Towards sharing one FPGA SoC for both low-level
PHY and high-level AI/ML computing at the edge

Toannis Stratakos®, Elissaios Alexios PapatheofanousT, Dimitrios Danopoulos*,
George Lentaris*, Dionysios ReisisT, Dimitrios Soudris*
*School of Electrical and Computer Engineering, National Technical University of Athens, Greece
{istratak, dimdano, glentaris, dsoudris}@microlab.ntua.gr
tElectronics Lab, Physics Dpt, National and Kapodistrian University of Athens, Greece
{eapapatheo, dreisis} @phys.uoa.gr

Abstract—Beyond 5G networks are expected to distribute the
computations from the cloud to multiple edge nodes, some of
which should process both low-level baseband functions and
high-level tasks, most notably AI/ML. These edge computing
nodes will demand high-performance, re-programmability, and
low-power, especially when located at the far-edges of the
network. An attractive solution in meeting these needs is to
utilize highly-complex SoC FPGAs, such as the state-of-the-art
RFSoC or ACAP devices. As proposed in this work towards
minimizing cost and power consumption of nodes, sophisticated
SoC programming will enables us to execute in parallel the
baseband and AI processes, i.e., to exploit a single device as an
accelerator for the full range of tasks executed on a network node.
The current paper explores how to integrate RFSoC/ACAP in
such architectures, including the high throughput interfaces, the
HW/SW co-processing capabilities, the accelerators’ deployment,
and a preliminary estimation of performance/utilization.

Index Terms—BBU, AI/ML, RFSoC FPGA

I. INTRODUCTION

The upcoming generations of mobile communications have
to support an increased number of connected devices as well
as novel and/or enhanced high demanding services, while
keep the Quality-of-Service (QoS) high. Consequently, the
emerging telecommunication technologies have to provide in-
creased signal bandwidth and very low communication latency
and to support the beyond 5G applications have to include
edge compute nodes that are high-performance, low-power,
and flexible/reprogrammable, all at the same time. Moreover,
these multi-layer network architectures and the remote edge
computing nodes impose the need for processors that are
powerful and efficient in executing both low- and high-level
functions, e.g., telecom DSP pipelines and AI/ML.

In these novel network generations, a key element that has
to meet all the aforementioned needs and requirements is the
Baseband Unit (BBU) with a major role of (de)modulating the
transmitting/receiving data. To tackle the challenge of design-
ing a BBU meeting the above demands and specifications,
this work proposes implementing concurrently such diverse
functions on a single COTS device by exploiting the novel
capabilities of very complex SoC FPGA, i.e., RFSoC and
Versal ACAP. We explore the possibility of dividing logically
the SoC in two parts: the low-level telecom implementation

Work partially supported by EU project AI@EDGE (grant agr. 101015922)

and the high-level AI/ML acceleration. The former will utilize
hard-IPs for analogue and digital interfaces towards bridging
the radio and core parts of the network, as well as CLBs for
the radio signal processing. The latter will rely on CPU cores
and the remaining CLBs to perform HW/SW co-processing of
the AI/ML algorithms. In this work, primarily, we evaluate the
overhead of implementing the various interfaces and assess the
FPGA space remaining for our high-performance processing;
secondarily, we estimate the achievable throughput of real-
time DSP telecom chains and representative Al accelerators
when placed together in the FPGA. Overall, we explore the
trade-offs and programming approaches while tuning function
resources and changing architectural configurations.

The paper is organized as follows: Section II gives our
view for concurrently hosting low-level PHY DSP and AI/ML
applications on the same SoC FPGA at the edge and presents
key features of these devices. Section III presents an initial
implementation of key components for the low-level PHY
DSP, while Section IV gives relevant informations for the
AI/ML application. Next, in Section V an initial evaluation is
given in terms of FPGA resources and performance. Finally,
Section VI concludes this paper.

II. PROPOSED ARCHITECTURE

The implementation proposed in this paper considers a
single FPGA SoC divided in two logical parts, one for
low-level real-time DSP functions and one for off-line best-
effort Al acceleration. Fig. 1 shows an indicative partitioning
of Xilinx RFSoC. The hard-IPs for DAC/ADC and FEC
are assigned to partition L, whereas the majority of CPU
cores/peripherals are assigned to partition H (one core is
still reserved for monitoring/controlling L and implementing
auxiliary telecom functions, e.g., the EVM calculation). The
FPGA’s programmable logic (PL) is shared among L and
H partitions, such that L can complete the signal modula-
tion/demodulation in the given deadlines, while I can exploit
the remaining PL to maximize the speedup of the given SW
functions executing on PS. The L partition will utilize the
PL to implement soft-IPs for digital interfaces (25G Ethernet,
AXI stream, etc) and VHDL components for DSP (QAM,
FFT, etc). The H partition will utilize the PL to implement
Al functions (convolutions, activations, etc). The exact ratio

PS | PL

Eth. IP Core

Soft-IP Cores Hard-IP Cores

Low-Level PHY DSP Al/ML Accelerator

Fig. 1: SoC FPGA partitioning to accommodate low-level PHY
processing and Al acceleration with HW/SW co-processing.

of L to H resources is application dependent: higher telecom
throughput specifications will lead to lower Al acceleration.
For evaluation purposes in this exploration study, we assume
telecom bitrates in the area of 5Gbps (e.g., up to 3Gbps useful
data or 6Gbps OFDM data over the channel).

When assuming a device offering different hard-IPs, i.e.,
Al engines instead of FEC, as in the case of Xilinx Versal
(ACAP), then the proposed partitioning changes to accom-
modate new soft-IPs on the PL side. The aforementioned Al
functions will move from the PL to the hard-IP engines of the
SoC, and hence, will leave space in the PL to implement soft-
IPs for FEC. The trade-off between hard- and soft-IPs is also
application dependent: lower RF specifications decrease the
need to use hard-IPs for telecom and allow us to increase the
performance of higher-level functions via hard-IPs for AI/ML
and multi-Gbps Ethernet (to exchange more data with the core
network instead of the RF domain).

The remainder of this section discusses those distinctive
features of RFSoC, which enable an efficient solution for the
BBU implementation, together with AI/ML, at the far edge.

A. Rationale of selecting RFSoC

Until the widespread adoption of 5G standard, the devices
must have backward compatibility with the already existing
standards (e.g. 4G LTE). FPGAs are attractive for implement-
ing BBUs that support a variety of standards. Until recently
FPGAs were used only for basedband signal processing and
communication with the core network. Xilinx introduced the
Zynq Ultrascale+ RFSoC family of devices, that integrates
on the same die an heterogeneous processing platform (CPUs,
FPGA fabric, etc.) with direct RF-sampling converters (Fig. 2).

The integration of DACs/ADCs on the same die tackles
many design challenges. The interface between the FPGA
and the converters becomes significantly simpler. Previous
systems had to implement specific protocols for communi-
cation (e.g JESD204), that led to significant portion of the
FPGA resources used for this purpose. Moreover, the external
I/O interfaces consumed significant power to operate. Now,

FPGA-based BBU External RF Converters

Te
H (o]
o =
e
s

Interface

Fig. 2: Evolution of FPGA-based BBUs.

RFSoC devices [1] offer 1) reduced power consumption,
2) reduced clock/data routing complexity on PCB 3) sim-
plified synchronization procedures between FPGAs and RF-
converters and 4) the full flexibility of traditional FPGAs.

B. Integrated DACs/ADCs

The RFSoC device integrates Analog-Mixed-Signal (AMS)
components, i.e., on the same die, it hosts up to 16 Digital-
to-Analog (DAC) and 16 Analog-to-Digital (ADC) converters
depending on the device generation. The converters have ana-
log bandwidth in the order of GHz. Moreover, each converter
has each own dedicated digital datapath that implements some
DSP functionalities previously implemented on the FPGA
fabric. These functionalities include interpolation/decimation
filters, digital mixers to up-/down-convert from/to baseband,
signal compensation blocks, as well as signal detection ca-
pabilities. Moreover, the programmability of the AMS blocks
offers 1) different number of parallel samples that ease the
operating frequency on the FPGA, 2) ability to process real
or complex signals and 3) multi-band operation.

C. Ethernet Connectivity

RFSoC has increased capabilities in terms of Gigabit Eth-
ernet connectivity enabling the Ethernet-to-RF applications.
On the PS side the designer can opt to use the equipment of
the single Quad of PS-GTR transceivers as well as the four
triple speed Ethernet MACs that provide support for IEEE Std
802.3 with 10/100/1000Mbps rates and a set of capabilities
enabling the VLAN tagging, Precision Time Protocol (PTP)
support, etc. More importantly, on the PL side, each of the
GTY transceivers can support up to 25G Ethernet with the
MAC and PCS implemented on the FPGA fabric. 100G
Ethernet can also be supported with the Integrated Block for
100G Ethernet that includes both MAC and PCS logic. The
above features/equipment/IPs can enable applications where
connectivity to RRHs or network backhaul is required.

D. Embedded Components (hard-IPs)

Next to the FPGA fabric, RFSoC integrates a quad-core
Cortex-A53 APU and a dual-core Cortex-R5 RPU. Utilizing
the embedded CPUs allow real-time monitoring and control
of the BBU operation. Automatic calibration of the DSP

*,’ }To Stream 0

Error
Handling
FIFO

’, } To Stream 1

Compute
Ethernet
Packet
Length

VLAN Router

*,’ }To Stream 2

—»} To Stream 3
Eth. Clock Domain

(a) VLAN-based ethernet traffic scheduler.
' 126 8 12b

: - . =
= Ethernet Packet Delimiter & % a
< Payload FIFO FSM go %)
= ' 4 S g o> 2
£ : ogul &
[} Ethernet Packet CRC ES o
[=S =

Length FIFO Generator [s

Eth. Clock Domain DSP Clock Domain
(b) Ethernet packet protection and control flow.

Fig. 3: L2 architecture for Ethernet to Tx-DSP mapping.

functions can be accomplished through data monitoring and
computation of link statistics (e.g EVM, noise variance, etc.).
The user will also be able to connect remotely to the device
to perform parameterization of the BBU, debugging in case
of error reporting, perform maintenance and update supported
functionalities. A single CPU core is sufficient to perform
these tasks. The rest of the CPU cores can be used to
coordinate the proposed AI/ML partition of the RFSoC FPGA.
RFSoC integrates Soft-Decision FEC (SD-FEC) hard-IP
blocks. The FEC algorithms are very computationally inten-
sive and would require huge amounts of resources (BRAMs,
DSPs) on the programmable FPGA fabric (PL), especially for
decoding, as well as increased dynamic power consumption.
Certain RFSoC devices integrate up to 8 such SD-FEC blocks
with their own dedicated clock network (not limited by the
remaining DSP chain). These blocks are configurable and can
support different coding schemes, such as Turbo and LDPC.
Pre-configured standards are supported (5G NR, LTE, 802.11,
DOCSIS 3.1), as well as custom LDPC codes can be used.

III. PROPOSED BBU FUNCTIONALITY ON RFSOC
A. Ethernet connectivity

For the current utilization of the RFSoC as a BBU, the
Ethernet interfacing is realized using the 10G/25G High Speed
Ethernet Subsystem Xilinx IP Core, configured for 10GE. In
order to map incoming Ethernet traffic to the DSP chains of
the baseband processing and also recover Ethernet frames from
demodulated OFDM symbols, we design and develop custom
L2 functionalities in VHDL. Our VHDL includes basic error
handling, flow control, frame encapsulation and allocation of
DSP resources based on VLAN tags, all programmable at
runtime between QPSK and QAMI16.

The architecture of the L2 functionalities for the Ethernet
receive (or RF transmit) side is depicted in Fig. 3. First, the
incoming Ethernet packet is checked for errors and it will

be dropped if the 10GE IP Core reports errors. Then the
VLAN Route components routes the packet according to its
VLAN tag to one of the 4 corresponding DSP chains that
the architecture was designed to include (Fig. 3a). We note
here that the VLAN tagging is part of the SDN functionality
of bandwidth allocation and it is implemented by a network
controller external to the FPGA. The length of the above
incoming packet is calculated on the fly and both the packet
and its length value are buffered to FIFOs performing CDC.
The Delimiter FSM is responsible for appending the delimiter
of Fig. 3b as a header to the Ethernet packet. The design
choice for the delimiter is 32-bits wide to induce the min-
imum overhead possible to the air transmission while still
maintaining an increased chance for the Ethernet packet to
be correctly recovered at the RF receive side. It consists of a
static 12-bit signature field with a hard coded value as well
as a 12-bit length field indicating the Ethernet packet’s length.
The length value is protected by a CRCS8 field in order to
minimize the chances of erroneous detection of the delimiter at
the opposite side. Finally, the Flow Control FSM converts the
incoming 64-bit words into either 2-bit or 4-bit words based
on the modulation order (QPSK/QAM16) and forwards them
to the physical layer. In the absence of Ethernet traffic, the
Flow Control FSM will indicate this input status to the L2 of
the RF receive side by inserting a null delimiter with a length
value of zero. In this case, idle symbols which are defined as
x00, will be forwarded to the physical layer following the null
delimiter until a new Ethernet packet shows up.

The L2 functionalities architecture for the RF receive (or
Ethernet transmit) side is shown in Fig. 4. Depending on the
modulation order, 4-bit or 2-bit values are concatenated to
bytes and forwarded to the Ethernet Synchronization compo-
nent. This component is responsible for performing synchro-
nization of Ethernet frames by correctly recovering them based
on the received 32-bit delimiter. Its internal structure is also
depicted in Fig. 4a Whenever a new byte is received a new 32-
bit word is formed by means of a 4-byte shifting register. The
32-bit word is then processed based on the expected delimiter
structure, the CRCS value of the length field is calculated and
compared with the received CRCS8 and the expected signature
value is compared to the received corresponding field, all
concurrently. The outputs of the comparison are forwarded
to the Synchronization FSM, which decides whether a null
or actual delimiter is received at the expected time (after the
end of the previous frame). If a delimiter is detected at an
incorrect time, either while recovering a previous frame or not
exactly after it has been recovered, the Synchronization FSM
will signal the Error Handling FIFO to drop the frame at this
FIFO’s output. Such errors during recovery stop frames from
being forwarded to the upper layers. The recovered packets are
stored in a CDC FIFO ready to be transmitted via Ethernet.
Finally, the Ethernet Arbiter component aggregates traffic from
the 4 independent DSP chains one-by-one and in a round robin
fashion. Upon availability, traffic is forwarded as Ethernet
packets to the 10GE IP Core.

Data—>
——Sync. Error—>

Compare N Sync. Compare
CRC FSM Signature
A A . A
CRC Length Signature

4Byte Shift Register |

,':, If

S el 5

o < o o S =

© .2 o S

D>'< e 2 E 9] R Sync. Error Z

P Ingl P ingN- Handling | > =

§ |35| | 88 FIFO i
S

L. T '9

DSP Clock Domain

(a) Ethernet frame synchronization.

Ethernet

From
Packet | [
Stream 0 FIFO
p
Ethernet S
St'r:(;gm 1 Packet | > 5
FIFO <
(Ethelrnet ?
St'rzézm 2 Packet | > g
FIFO w
From Ethernet
Packet | [
Stream 3 FIFO

DSP Clock Domain: Eth. Clock Domain

(b) Ethernet traffic arbiter.

Fig. 4: L2 architecture for Rx-DSP to Ethernet mapping.

B. Analog-Mixed-Signal Functionalities

RFSoC AMS blocks consist of two main parts: a) the digital
datapath and b) the actual RF-converters. The digital datapath
is able to perform different DSP functions that used to be
implemented on the FPGA fabric or by external components.

First of all, in the boundary between the FPGA fabric and
the AMS blocks exist configurable CDC FIFOs. These FIFOs
regulate the data traffic and provide a flexible interface from/to
custom DSP function on the FPGA fabric. The next sub-
components, implemented on the digital path of AMS blocks,
are the interpolation/decimation filters. The number of filters
enabled is configurable and offer interpolation/decimation of
signals up to x8 for the 1°* and 2"¢ generation of RFSoCs,
while the 3" generation further expands this capability with
up to x40 factors. However, the filter coefficients are not
programmable. Next, are the Digital Complex Mixers (DCM),
which support real or complex output signals. The DCMs
support three modes of operation: a) no mixing, b) coarse
and c) fine. When configured to do coarse mixing only a
few number of Intermediate Frequencies (IFs) are supported,
which are submultiples of the sampling frequency. When
doing fine mixing, the user is able to program the intended
IF to the embedded Numeric Control Oscillator (NCO) of

the DCM during the design phase or even create appropriate
logic (hardware or software) to adapt the IF in real-time
based on requirements at the moment. Another, common sub-
component of the AMS blocks, is the Quadrature Modulator
Correction (QMC) block. When the RFSoC are interfaced with
external analog quadrature mixer devices, due to unpredictable
events, imbalances to the RF signals occur. These imbalances
can lead to performance degradation of the BBU. The QMC
blocks offer a convenient way to correct these imbalances,
but the process of detecting the imbalances is still left to the
designer, who must design the algorithm. One more feature
of both DACs and ADCs in RFSoC is their capabilities on
generating multi-band signal. Specifically, multiple digital dat-
apaths can be combined and drive a single DAC for generating
multi-band signals. Accordingly, the ADCs can distribute a
multi-band signal to a different number of digital datapaths
able to process the data of a single band. But, as with the
previous blocks, there some limitations. When processing real
signals up to four band can be combined, while for complex
signals up to 2. The DSP functions on the FPGA process
two data streams independently producing a complex signal
and feed two distinct AMS blocks. After interpolation and
up-conversion to their respective IF (Digital Up-Conversion -
DUC), the two bands are combined and drive a single DAC.
The DAC of the AMS block not used is powered down in this
operation mode leading to reduce power consumption. Until
now, the blocks described are common for both DACs and
ADCs. However, there are some features distinct to DAC and
ADC AMS blocks. The ADCs have built-in signal detection
circuit that is able to report the strength of the received
signal. The primary use of such feature is the realization of
an Automatic Gain Control (AGC) mechanism. AGC is used
so that the full dynamic input range of an ADC is used, by
responding to varying signal amplitudes. The RFSoC devices
provide only an indication of the signal strength and is left to
the system designer to implement the appropriate algorithm to
compute the required gain and apply the correction. For the
DAC:s, there exists another filter before the digital to analog
conversion implementing an Inverse Sinc operation. Thus, the
DAC:s are able to have a flat response in a wider bandwidth.

IV. PROPOSED AI ACCELERATION ON RFS0oC

Hardware devices such as FPGAs have been introduced to
tackle the high computational demands in the edge domain
where power efficiency and low latency poses a critical issue.
Our representative Al solution relies both on the PS and PL
side of the SoC. The FPGA communicates through PCle to
feed the data under a 16-lane endpoint configuration. This
section will describe the varying levels of abstraction available
for FPGA design regarding Al applications, from the hardware
description languages (HDL) that operate on the circuit level
and demand RTL expertise to the generalized computation
engines that can be application agnostic and require little
programming effort.

SLICE 3

hwu[\f&g@ﬂ_t
2
M

SLICE 2

VA (o0)- (- e

\\ : WWZ?EMT @

SLICEO

)
N,

Input Hidden Output Inputs 0

layer layer layer

MU
Zero

Fig. 5: An abstract model of an FPGA implementation in
circuit level derived from a neural network topology [5]

A. HDL design

Register-transfer-level (RTL) abstraction is used in HDL
languages (i.e. VHDL or Verilog) to create low-level repre-
sentations of an Al model, from which a mixture of reg-
isters and boolean equations is derived. Unlike in software
compiler design, RTL takes as input the register transfer
level representation and involves constructs such as cells,
functions, and multi-bit registers. In order to accelerate an
Al algorithm on hardware several Processing Elements (PEs)
that perform multiply—accumulate operations are hand-written
in Verilog or VHDL code that are designed and optimized
based on the constraints of the target platform (i.e. the number
of multipliers, etc). Mapping an Al model’s computational
operations to matrix-matrix or matrix-vector multiplication
modules has been widely applied in prior studies [2]-[4].
Also, usually tiling and ping-pong double buffers techniques
are then employed to improve the throughput along with
other optimizations on the RTL level. Thus, this method can
make the design of an Al application strenuous as opposed to
software programming but the high reconfigurability of HDL
can often be a key requirement especially in the Al market
which is constantly evolving.

B. HLS design

Employing High Level Synthesis for FPGA design enables a
fast development process and high flexibility. Although using
HLS provides a software-like tool flow (i.e. Xilinx Vitis or
Intel Quartus Prime), the developer must still learn hardware-
centric concepts, such as pipelining and routing, that they may
have not been exposed to in writing C-code for traditional
processors. Also, studies have shown that HLS can simulate
faster the effects of data type precision and other hardware
approximations which are often utilized on Al applications
[6], [7]. HLS automatically generates an RTL testbench which
is driven by vectors generated by the original C++ code
which is essential for simulating Al inference with bit-accurate
precision. Also, in the case of Neural Networks, an HLS
compiler can synthesize each layer as a separate module where
every layer usually feeds its output to the next in a dataflow
architecture with streaming transfers [8]. Additionally, each
layer’s precision can be controlled seamlessly by changing the
weights or biases bitwidth using the HLS fixed-point arbitrary

precision data types. Last, previous work has shown that HLS
designs can exploit significant parallelism compared with RTL
approaches and achieve similar latency improvements [9].

C. Dedicated DPU kernels

Responding to the extreme demand by the new emerging
Al algorithms, HW companies introduced Al specific en-
gines which have higher compute density and lower power
requirements than processing on their traditional processing
elements. For example, Xilinx has developed Vitis Al which is
a complete development stack for Al inference targeting Xilinx
hardware platforms, including both edge and cloud devices.
Vitis Al uses an optimized IP named DPU (Deep Learning
Processing Unit) which is a programmable engine optimized
for convolutional neural networks. The Vitis Al tool converts
the Al models into a graph-based intermediate representation
which is then compiled for the DPU IP by generating the
instruction stream along with coordinating data transfers.

V. PRELIMINARY EVALUATION

This section presents the software and hardware environ-
ments used to perform exploration and testing. FPGA resource
utilization is estimated for both low-level PHY DSP and
AI/ML accelerator, as well as their performance. Additionally,
we performed an exploration of different AI/ML and low-level
DSP configurations to determine the feasibility of our pro-
posed architecture. Our target platform is ZCU111 evaluation
board hosting XCZU28DR RF-SoC FPGA.

A. Software, Device setup, Benchmarks

The low-level PHY DSP evaluation we performed on Xilinx
Vivado Design Suite with VHDL coding and IP cores, while
for the AI/ML we focused on evaluating several DNNs using
Xilinx Vitis Al development stack which is developed specif-
ically for Al inference on Xilinx FPGAs. This framework
consists of optimized IP, tools, libraries and example designs
that supported many DNN topologies that we tested which
were trained in popular Deep Learning frameworks such as
Tensorflow or Pytorch. The models were also quantized into
8-bit precision using the Vitis Al quantizer and were compiled
for the Xilinx DPU-B4096 architecture.

For AI/ML we utilized 1-3 B4096-DPU IPs for our ex-
ploration purposes. This configuration achieves 4096 oper-
ations/per clock for each DPU. The achieved frequency of
the DPU IP was 300 MHz which translated to 2.56 TOPs
of achievable performance. To use the DPU, we prepared
the instructions and input image data in the specific memory
address that DPU can access. The DPU operation also required
the application processing unit (APU) to service interrupts to
coordinate data transfer.

For the low-level PHY benchmarking, we assumed a Tx-
Rx chain relying on OFDM and QAM. We estimated the
FPGA resources by considering representative DSP function
implementations and including margins based on various
configuration/optimization levels. Next to the DSP chain, we
used the hard-IP FEC encoder/decoders. We assumed datapath

TABLE I: Accuracy and performance benchmark accross different DNNs and datasets

Model specifications FPGA results
Category Model GOPs | Img Size Dataset Float acc. || DPU acc. | Latency | FPS
Image Classification ResNet-50v.1 6.97 224x224 ImageNet 75.2% 74.8% 12ms 158
Image Classification Mobilenet_v2 0.6 224x224 ImageNet 70.1% 67.7% 4ms 575.5
Object Detection yolov3_voc 65.6 416x416 voc(07_test 78.5% 77.4% 72.7ms 27.6
Semantic Segmentation ERFNet 54 512x1024 | Cityscapes 53% 51.7% 145ms 23.2

TABLE II: Resource utilization on XCZU28DR! RFSoC

Name FF LUT BRAM DSP
B4096-DPU 105008 53540 257 562
Tx-Rx DSP chain || 50K-100K | 10K-20K 6-14 180-370
PL PCle 20201 8183 22 0
10G Eth. Core 22004 51929 3 0
10G L2 Tx+Rx 912 1581 8 0
Misc. (AXI, etc.) 7156 9599 13 0

! Total resources: FF = 850K, LUT = 425K, BRAM = 1K, DSP = 4.2K

pipelining and parallelization (multiple chains) to increase the
overall telecom throughput. The operating frequencies of these
configurations varied in the area of 250MHz.

B. Results

First, we measured the accuracy and performance of distinct
neural networks for distinct application domains. Table I
summarizes the results obtained with Vitis Al 1.3 using the
B4096-DPU configuration along with INTS bit quantization on
DNNss trained on Tensorflow. The top-1 accuracy for float and
quantized DPU models (or mAP for object detection models)
is also reported in addition to the performance metrics of
latency and Frames per Sec (FPS).

Table II gives the resource utilization of the basic parts of
our proposed architecture. The AI/ML partition and part of the
low-level PHY DSP (Ethernet core, L2 Tx/Rx) partition and
support logic for both partitions utilize around 19% FFs, 30%
LUTs, 28% BRAMs and 13% DSPs. The resources used to
implement one actual Tx-Rx DSP chain (row 3) vary due to
our aforementioned estimation approach covering a range of
possible implementations.

Lastly, we consider various combinations of the two main
functionalities implemented on a single RFSoC device to
explore the capabilities of our proposed architecture based
on performance metrics and feasible utilization ratios for
FFs/LUT/BRAM/DSP. Table III provides the utilization and
the useful data rates of the most representative configurations.
The more telecom throughput is required, the more low-
level PHY DSP functionality will be implemented and the
less AI/ML (eg. Table III rows 3, 4). On the other hand if
more AI/ML acceleration is needed, more DPUs will be used
and less low-level PHY DSP. Either case, from the table we
observe that the resource consumption constrains are met. We
note that the use of FIR filters for the low-level PHY DSP is
application-specific and is not considered for all DSP chains in
Table III (also, in certain cases/scenarios, they could be shared
among chains). The most challenging configurations are those
utilizing 3 DPUs and 4 low-level PHY DSP chains, together
with the whole support logic and with/without the FIR filters,

TABLE III: Performance-Ultilization trade-off on XCZU28DR

Configuration Throughput Resources
Gbps | TOP/s LUT BRAM DSP
A+4-B+E 2.5 0.5 39%-48% | 30%-33% | 30%—-48%
A+4-B+4-F+E 2.5 0.5 51%-61% | 30%-33% | 78%-96%
2-A+4-B+E 2.5 1.12 51%—61% | 54%-57% | 43%—61%
2-A+4-B+2-F+E 2.5 1.12 58%—67% | 54%-57% | 67%—85%
2-A+2-B+2-F+E | 1.25 1.12 53%-58% | 53%—-55% | 59%—68%
3-A+2-B+E 1.25 1.34 59%—64% | T7%—18% | 48%—57%
3-A+2-B+2-F+E | 1.25 1.34 65%—10% | 77%—18% | 72%—81%

A=DPU, B=Tx+Rx DSP, F=FIR, E={10G Eth., L2 Tx+Rx, PL PCle, Misc.}

which start pushing our target device to its limits. Even so,
with more aggressive optimizations during the design phase,
all resource requirements of Table III can be met on RFSoC.

VI. CONCLUSIONS

This paper presented a system architecture, based on state-
of-the-art SoC FPGA device, to accommodate low-level DSP
functions required in a BBU along with AI/ML acceleration
on the same device. Our initial evaluation shows that such
combination is feasible in terms of resource consumption and
performance metrics. Thus, future edge devices will benefit
from sharing a common device to accelerate diverse function-
alities from low-level DSP to high-level AI/ML.

REFERENCES
[
[2]

—

Xilinx, “White Paper:An Adaptable Direct RF-Sampling Solution,” Tech.
Rep., February 20 2019.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim, V. Chandra,
and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically composable
architecture for accelerating deep neural network,” 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA), pp.
764-775, 2018.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “Fp-dnn: An automated framework for mapping deep
neural networks onto fpgas with rtl-hls hybrid templates,” in 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2017, pp. 152-159.

K. Guo, L. Sui, J. Qiu, S. Yao, S. Han, Y. Wang, and H. Yang, “Angel-
eye: A complete design flow for mapping cnn onto customized hardware,”
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
2016, pp. 24-29.

A. R. Omondi and J. C. Rajapakse, FPGA Implementations of Neural
Networks. Berlin, Heidelberg: Springer-Verlag, 2006.

A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, vol. 7, pp. 7823-7859, 2019.

M. Wess, S. M. P D, and A. Jantsch, “Neural network based ecg anomaly
detection on fpga and trade-off analysis,” 05 2017, pp. 1-4.

D. Danopoulos, C. Kachris, and D. Soudris, “Utilizing cloud fpgas
towards the open neural network standard,” Sustainable Computing:
Informatics and Systems, vol. 30, p. 100520, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210537921000135

R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey
and evaluation of fpga high-level synthesis tools,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, pp.
1-1, 12 2015.

3

=

[4]

(5]
[6

[t}

[7

—

(8]

91

