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Abstract—In this work we show how to detect ZigBee inter-
ference on commodity WiFi cards by monitoring the reception
errors, such as synchronization errors, invalid header formats,
too long frames, etc., caused by ZigBee transmissions. Indeed, in
presence of non-WiFi modulated signals, the occurrence of these
types of errors follows statistics that can be easily recognized.
Moreover, the duration of the error bursts depends on the
transmission interval of the interference source, while the error
spacing depends on the receiver implementation.

On the basis of these considerations, we propose the adoption
of hidden Markov chains for characterizing the behavior of WiFi
receivers in presence of controlled interference sources (training
phase) and then run-time recognizing the most likely cause of
error patterns. Experimental results prove the effectiveness of
our approach for detecting ZigBee interference.

Index Terms—wlan, 802.11, 802.15.4, frame error detection,
wireless coexistence.

I. INTRODUCTION

Recently, the success of ZigBee-based networks has in-
creased the problem of ISM bands overcrowding. Indeed,
ZigBee is adopted in many Personal Area Network or Home
Area Network applications including house and building au-
tomation, smart metering systems, surveillance systems, health
care monitoring, game remote controllers and so on. With the
increased penetration of these new applications, interference
will deteriorate radio quality further and, thus, it is important
and urgent to provide effective tools which can guarantee a
peaceful coexistence of all these applications.

In this paper we specifically deal with ZigBee and WiFi
technologies. Despite the fact that many mechanisms have
been included in the relevant 802.11 and 802.15.4 standards
to cope with interference (e.g. carrier sense, adaptive modu-
lation and coding, signal spreading), both technologies can
significantly suffer in presence of the other one [1]. The
phenomenon is even more impressive if we consider that
the two technologies are pretty heterogeneous in terms of
bandwidth (2 MHz for ZigBee and 20 MHz for WiFi) and
transmission power (e.g. 0 dBm for ZigBee and 20 dBm for
WiFi). Moreover, ZigBee applications are typically low rate,
while WiFi networks exhibit abundant channel idle space in
time domain [2]. As a matter of fact, the main problems
arise because of these heterogeneous features, including frame
transmission times and carrier sense granularity [1].

A critical aspect for improving the spectrum sharing and
mitigating the WiFi/ZigBee reciprocal interference, is the
correct identification of coexistence problems, which in turn
can serve as basis for some inter-technology coordination

mechanisms. While state-of-the-art solutions for detecting
coexistence problems in WiFi networks have mainly worked
on the characterization of RSSI samples observed at different
frequencies and with varying temporal gaps, our mechanism
is based on the analysis of the error domain, i.e. on the
classification of error events and on the time intervals between
their occurrence. Statistics of these errors are widely available
on many WiFi commodity cards and can be easily exploited to
improve interference detection and troubleshooting algorithms
of wireless networks. Specifically, in this paper we model
the behavior of the WiFi receiver in presence of non-WiFi
interfering sources in order to define a scheme for detecting
ZigBee interference.

After a brief review of the some literature solutions (section
II), we analyze the theoretical and experimental error rates
caused by this interference (sections III-B and III-C). The
interference detection model is introduced in section IV, where
we also present our implementation choices. Experimental
results show that the approach is promising and suitable for
further extensions as described in the concluding remarks.

II. RELATED WORK

Several analytical and simulation models, as well as ex-
perimental studies, have been proposed for characterizing the
cross-technology interference in ZigBee and WiFi networks
[1], [3]. While early studies mostly focus on the analysis of
ZigBee performance degradation in presence of WiFi interfer-
ence, it has been shown that significant throughput reductions
can also be observed in WiFi networks [1], [4]. Surprisingly,
WiFi vulnerabilities arise despite the fact that many mech-
anisms have been included at the MAC and PHY layer for
guaranteeing robustness to interference. This phenomenon has
been justified by considering two different main reasons: i)
an intrinsic reason, due to vendor-dependent implementation
choices that in some cases make difficult the detection of
non-WiFi modulated signals or introduce latency times in the
receiver operations [5]; ii) an extrinsic reason, due to the
higher time resolution needed by ZigBee for detecting channel
activity and preventing collisions [6], [7].

In such a scenario, it is often required to make orthogonal
ZigBee and WiFi transmissions. Early solutions which detect
interference and simply choose a better channel to transmit
are becoming not viable because of the increasing number of
technologies and applications in the market. Other solutions
rely on complex and expensive radio transceivers to com-
municate with multiple protocols and different technologies



[8], or increase the robustness of the transmission with use
of error correction codes or multiple antennas [9]. Different
approaches have considered the possibility to introduce some
indirect forms of coordination between the two technologies,
based on opportunistic exploitation of WiFi temporal spaces
[5], channel reservations [6] by using an additional ZigBee
channel for making the channel busy for WiFi stations, or by
means of simple forms of adaptive redundancy [7].

Obviously, an important component of any coordination
strategy is detecting the coexistence problem, i.e. identifying
the presence of two overlapping ZigBee and WiFi networks.
The monitoring of heterogeneous RF signals on ISM bands
has been specifically addressed in [10], where it is proposed
a design of a monitoring module for GNU radio able to
quickly identify the transmitting technology and demodulate
with the correspondent receiver implementation. Although the
approach is very effective, it is based on a dedicated hardware.
The possibility to identify WiFi signals by using commodity
ZigBee nodes have been explored in [11] and [12]. The
approach proposed in [11] is based on the analysis of temporal
samples of link quality indicators and RSSI values, as well
as on the identification of the portions of ZigBee corrupted
packets to be compared with the typical WiFi transmission
times. A similar temporal analysis is carried out in [12] with
the aim to find periodic interference signatures caused by WiFi
beacons and enabling the detection of WiFi networks by using
a low-power monitoring interface. Finally, the possibility to
detect ZigBee and other interference sources by means of
WiFi commodity cards is explored in [13] by using an 8§02.11n
PHY able to read RSSI values at different sub-carriers and by
sequentially moving a WiFi monitoring card to the adjacent
channels with steps of 5 MHz. In case of sudden disappearance
of the RF signals when moving from one channel to the
next one, it can be assumed that interference was due to a
narrow-band ZigBee channel. Complex algorithms are applied
to the RSSI samples for characterizing spectral, energy and
pulse signals that are mapped into a technology classification
scheme. While these previous works rely on the classical
analysis of the frequency and time domains, in this paper
we study the error domain, i.e. the errors produced by the
interfering technologies.

III. ANALYSIS OF RECEIVER ERRORS

Our work is motivated by the observation that the receiver
errors generated by exogenous RF signals (i.e. non-WiFi
modulated signals) exhibit significant differences (in terms
of occurrence probability and error intervals) from the ones
generated by collisions with other WiFi transmissions. Indeed,
in case of coexistence with other technologies, it is possible
that the receiver of commodity WiFi cards is triggered by
external RF signals. The receiver activation depends on its
sensitivity and settings (e.g. the AGC gain) and in some cases
is even due to background noise.

Receiver Event Description

Too Long Frame longer than 2346 bytes

Too Short Frame shorter than 16 bytes

Invalid MAC Header Protocol Version is not 0

Bad FCS Checksum Failure on frame payload
Bad PLCP Parity Check Failure on PLCP Header
Good PLCP PLCP headers and Parity Check OK

Good FCS and RA match Correct FCS matching the
Receiver Address
Correct FCS not matching the

Receiver Address

Good FCS and not RA match

TABLE I
RECEIVER EVENTS REPORTED BY BCM4318 CARDS.

Fig. 1.  Error events and relevant probabilities during cross-technology
interference.

A. Error Types

Regardless of the specific receiver implementation, errors
occurring while demodulating a WiFi packet can be catego-
rized into: i) an error on the PLCP parity check; ii) an error on
the FCS checksum of the MAC frame; iii) one or more errors
in the header fields which make them invalid (either in the
PLCP or MAC headers). For example, invalid headers occur
if the value in the LENGTH field of the PLCP header is too
large or too small compared to the length of a typical WiFi
frame or if the protocol version is different from O (which is
the normal value for current 802.11 standard). These errors
have different probabilities to occur depending on the channel
conditions and on the power of the received WiFi signal.

B. Error Occurrence Probability

The errors generated by cross-technology interference have
much different patterns compared to errors typical of WiFi
transmissions. Indeed, in case of wide-band noise and ex-
ogenous interference signals, errors may appear randomly at
any point during the time the demodulator is active, while
for WiFi modulated signals error statistics vary during the
frame reception and depend on frame length and rate. For
example, PLCP errors have much lower probability to appear
compared to bad FCS, because the PLCP transmission is
usually more robust and shorter than the rest of the frame.
In case the demodulator reveals random bits (i.e. in presence



WiFi chll WiFi chl10 WiFi ch8 Microwave ZigBee HighPW | ZigBee LowPW | Model

[ Name Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) Ev./s (%) (%)
Bad PLCP 6.5 (0.5) | 455.8 (54.8) | 16942 (75.7) | 116.1 (73.6) | 266.9 (69.1) | 984.4 (72.9) (75.0)
Good PLCP 1110.0 (99.4) | 3758 (45.2) 5429 (24.3) 41.7  (26.4) | 119.6 (30.9) | 366.0 (27.1) (25.0)
Invalid MAC Header 4.0 0.4) | 286.8 (76.3) 359.1  (66.1) | 31.27 (74.9) 84.9 (71.0) | 243.1 (66.4) (75.0)
Good FCS 1067.1  (96.1) 0 (0.0) 0 (0.0) 0 (0.0) 0.0 (0.0) 0.0 (0.0) (0.0)
Bad FCS 9.0 (0.8) | 368.3 (98.0) 285.8  (52.6) 23.1  (554) 69.3 (58.2) | 147.6 (40.3) (56.9)
Too Short 0.1 (0.0) 0 (0.0) 1.7 (0.3) 0 (0.0) 0.6 (0.5) 0.2 (0.0) 0.4)
Too Long 0.2 (0.0) 0.3 0.1) 251.8 (46.4) 18.5 (44.6) 49.4 (41.3) | 2183 (59.5) 42.7)

TABLE II

EVENTS CAUSED ON WIFI CHANNEL 11 BY WIFI ON INTERFERING CHANNELS OR DURING ZIGBEE INTERFERENCE (AND NO WIFI TRANSMISSION).

of interference), the probability of having a specific error
heavily depends on the format of the expected frame. Figure 1
summarizes the error probability observed when an 802.11g
receiver is triggered by non-WiFi modulated signals. Since the
PLCP header has one bit only for parity checks, on average
one half of the frames should be classified as frames with Bad
PLCP. However, the receiver can rely also on the RATE field
of the header for detecting Bad PLCP errors: since the RATE
field is 4 bits long while only 8 modulation rates are admitted
(out of the 16 possible values), the Bad PCLP error probability
increases to 3/4.

When a Bad PLCP is not detected (25% of the times),
the receiver will leave the transceiver on and will continue
demodulating until another error is reached, i.e. Too Long,
Too Short or Bad FCS. In particular, the LENGTH field in
the PLCP header is 12 bits long (values between 0 and 4095)
while the length of a WiFi frame is generally between 14 and
2346 Bytes. Therefore, the frame will be considered Too Long
with probability 1 — 2346/4096 =~ 0.43 and Too Short with
probability 14/4096. The FCS is 32 bits long which means
that the probability of having a random sequence with good
FCS is only 2732 and, with high probability, a Bad FCS error
will appear when the frame is not Too Short or Too Long
(~ 0.57).

Finally, an Invalid MAC Header error occurs when the 2
bits of the VERSION field in the MAC header are not 0O, thus
this error occurs 3/4 of the time. However, in this case the
transceiver does not suspend the reception but continues until
another error is encountered. When the errors detected by a
WiFi station closely follow these statistics, it is very likely
that interference is generated by non-WiFi modulated signals.

C. Experimental Validation

In order to experimentally validate our theoretical findings,
we run some experiments in our lab at the University of
Palermo, in different hours of the day (i.e. under uncontrollable
interference from other WiFi networks), by placing a moni-
toring WiFi card (set on channel 11) in the same room with
two ZigBee nodes and two other WiFi nodes. The transmitting
ZigBee and WiFi nodes have been configured for working on
different interfering and non-interfering channels, while their
reciprocal distance has been set to a few meters.

WiFi monitoring and transmitting nodes employ a Broad-
com bcm4318 card, which is able to collect statistics about dif-

ferent receiver events (summarized in table I) that can be easily
mapped in the errors discussed in section III-B. Two types of
ZigBee nodes where used in our testbed. Commercial Zoler-
tia Z1 motes, based Texas Instruments CC2420 transceiver,
and two self-made nodes based on Microchip MRF24J40
transceiver. Both transceivers are 802.15.4 compatible and,
in the experiments, they both generated the same patterns of
errors. For ease of presentation, the results shown in the paper
are based on the MRF24J40 transceiver only.

We run different experiments by activating a single inter-
ference source in each experiment: a WiFi interfering link at
channel 11, 10 or 8; a ZigBee interfering link with different
transmission powers (0 dBm and -23 dBm); a Microwave
oven for generating interference different from ZigBee trans-
missions. In case of WiFi link on channel 11, all the frames
are detected with good PLCP and almost all the frames have
also a correct checksum. When the link is moved on the
adjacent channel 10, the monitoring station is able to correctly
synchronize about one half of the frames (50% of the PLCP
headers pass the parity check and have good rate values)
which deterministically result in a failed FCS. Moving the
link to channel 8, that is 15 MHz apart from the monitoring
channel, significantly increases the detection of bad PLCP
errors which reach over 1700 errors/s. This is due to the fact
that when the receiver is not able to correctly synchronize the
frame preamble, consecutive trials can be performed during
the reception of the same frame and an higher number of
error events can be generated for the same frame. Now, the
error rates follow the statistics of non-WiFi modulated signals
and Too Long errors appear. Similar statistics are observed for
ZigBee and Microwave interference.

IV. INTERFERENCE DETECTION

Although all non-WiFi interfering signals generate receiver
errors with similar statistics, a termporal analysis of the
receiver events allows to discriminate between different in-
terfering sources. Indeed, multiple events can be generated
by the receiver during the same interfering transmission. For
example, a checksum failure can follow the detection of a
good PLCP, or another (failed or not) synchronization trial
can be performed after a bad PLCP event. By organizing the
receiver events into bursts generated by the same interfering
transmission, it is possible to estimate the timings of the
interfering technology.
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Fig. 2. Bursts of receiver events corresponding to the reception of ZigBee
frames at high power.

r [ﬁ Low Power
6+ z‘ﬁ\‘
1
| | |
W \w | V\ﬁ\ H i
& 3 ‘J\\ f I W( I |
I ! I
i I Il Il
0 O W
0 5 10 15 0 25 30 35
Time (ms)
Fig. 3. Bursts of receiver events corresponding to the reception of ZigBee

frames at low power.

The temporal analysis of the receiver events is also affected
by the receiver implementation because the demodulator reset
time in case of false or bad preambles depends on the
card internal design and results in a different granularity of
consecutive events. It follows that the receiver behavior has to
be explicitly modeled for recognizing the event patterns due
to the effect of different interfering sources.

We propose to use hidden Markov chains for modeling such
a receiver behavior and solving the problem of event pattern
recognition. The observations of the receiver state are given by
eight possible receiver events presented in table I. However,
the events cannot be read as interrupt signals but need to be
indirectly detected by monitoring the card internal registers.
We implemented a regular sampling of all the event registers
every 250 ps. The sampling interval has been selected as
a tradeoff between detection delay and tracking complexity.
Because of the periodic sampling, multiple events can occur
in the same monitoring interval.

A. Event Patterns

Figures 2 and 3 show two exemplary temporal traces of
receiver events in both the cases of high power and low power
ZigBee transmissions with maximum payload size. When
the interfering signal is high, the receiver employed in the
Broadcom card is reset every ms for retrying to synchronize a
preamble. At each reset, a good or bad PCLP event occurs with
probability 1/4 and 3/4. This implies that during the reception
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Fig. 4. Bursts of receiver events corresponding to the reception of Microwave
interference.

of the ZigBee frame and corresponding acknowledgment (if
any), the receiver generates a burst of events whose duration
is about 4 ms (for unacknowledged frames) or 4.5 ms (for
acknowledged frames). For example, in figure 2, it is possible
to easily recognize four consecutive ZigBee frames, with
errors spaced about 1 ms from each other. In case of low
power transmissions (figure 3), the demodulator reset is no
more regular and more receiver events are generated during
each frame transmission. The figure also shows the busy time
intervals measured by the monitoring WiFi node.

Figure 4 shows a temporal trace of receiver events in case
of interference due to a Microwave oven. The oven switches
periodically on and off as most Microwave ovens. During
the radiation intervals, the WiFi monitoring node senses the
channel as busy, as evident from the alternating busy and idle
intervals plotted in the figure (whose length is 10 msec). Event
patterns are pretty different from the ones observed in case
of ZigBee transmissions: synchronization trials are performed
only at the beginning and at the end of the radiation interval
(rather than being continuously repeated). This can be due to
the power-on and power-down ramp of the Microwave, being
the demodulator unable to work when the radiation power is
stable.

From both the figures it is evident that receiver events have a
different occurrence probability according to the time elapsed
from the beginning of the interference or to the type of the
previous receiver event (e.g. bad FCS events can occur only
after a frame synchronization signaled by a good PLCP event).
Since these correlation effects depend on the interference
power and interference duration, they can be exploited for
classifying the interference sources leading to a given pattern
of events.

B. Receiver Model

In order to define the hidden Markov chain modeling the
receiver behavior, it is required to specify the receiver obser-
vations, the state model and the observation probabilities from
each state. While the number of possible events summarized
in table I is eight, the overall number of possible observations
is higher because multiple events can be triggered during
the sampling interval of the card registers. Since the card
has a dedicated register for counting the total occurrences of



Fig. 5. Generalized state model of the receiver behavior: transition proba-
bilities depend on the interference source.

each event, an observation is given by a vector with eight
components, each one specifying the number of occurrences
of a given event type during the last observation interval.

The diagram depicted in figure 5 shows the state model trig-
gered at the end of each observation interval (every 250 us).
Although the internal receiver design is not known, the model
tries to capture the most evident memory effects, discussed in
the previous section, due to the power ramp of the interfering
source (START and END states) and to the synchronization
of a valid preamble (SYNC and NO SYNC state). Indeed, the
occurrence probability of the receiver events, often defined as
emission probabilities, may vary in each of these states. We
assume that the power ramp effects last for one slot only, thus
leading to a zero probability to remain in the START and END
state. Self transitions to the intermediate states depend on the
slot size and on the interference duration.

For tuning the emission and transition probability from each
state as a function of a specific source of interference, we
implemented a training phase of the hidden Markov chain,
based on a trace of receiver events acquired in presence of
controlled interference. The trace is organized in consecutive
event bursts separated by a time interval in which the channel
has been sensed as idle. For example, in figure 2 there are
four consecutive event patterns, with a last pattern equal to
the event sequence {Bad PLCP, Bad PLCP, Bad PLCP, Good
PLCP, Too Long}. The state path corresponding to each error
pattern can be easily derived by considering that the first and
last observations are always performed from the START and
END state, while all the others depend on the last preamble
synchronization.

We collected three different event traces of 10 s under WiFi
traffic, ZigBee interference and Microwave interference. By
using each trace and corresponding state path, we obtained the
maximum likelihood estimates of the emission and transition
probabilities devised to characterize the receiver behavior in
presence of different signals. Figure 6 visualizes the emission
probabilities of the most significant observations for different
interference models. It is interesting to observe how the figure
quantifies our previous qualitative considerations.

For the WiFi model, most observations result in a syn-
chronized preamble followed by a correct checksum (that can
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Fig. 6. Emission Probabilities of most significant observations for different
experiments (from top to bottom: WiFi ch. 11, ZigBee and Microwave).

be sampled into the same observation interval or into two
consecutive observation intervals due to the short duration
of WiFi frames). Packet duration is equal to about 350 us,
because we used frames with 1500 bytes transmitted at 36
Mbps. For the ZigBee model, bad preambles are generated
very often: about 60% of error bursts start with such an
event, while the other bad preambles are revealed during
the intermediate model states. Checksum failures, too long
frames or invalid MAC occur at the edge states or when
the receiver is synchronized. For the Microwave oven, bad
preambles are generated in the START and END states and
the no event probability is higher than the previous ones (being
the interference interval equal to 10 ms and the demodulator
active only during the power ramp).

Although the overall occurrence of error rate in presence of
non-WiFi signals is known, the approach allows to learn about
the implementation-specific reaction times to synchronization
errors and sensitivity to narrow-band signals. This allows to
define a classification scheme able to work on a generic
monitoring node.

C. Classification Scheme

As a result of the training phase, we define three different
models for describing the receiver behavior in presence of
WiFi, ZigBee and Microwave interference. Being m the num-
ber of possible observations, the k-th model is given by the
transition probability matrix P,f“ and emission probability
matrix Eéxm. For a given event pattern e, our classification
scheme works by selecting the interference model which
maximizes the probability of obtaining the sequence e, i.e.
argmazy, Pr{e|Py, E}}.

Figure 7 shows the classification results in a temporal
trace of 7 consecutive error patterns. The lines plotted on
top of the events delimit consecutive errors to be considered
as a single error pattern. The patter delimitation is achieved
by monitoring the channel state register and its transition
from idle to busy and viceversa. The lines also visualize the
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interference conditions for a sequence of error bursts due to ZigBee transmis-
sions.

estimated interference source with a different color (blue for
WiFi, red for ZigBee and green for the Microwave).

Figure 8 visualizes the effectiveness of the proposed classi-
fication scheme by considering a sub-trace of the error patterns
corresponding only to ZigBee interference. The figure plots (in
logarithmic scale) the occurrence probability of each pattern
computed according to the three interfering models. From the
figure it is evident that the highest probability corresponds
to the ZigBee interference source in almost all the cases.
Moreover, the results provided by the Microwave and ZigBee
models are much closer than the results provided by the WiFi
model.

We tested the classification accuracy by analyzing 10 dif-
ferent temporal traces lasting 100 s where one, two or three
interference sources are simultaneously active. We found that
the classification accuracy is on average equal to 97% and
never lower than 93%. The few decision errors are due to
temporal overlapping of multiple interference sources. This
type of combined interference in principle can be modeled
for introducing more advanced interference detection schemes
(able for example to recognize WiFi/ZigBee collisions).

V. CONCLUSIONS AND FUTURE WORK

This work has been motivated by the need of introducing
novel coordination mechanisms for solving or mitigating the
interference suffered by overlapping Zigbee and WiFi net-
works, in the emerging scenarios of ISM bands overcrowding
and increasing ZigBee traffic.

We investigated on the possibility to detect ZigBee interfer-
ence by using commodity WiFi cards. Differently from previ-
ous solutions, our approach is based on the analysis of the error
signals generated by WiFi receivers when triggered by non-
WiFi modulated signals. We prove that the statistics of these
signals and the pattern of the error bursts can be effectively
correlated for detecting the presence of non-WiFi signals and
identifying the interfering technology. Our solutions is based
on a simple hidden Markov model characterizing the receiver
behavior in presence of interference, whose transition and
emission probabilities change as a function of the interference
source.

Although in this work we just focused on the ZigBee
detection problem from WiFi terminals, we are also consid-
ering the possibility to conversely detect WiFi transmissions
from commodity ZigBee stations. Additionally, we are im-
plementing some forms of inter-technology communication
protocols by opportunistically exploiting the generation of
error patterns with different durations. Inter-technology com-
munications would allow to easily manage spectrum sharing
and channel reservations among overlapping networks.
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