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Abstract—The Network Slicing (NS) paradigm is one of the
pillars of the future 5G networks and is gathering great attention
from both industry and scientific communities. In a NS scenario,
physical and virtual resources are partitioned among multiple
logical networks, named slices, with specific characteristics. The
challenge consists in finding efficient strategies to dynamically
allocate the network resources among the different slices ac-
cording to the user requirements. In this paper, we tackle the
target problem by exploiting a Deep Reinforcement Learning
approach. Our framework is based on a distributed architecture,
where multiple agents cooperate towards a common goal. The
agent training is carried out following the Advantage Actor Critic
algorithm, which makes it possible to handle continuous action
spaces. By means of extensive simulations, we show that our
strategy yields better performance than an efficient empirical
algorithm, while ensuring high adaptability to different scenarios
without the need for additional training.

Index Terms—Network slicing; resource allocation; distributed
machine learning; deep reinforcement learning.

I. INTRODUCTION

THE fifth generation of cellular networks (5G) aims at
supporting multiple applications with different charac-

teristics. In this perspective, the 3GPP consortium has iden-
tified three main service classes, namely enhanced Mobile
BroadBand (eMBB), Ultra Reliable Low Latency Communi-
cation (URLLC) and massive Machine Type Communication
(mMTC), each with specific performance requirements [1].

Traditional telecommunication networks are often based on
a rigid architecture and are not apt to support such services.
Hence, the research community has been looking towards the
Network Slicing (NS) paradigm, which makes it possible to
define multiple virtual networks, named slices, over the same
physical infrastructure. Each slice has to support communi-
cation services with similar characteristics [2], enabling a
better orchestration of the system resources. For instance, an
eMBB slice (supporting, e.g., video streaming) is characterized
by large throughput, while a URLLC slice (supporting, e.g.,
telesurgery) guarantees extremely high reliability and low
latency.

If defined over the same infrastructures, different slices will
contend for the same network resources, which can be both

This work was supported by Consortium GARR through the “Orio Carlini”
scholarship 2019.

physical (e.g., the optical links in the backhaul networks) and
virtual (e.g., virtual baseband units running in a data center). In
general, such resources are acquired by the slice manager (i.e.,
the body in charge of initializing and orchestrating slices) from
the infrastructure providers (i.e., the owners of the physical
elements of the network). Then, slices are assigned to the
slice tenants (e.g., virtual network operators), which offer
slice services to the end-users. The amount of resources that
are needed to support the slice services is determined by the
so-called Service Level Agreement (SLA) between the slice
tenant and manager [3].

A fundamental challenge in a NS scenario is how to
distribute resources among the different slices in an efficient
way, ensuring that all the SLAs are satisfied [4]. A naive
approach consists in statically allocating all the network re-
sources to the different slices. However, this solution does not
exploit the statistical multiplexing of the information flows
and, consequently, leads to greater over-provisioning costs.
On the other hand, conventional resource allocation strategies
are often unsuitable because of the high complexity of NS
systems.

In this work, we attack the problem by exploiting the Deep
Reinforcement Learning (DRL) paradigm, which combines
Reinforcement Learning [5] and Neural Networks (NNs) to
find strategies for the management of complex systems [6]. In
particular, we design a distributed DRL system, where multiple
agents, placed in different network locations, collaborate to
maximize the system utility, adapting dynamically their be-
havior to the evolution of the network status. The training is
based on the Advantage Actor Critic (A2C) algorithm, which
allows the agents to operate in a continuous action space and
constantly improve the target policy by an online learning
approach [7].

The main contributions of our work are the followings:

• We design a theoretical NS model that makes it possible
to assess the performance of heterogeneous telecom-
munication services in different scenarios. Hence, we
formulate an optimization problem, where edge and core
network resources have to be allocated among multiple
information flows.



• We develop a DRL strategy to solve the target problem
and dynamically allocate network resources (i.e., band-
width, computational power, and storage) to different
slices. The proposed approach is characterized by high
flexibility and can be implemented in many network
topologies without the need for additional training.

• We evaluate the performance of our proposal against an
efficient empirical strategy and under different working
conditions.

The remainder of the work is organized as follows. Sec. II
discusses the most relevant works in the considered topic.
Sec. III describes the system model used for our analysis.
Sec. IV presents our DRL strategy for resource allocation.
In Sec. V, we describe the simulation scenario and present
the results of our research. Finally, in Sec. VI, we draw the
conclusions.

II. RELATED WORK

The orchestration of network resources is one of the most
critical aspects of NS. In this respect, the authors of [8]
analyze a 5G scenario with end-to-end slices contending for
the virtual resources offered by data centers, proposing a fully
distributed algorithm to maximize system performance. In [9],
Leconte et al. design a NS model where multiple traffic flows
share network bandwidth and cloud processing units; hence,
they implement the Alternating Direction Method of Multi-
pliers [10] to determine the best resource allocation scheme.
The authors of [11] adopt a similar approach, considering a
system where multiple network operators share both licensed
and unlicensed spectrum. Besides, Fossati et al. propose a
framework to generalize multi-resource allocation techniques
according to different fairness goals, considering also the
case where resources are not sufficient to satisfy all the slice
demands [12].

Because of the high complexity of slice orchestration, the
scientific community has shown great interest in leveraging
Machine Learning (ML) techniques in this field. For instance,
in [13], a NN system makes it possible to predict the traffic
evolution of a mobile network, thus optimizing the routing and
the wavelength assignment of data flows. Another example
can be found in [14], where the authors exploit generative
adversarial NNs to minimize the noise in the measurement
of SLA satisfaction. Among all the ML frameworks, DRL
is particularly appreciated because of its ability to learn
complex strategies by trial and error. In [15], the authors define
a novel slice admission policy, based on Q-Learning [16],
that considers both the bandwidth and computational require-
ments of the system services. Instead, Ayala-Romero et al.
orchestrate virtualized radio resources by employing a DRL
algorithm that encodes traffic data into resource allocation
decisions [17]. A similar approach is considered in [18], where
the authors reconfigure processing power and storage capacity
in order to dynamically adapt virtual network functions to
different services. Besides, Abiko et al. develop a multi-
agent system to distribute radio resource blocks and prove
its adaptability to a variable number of slices [19]. Finally,

the authors of [20] adopt a DRL architecture to balance the
communication requirements of eMBB and URLLC services;
particularly, an Actor-Critic algorithm is used to schedule
URLLC transmissions without degrading the eMBB reliability.

Despite the growing interest in this domain, many open
questions still need investigation. Most of the aforementioned
approaches, indeed, focus on the management of local func-
tionalities, without addressing the problem of jointly optimiz-
ing all the available resources in a wide telecommunication
system including multiple network elements. Besides, the great
heterogeneity of NS scenarios requires the implementation of
more flexible strategies, that can promptly react to changes
in the service requirements. A very promising solution is
to exploit hierarchical reinforcement learning architectures,
which is an approach that has not yet been fully investigated
in this context. Our work develops along with this direction,
with the final aim of designing a fully scalable DRL system
that can be separated into smaller units, capable of both
acting autonomously and cooperating to orchestrate network
resources under multiple working conditions.

III. SYSTEM MODEL

In this section, we model a NS environment where multiple
information flows contend for the same physical and virtual
network resources. We adopt a fluid traffic model, where the
traffic through a link is viewed as a fluid stream of data with a
certain flow rate. The generality and flexibility thus promoted
allow our system to model the behavior of many of the actors
involved in a NS scenario. For the reader convenience, we
report the main parameters of our model in Tab. I.

A. Slice Model

In our system, we define a network slice as an aggregation of
information flows with similar requirements. We denote by Σ
the set of slice classes, and by Φ the set of information flows.
Given a class σ ∈ Σ, Φσ indicates the set of the information
flows belonging to σ. Each information flow φ ∈ Φ is
characterized by a tuple of parameters, namely:
• the flow endpoints Eφ = (εiφ, ε

e
φ), i.e., the network nodes

where the users’ data enter/exit the slice, which usually
correspond to base stations, edge routers of autonomous
systems, or servers;

• the resource demand vector rφ = [ηφ, cφ,mφ, δφ], whose
elements are the requirements in terms of throughput
(η), computational power (c), memory capacity (m), and
delay (δ) of the flow;

• the performance function Fφ(·), which describes the per-
formance of the considered information flow according
to the level the SLA is fulfilled.

We assume that Eφ, Fφ(·) and δφ are fixed, while ηφ, cφ and
mφ can change in time. In particular, the time is discretized in
timeslots of T seconds, and the information flow parameters
can change only slot by slot. The symbol rφ(t) indicates the
resource demanded by φ during timeslot t, while r̂φ(t) =
[η̂φ(t), ĉφ(t), m̂φ(t), δ̂φ(t)] indicates the resources assigned
to φ during timeslot t. Note that rφ(t) is determined by the



TABLE I: Model parameters.

Parameter Description Parameter Description Parameter Description

φ ∈ Φ Information flow εiφ, ε
e
φ Flow endpoints Bl Link rate capacity [bps]

σ ∈ Σ Slice class rφ Flow demand vector Ccn Node computational capacity [bps]
l ∈ L Link ρφ Resource required by φ Cmn Node memory capacity [b]
n ∈ N Node ρ̂φ Resource assigned to φ bil,φ Input flow rate [bps]
η Throughput [bps] fσ(·) Resource performance function bol,φ Output flow rate [bps]
c Computational power [bps] Fσ(·) Flow performance function τn Node routing delay [s]
m Memory capacity [b] Ω System utility Dl,φ Data of φ queued in l [b]
δ Delay [s] bl,φ Bit rate assigned by l to φ [bps] τql,φ Queuing delay of φ in l [s]
t Discrete time cn,φ Computation assigned by n to φ [bps] ττl,φ Transmission delay of φ in l [s]
T Timeslot duration [s] mn,φ Memory assigned by n to φ [b] τpl Link propagation delay [s]

slice class σ that φ belongs to, while r̂φ(t) is determined by
the resource allocation strategy.

All the information flows belonging to the same class
σ share the same performance function Fσ(·), i.e., ∀φ ∈
Φσ, Fφ(·) = Fσ(·). In general, Fσ(·) takes r and r̂ as input,
and returns a value in [0, 1], where 1 means that the Quality
of Experience (QoE) of the slice users is maximized. For the
sake of simplicity, in this work, we consider only two slice
classes, namely eMBB (e) and URLLC (u), which have almost
complementary characteristics.

For what concerns the eMBB slice, we assume

Fe(r, r̂) = αδfe

(
δ

δ̂

)
+

∑
ρ∈{η,c,m}

αρfe

(
ρ̂

ρ

)
, (1)

where αη, αc, αm, and αδ are non negative and add up to 1.
Hence, Fe(·) is the convex sum of fe(xρ), where xρ is the
level of fulfillment of the request, for ρ ∈ {δ, η, c,m}.

Generally, fe(·) can take a different shape for each type of
resource as long as fe(x) = 1, ∀ x ≥ 1, i.e., the performance is
maximized anytime the allocated resources equals or exceeds
the request. In this work, we consider

fe(x) =

{
β1x+ β2x

2 + β3x
3, x ∈ [0, 1);

1, x ≥ 1;
(2)

where, β1, β2 and β3 are scalar parameters ensuring that
fe(·) is concave and monotonic increasing for x ∈ [0, 1]. The
smooth shape of fe(·) embodies the flexibility of the eMBB
services, whose QoE degrades smoothly when the SLA is
violated.

Conversely, URLLC flows have very strict requirements
that, if infringed, cause the sudden degradation of the QoE. For
this reason, to model the performance of this class of services,
we consider the product of step functions:

Fu(r, r̂) = fu

(
δ

δ̂

)
×

∏
ρ∈{η,c,m}

fu

(
ρ̂

ρ

)
, (3)

where

fu(x) =

{
0, x ∈ [0, 1);

1, x ≥ 1.
(4)

Given the functions {Fσ(·)} for all the slice classes σ ∈ Σ,
the system utility is obtained as

Ω =
|Φe|
|Φ|

Ωe +
|Φu|
|Φ|

Ωu, (5)

where
Ωσ =

1

|Φσ|
∑
φ∈Φσ

Fσ(rφ, r̂φ), σ ∈ Σ, (6)

and | · | is the cardinality operator. We observe that both {Ωσ}
and, consequently, Ω always take values in [0, 1].

B. Network Model

In our model, we consider two different network elements,
namely node and link, as detailed below.
• Nodes can be of two types: edge or core. Edge nodes are

located at the network edge and connect users with the
rest of the network. Core nodes are located in the core
of the network and forward the aggregated data flows
coming from the edge nodes. Each node n is equipped
with a certain amount of computational (Ccn) and memory
(Cmn ) resources.

• A link is any connection l between two different nodes.
This element is provided with a certain bit rate (Bl)
to support the communications between the connected
nodes.

From now on, we denote by N and L the set of network nodes
and links, respectively.

Let Φl be the set of information flows that cross a certain
link l ∈ L. Each flow φ ∈ Φl gets assigned a portion bl,φ
of the link bit rate Bl. Similarly, for each node n ∈ N , let
Φn be the set of information flows crossing the node, and let
cn,φ and mn,φ be the amount of computational and storage
resources assigned to flow φ ∈ Φn. Consequently, any resource
allocation pattern must comply with the following feasibility
conditions:∑

φ∈Φl

bl,φ ≤ Bl, ∀ l ∈ L; (7)∑
φ∈Φn

ρn,φ ≤ Cρn, ρ ∈ {c,m},∀ n ∈ N . (8)

The performance of a flow φ depends on the resource
allocation vector r̂φ, which is the result of the allocations in



the network elements. Let Nφ and Lφ be the sets of network
nodes and links crossed by φ, respectively. We assume that
the computational and memory requests of a flow φ ∈ Φ can
be distributed among all the nodes in Nφ, so that

ρ̂φ =
∑
n∈Nφ

ρn,φ, ∀ ρ ∈ {c,m}. (9)

Hence, each slice can build its own virtual network functions
using the resources provided by any of the servers with which
it is associated.

The throughput η̂φ, instead, is equal to the output rate from
the last link along the routing path of φ. Let bol,φ(t) be the
output rate at time t from link l ∈ L. The value of bol,φ(t) is
the minimum between the allocated rate bl,φ(t) and the sum
of the incoming and queued traffic, i.e.,

bol,φ(t) = min

{
bl,φ(t),

Dl,φ(t− 1)

T
+ bil,φ(t)

}
, (10)

where bil,φ(t) is the input rate from the upstream link and
Dl,φ(t − 1) is the amount of data of φ queued at node n at
the end of the previous slot. In particular, bil,φ(t) is given by

bil,φ(t) =

{
bo`,φ(t), if ` is the upstream link of l in Lφ;

ηφ(t), if l is the first link in Lφ.
(11)

Instead, Dl,φ(t) is set to 0 for any time t before the initial-
ization of the flow, and then it is updated as

Dl,φ(t) = max
{

0, Dl,φ(t− 1) + T (bil,φ(t)− bl,φ(t))
}
.
(12)

Note that the value of Dl,φ increases as the assigned rate bl,φ
is lower than the input rate bil,φ.

For what concerns the delay experienced by φ, we have

δ̂φ(t) =
∑
n∈Nφ

τn +
∑
l∈Lφ

τl,φ(t), (13)

where τn is a positive value representing the delay due to
routing operations at node n, which is assumed constant over
time. Instead, τl,φ(t) is computed as

τl,φ(t) = τ ql,φ(t) + τ τl,φ(t) + τpl , (14)

where τpl is the constant propagation delay of φ through link
l, τ ql,φ(t) is the average queuing time in l during t, given by

τ ql,φ(t) =
2Dl,φ(t− 1)− T (bol,φ(t)− bil,φ(t))

2bl,φ(t)
, (15)

and τ τl,φ(t) is the transmission delay, which is inversely pro-
portional to the output rate, i.e.,

τ tl,φ(t) =
1

bol,φ(t)
. (16)

We highlight that, despite we consider a discrete time-frame,
δ̂φ is a continuous value.

Our aim is to determine the resource allocation to maximize
the system utility as given in (5). Mathematically, we want to
determine r̂φ, bl,φ, cn,φ, mn,φ, bil,φ, bol,φ, τ ql,φ, and τ τl,φ, ∀ φ ∈

Φ, n ∈ N , l ∈ L, that maximize Ω, under the constraints given
in (7)-(16). If information flow demands evolve too quickly,
conventional techniques are unable to find a solution within a
reasonable time frame. Instead, DRL approaches can overcome
such problem, and provide high-performance solutions in a
relatively short time.

IV. LEARNING STRATEGY

In order to efficiently orchestrate communication resources
in the NS scenario described in Sec. III, we develop a dis-
tributed DRL strategy. The designed system is based on mul-
tiple learning units, named local controllers, that collaborate
to maximize the overall utility, given by (5). To evaluate the
performance of the proposed approach, we design an empirical
resource allocation algorithm, whose behavior is described at
the end of this section.

A. Learning Architecture
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Fig. 1: Learning Architecture.

Our learning architecture (shown in Fig. 1) entails a differ-
ent controller for each information flow and network element.
From an operational point of view, the total number of local
controllers depends on the network topology and the cardinal-
ity of Φ. Practically, the local controllers are all replicas of
3× |Σ| learning agents. Indeed, we train a different agent for
each of the three type of network resources, namely bit rate,
computational power and memory, and for each of the |Σ|
different slice classes. Given a slice class σ ∈ Σ, we denote
by (Γbσ , Γcσ , Γmσ ) the tuple of agents that σ is associates with.
The agent Γbσ orchestrates the bit rate assignments for each
information flow φ ∈ Φσ in each link l ∈ L; instead, Γcσ
and Γmσ orchestrate the computation and memory resources
for each information flow φ ∈ Φσ in each node n ∈ N .
Practically, the agent training is performed by a central entity,
named training manager, which collect the system information
and update the learning architecture accordingly. Then, copies
of Γbσ , Γcσ , and Γmσ will be deployed in each network element
crossed by any flow φ ∈ Φσ .

In the training phase, we leverage the A2C algorithm, which
makes it possible to handle a continuous state space, providing



stable DRL solutions in very complex scenarios [21]. Ac-
cording to this approach, each learning agent is composed of
two units, the actor and the critic, which are implemented by
means of NNs. Particularly, we consider an architecture with
two hidden layers and the Rectifier Linear Unit (ReLU) as
activation function [22]. The output of the actor is the amount
ρ∗ of resources demanded by the local controller, while that
of the critic is the expected future reward. The size of the NN
input varies according to the type of resources that has to be
managed, as explained next.

B. State Space

In our system, each local controller has full knowledge of
the element where it runs, while it has a limited view on the
rest of the network, which implies that the system state is only
partially observable [23]. Let us consider a local controller
managing the rate resources of a flow φ in a link l. At the
beginning of each timeslot, such a controller is provided with
two vectors representing the status of the information flow and
the network element that is associated to.

The first vector gives the state of φ at the beginning of
timeslot t:

sφ(t) = [rφ(t), r̂φ(t− 1)], (17)

where rφ(t) and r̂φ(t−1), defined in Sec. III, are the resources
requested and granted by φ at the beginning of timeslot t
and t − 1, respectively. We observe that r̂φ(t − 1) can be
computed only knowing the aggregate amount of network
resources assigned to φ by the network elements of its routing
path. Therefore, our architecture can properly operate only if
sφ(t) is shared among all the controllers assigned to φ at the
beginning of each timeslot t. However, the size of sφ(t) is
negligible with respect to the rate requirements of the slices,
and, therefore, can be transmitted within the user data plane
of φ, without degrading the performance of our system.

The second vector is

sl,φ(t) = [Bl, τl,φ(t− 1), Dl,φ(t− 1), b∗l,φ(t− 1),

bl,φ(t− 1), bel (t− 1), bul (t− 1)],
(18)

which provides the state of the rate resources of φ in l at the
beginning of timeslot t. More specifically, in (18), bσl (t − 1)
is the aggregate rate demanded in l by all the flows of class σ
during timeslot t−1, while the other parameters were defined
in Sec. III. Hence, the link controller takes sφ(t) and sl,φ(t)
as input and returns b∗l,φ(t), which is the bit rate demanded by
φ in l during t.

When considering a controller associated to a node n and
a flow φ we use the same approach and, depending on the
resource ρ ∈ {c,m} to be allocated, the input (18) is replaced
with the states of the computation and memory resources
assigned to φ by node n:

sρn,φ(t) = [Cρn, ρ
∗
n,φ(t− 1), ρn,φ(t− 1),

ρen(t− 1), ρun(t− 1)],
(19)

where ρσn(t − 1) is the aggregate amount of resource ρ
demanded in node n by all the flows of class σ during timeslot

t − 1. At the beginning of timeslot t, the node controller
takes sφ(t) and sρn,φ(t) as input and returns ρ∗n,φ(t), with
ρ ∈ {c,m}; this latter is the computational (or memory)
capacity demanded by φ in n during t.

C. Reward Function

In accordance to the RL paradigm, we need to define a
reward function r(·) that represents the benefit generated by
each possible state-action pair of the policy. In particular,
to maximize the overall utility, each local controller should
demand enough resources to maximize the performance of
the flow φ it is in charge of, without subtracting too many
resources to the other flows. In our system, given a controller
associated to a link l ∈ L and a flow φ ∈ Φl, the reward is
given by

rl,φ(t) =γ0

(
fσφ

(
ηφ(t)

η̂φ(t)

)
+ fσφ

(
δ̂φ(t)

δφ(t)

))
+

γ1

|Φl|
∑
ψ∈Φl

(
fσψ

(
ηψ(t)

η̂ψ(t)

)
+ fσψ

(
δ̂ψ(t)

δψ(t)

))
,

(20)

where σφ is the slice class that φ belongs to, γ0 > 0 weights
the performance of flow φ, while γ1 > 0 weights the average
performance of all the flows crossing link l.

Similarly, a controller assigned to a node n and a flow φ is
rewarded according to

rρn,φ(t) = γ0fσφ

(
ρφ(t)

ρ̂φ(t)

)
+

γ1

|Φn|
∑
ψ∈Φn

fσψ

(
ρψ(t)

ρ̂ψ(t)

)
, (21)

where ρ ∈ {c,m}.
Under such constraints, if a link controller uses all the bit

rate available in l for its own flow φ, all the flows in Φl\{φ}
experience degraded performance and, consequently, the re-
ward rl,φ(t) decreases. Particularly, a local controller receives
the highest reward when all the competing information flows
experience the maximum performance.

D. Empirical Algorithm

Besides the DRL strategy, we introduce an empirical al-
gorithm that does not require any training and, therefore,
can potentially be more efficient than the learning approach,
though less flexible. With the empirical algorithm, each flow
tries to acquire a sufficient amount of rate to both satisfy the
current throughput requirement and empty the buffer of any
previous data. Therefore, at the beginning of timeslot t, each
flow φ crossing link l demands an amount of rate equal to
b∗l,φ(t) = ηφ(t) +Dl,φ(t− 1)/T .

The computation and memory resources of a flow φ, instead,
are distributed among all the nodes {n} crossed by φ, pro-
portionally to the element capacities. In particular, each flow
φ crossing node n demands an amount of resources equal
to ρ∗n,φ(t) = χn,φρφ(t), where χn,φ = Cρn/

(∑
k∈Nφ C

ρ
k

)
and ρ ∈ {c,m}. We highlight that, to compute χn,φ, it is
necessary to known the computation and storage capacities of
each node n ∈ Nφ, an information that is not available to the



local controllers of the DRL strategy and, hence, might give
some advantage to the empirical algorithm.

At this stage of the work, we have not implemented any
admission strategy. Therefore, both using the empirical and the
DRL approaches, some network elements may not be able to
satisfy all the requests they receives. Practically, the resources
assigned to any flow φ in a link l ∈ Lφ or a node n ∈ Nφ are
computed as

bl,φ(t) =b∗l,φ(t) min

{
1,

Bl∑
ψ∈Φl

b∗l,ψ(t)

}
, (22)

ρn,φ(t) =ρ∗n,φ(t) min

{
1,

Cρn∑
ψ∈Φn

ρ∗n,ψ(t)

}
, (23)

where ρ ∈ {c,m}.

V. SCENARIOS AND RESULTS

In this section, we first describe the settings of our simu-
lations as well as the testing scenarios where our model is
implemented. Then, we investigate the performance of the
proposed DRL strategy under different working conditions.

A. Scenarios

We consider three different scenarios, named Dumbbell,
Triangle and Pyramid Networks, whose topologies are reported
in Fig. 2. In all the cases, the number of information flows in
the network (i.e., the cardinality of Φ) is in {2, ..., 6}. The
capacities of each network element are fixed; particularly, we
set Ccn = 60 Gbps and Cmn = 60 Gb for core nodes, Ccn = 20
Gbps and Cmn = 20 Gb for edge nodes, Bl = 50 Gbps for
links. Finally, we assume that τpl = 0.1 ms ∀ l ∈ L, and
τn = 0.001 ms ∀ n ∈ N . Although arbitrary, these values are
well-aligned to the features of modern network elements.

To model the information flow requirements, we consider
a different Markov Model (MM) [24] Mσ with transition
probability matrix Pσ for each class σ ∈ Σ. All the models
include Nstate = 10 states that represent combinations of
resource requirements, i.e., different realizations of the vector
r. Hence, each information flow φ ∈ Φσ is associated to an
independent copy of Mσ that changes state at each timeslot t,
thus varying rφ. In particular, the matrices {Pσ} are designed
in such a way that transitions can only occur between adjacent
states. The minimum and maximum value of the resource
requirements are summarized in Tab. II; a reference for the
considered values can be found in [1].

To train the learning agents, we generate Ntrain = 5 · 104

independent episodes using the same network topology. Each
episode lasts Nslot = 50 timeslots of T = 0.1 seconds. At the
beginning of each episode, a random number of information
flows is generated. Hence, each flow φ is associated with a
static route, which is randomly selected from the possible
direct paths between the flow endpoints Then, the agents Γbσ ,
Γcσ , Γmσ , ∀ σ ∈ Σ, distribute network resources according to
the slice requests, while the A2C algorithm is used to train
the system. In particular, we exploit the Adaptive Moment

(a) Dumbbell Network. (b) Triangle Network.

(c) Pyramid Network.

Fig. 2: Network topologies.

TABLE II: Resource requirements.

Service class Parameter Range of values Unit

η 0.30÷ 42.5 Gbps
eMBB c 50÷ 100 Gbps

m 50÷ 100 Gb
δ 20 ms

η 2.08÷ 10 Gbps
URLLC c 50÷ 100 Gbps

m 50÷ 100 Gb
δ 1 ms

Estimation algorithm to optimize the NN weights, considering
ζa = 3 · 10−5 and ζc = 3 · 10−5 as learning rates of the actor
and the critic, respectively [25]. The main settings of the agent
architectures are summarized in Tab. III.

TABLE III: Local controller design.

Γbσ Γcσ Γmσ

Parameter Actor Critic Actor Critic Actor Critic

Input size 11 11 7 7 7 7
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 12 12 8 8 8 8
Activation ReLU ReLU ReLU ReLU ReLU ReLU
Hidden size 6 6 4 4 4 4
Activation Linear Linear Linear Linear Linear Linear
Output size 1 1 1 1 1 1

To be noted that, in our simulations, the number of flows
and their requirements change randomly, so that the aggregate
resource requests can exceed the capacity of the network. In
such conditions, the allocation strategy should decide which
flow to penalize, in order to maximize the overall utility.
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Fig. 3: Expected utility.

Therefore, our system can be exploited to handle critical
scenarios where there is a lack of network resources, or to
estimate the reliability of a specific set of network slices.

B. Results

We consider two versions of our learning system, one
trained in the Dumbbell Network (DRL-D) and the other
in the Triangle Network (DRL-T). In Fig. 3, we report the
expected performance achieved by each slice class, and by the
whole system (see (5) and (6)), in the Dumbbell and Triangle
Network, respectively. In both the scenarios, the empirical
algorithm yields worse performance since it tends to favor
the eMBB class at the expenses of URLLC flows. Instead, the
DRL strategies double the fraction of satisfied URLLC flows,
with only a small degradation in the eMBB services.

In Fig. 4 we show the distribution of the system performance
for the analyzed strategies, in all the considered network
topologies. To do so, we adopt the boxplot representation,
where the white line at the box center is the median, the box
edges are the 25th and the 75th percentile, while the whiskers
are the 5th and the 95th percentile. The DRL strategies always
outperform the empirical one, both considering the median
and the percentiles of Ω. We observe that, in the Pyramid
Network, the lack of network resources is less striking and,
consequently, the performance of all the strategies increases.

In particular, using the empirical algorithm, 75% of the test
episodes experience Ω > 0.35; this threshold is raised to 0.5
with the DRL strategies, while the median of Ω is improved by
more than 25%. We highlight that DRL-D and DRL-T yield
higher performance in all the testing scenarios. In particular,
the learning strategies succeed in addressing slice requirements
also in the Pyramid Network, which is a different environment
from those seen during the training phase.
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Fig. 4: Utility distribution.

Finally, in Fig. 5, we plot the utility of the eMBB and
URLLC slices (i.e., Ωe and Ωu) in the Pyramid Network
scenario as a function of the number of active information
flows. When considering the eMBB service, all the allocation
strategies have a similar behavior: E[Ωe] decreases smoothly
as the cardinality of Φ increases. If we use DRL-D or DRL-T,
E[Ωu] keeps a linear trend, although its value decreases much
faster than before. In contrast, using the empirical algorithm,
the utility of the URLLC flows follows an exponential decay
and, for |Φ| ≥ 4, E[Ωu] approaches 0. Therefore, if the
number of information flows is limited, it is sufficient to adopt
an empirical approach to orchestrate the network resources. At
the same time, DRL techniques, like the one we propose, can
considerably improve the overall performance when the target
scenario gets more complex.

VI. CONCLUSION

In this work, we investigated the potentials of DRL to
orchestrate network resources in a NS scenario. Specifically,
we developed a distributed DRL strategy where different
learning units interact to meet the resource demands of
multiple information flows. We showed that the designed
system allows to better optimize the management of network
resources, especially for more complex systems, both in terms
of network topology and service heterogeneity. Besides, our
system proved to be highly flexible since it can suit multiple
network topologies without the need for additional training.
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