balances precision and recall,



typically reaching its maximum value between D = 12 and
D = 15 under the considered setups, which is in agree-
ment with the results obtained through the analytical model
parametrization in Section V.

C. Take away message and engineering implications

Whereas the model-based parametrization from Section V is
based on the cost function (1) to be minimized (Figure 3(b)),
the F-measure yields an utility function to be maximized
(Figure 6). In essence, both the cost and utility functions
capture the fundamental tradeoff between detection time and
false alarm rates and are complementary to each other. While
the experimental approach serves for validation purposes and
to explain system behavior in retrospect, after experiments are
executed, the model-based approach is key to perform what-if
counterfactual analysis and for predictive purposes.

VII. CONCLUSION

In this work, we presented a methodology for anomaly
detection based on performance degradation, e.g., caused by
security attacks at complex virtualized systems. The approach
leverages an analytical model to find the optimal parametriza-
tion of an anomaly detector in a principled way.

Our experimental assessment indicates the method’s effec-
tiveness by injecting resource exhaustion attacks in a vir-
tualized system. Results show that it is possible to detect
anomalous behavior using the throughput of the business
transactions with an average precision of 90% and recall of
86%. Our experimental results also bring awareness about
residual effects of high-intensity fault loads, which may persist
after active attacks have been interrupted.

We believe that the analytical and experimental contribu-
tions presented in this work advance the state of the art provid-
ing novel perspectives towards the classical and fundamental
tradeoff between detection time and false alarm rates faced in
the optimal design of anomaly detection mechanisms.

For future research, we intend to extend our experiments
with fault models representing other types of attacks, and to
cope with a transaction-oriented system parametrization.

ACKNOWLEDGMENT

This work was funded by CEFET-MG/Brazil, eSulab So-
lutions, CAPES, CNPq and FAPERJ, and by the Portuguese
Foundation for Science and Technology (FCT) through the
Ph.D. grant SFRH/BD/144839/2019, and the project MET-
RICS (agreement no POCI-01-0145-FEDER-032504),
within the scope of the project CISUC - UID/CEC/00326/2020
and by European Social Fund, through the Regional Oper-
ational Program Centro 2020. It was also supported SPEC
RG Security Benchmarking (Standard Performance Evaluation
Corporation; http://www.spec.org, http:// research.spec.org).

REFERENCES

[1] “83% of enterprise workloads will be in the cloud by 2020.” [Online].
Available: https://tinyurl.com/forbescloud2018

[2] Intel, “Unexpected page fault in virtualized environment advisory,” 2019,
https://tinyurl.com/intelfault.

[3] DigitalOcean, “DigitalOcean reply to Intel security advisory,” 2019,
https://hup.hu/index.php/node/166970.
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