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Abstract— Model-driven engineering (MDE) often features 

quality assurance (QA) techniques to help developers creating 
software that meets reliability, efficiency, and safety 
requirements. In this paper, we consider the question of how 
quality-aware MDE should support data-intensive software 
systems. This is a difficult challenge, since existing models and 
QA techniques largely ignore properties of data such as 
volumes, velocities, or data location. Furthermore, QA requires 
the ability to characterize the behavior of technologies such as 
Hadoop/MapReduce, NoSQL, and stream-based processing, 
which are poorly understood from a modeling standpoint. To 
foster a community response to these challenges, we present 
the research agenda of DICE, a quality-aware MDE 
methodology for data-intensive cloud applications. DICE aims 
at developing a quality engineering tool chain offering 
simulation, verification, and architectural optimization for Big 
Data applications. We overview some key challenges involved 
in developing these tools and the underpinning models.  
 
Index Terms— Big Data, quality assurance, model-driven 
engineering 

I. INTRODUCTION 
Recent years have seen the rapid growth of interest for 
developing enterprise applications that use data-intensive 
technologies, such as Hadoop/MapReduce, NoSQL, and 
stream processing  [Zak11]. These technologies are 
important in many application domains, from predictive 
analytics to environmental monitoring, from e-government 
to smart cities. However, quality assurance in the software 
engineering process for data-intensive applications is still in 
its infancy. We therefore believe that it is a timely moment 
to focus on this investigation and present a research agenda 
for DICE, a novel quality-aware MDE approach for data-
intensive applications.  
MDE is well-established as a paradigm for the design, 
development, deployment and evolution of complex 
software systems. Quality-aware MDE focuses in particular 
on defining software systems that meet service-level 
objectives. For example, UML MARTE1 and PCM2 add to 
MDE the ability to describe quality and timing requirements 
for a component-based application. The resulting models are 
processed by QA tools that automatically generate 
performance, scalability and reliability predictions for 

1 http://www.omgmarte.org/  
2 http://www.palladio-simulator.com/science/palladio_component_model/  

different deployment scenarios [Men2010, Mar10]. These 
predictions are useful to drive the early stages of the 
application design and to identify an optimal architecture.  
Recently, quality-aware MDE approaches for component-
based software systems have found application also in cloud 
software engineering [Ard11]. In this context, MDE relies 
on domain-specific languages (e.g., CloudML3) to capture 
cloud concepts and abstract the heterogeneity in the 
offerings of different providers. QA methods for cloud 
application extend the ones used in canonical MDE by 
explicitly accounting for pricing of cloud resources (e.g., on 
demand and spot prices) and by modeling quality risks in 
multi-tenant environments, such as performance variability 
throughout the business day [Fra13].  
The growing importance of Big Data applications now calls 
to extend MDE and QA methods to better support Big Data 
technologies, which raises specific challenges. For example, 
data-intensive applications are often based on 
Hadoop/MapReduce.  Therefore, functional and non-
functional modeling annotations are needed to describe map 
and reduce tasks and relevant operations on network and 
data storage. In some classes of Big Data applications, direct 
acyclic graphs should also be supported to describe data 
transformations and data transfers. These abstractions are 
important to provide a complete description of the design-
space of a Big Data application and thus enable automated 
reasoning on the best architectural and deployment choices. 
Unfortunately, the definition of models and QA tools that 
can address these needs is challenging. For example, 
modeling quality characteristics of Hadoop/MapReduce 
applications requires to: i) explicitly model the 
synchronization of the map and reduce processing phases; 
ii) characterize the impact of network latencies during the 
shuffle phases; iii) statistically characterize the execution 
times of each phase and its memory and storage 
requirements, which in turn depend on data volumes; iv) 
describe technology-specific queueing, scheduling and 
failure mechanisms. This puts a high barrier for 
implementing QA techniques in MDE for Big Data. 
However, automated tools are needed to bring QA to 
software developers not trained in quality engineering.  

DICE aims at addressing this issue by making quality-aware 
MDE accessible to developers of Big Data applications 

3 http://cloudml.org/  
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through an automated MDE tool chain, DICE tools will rely 
on UML meta-models annotated with information about 
data, data processing and data transfers. The DICE QA tool 
chain will cover simulation, verification and architectural 
optimization. These tools will be coupled with feedback 
analysis methods to help the developer iteratively improve 
the application design, based on monitoring data obtained 
from test or production environments. In the rest of this 
paper, we discuss the challenges for realizing this vision and 
outline the research agenda for DICE. Section II gives a 
motivating example that illustrates the challenges of QA for 
Big Data applications. Section III outlines the DICE 
modeling approach. A technical approach is defined in 
Section IV. Section V briefly summarizes some related 
research initiatives. Concluding remarks are given in 
Section VI. 

II. TOWARDS QUALITY-AWARE MDE FOR BIG DATA 
In this section, we identify and discuss in more details what 
we see as key challenges in quality-aware MDE for Big 
Data applications. We use a motivating example to provide 
context, then we evaluate the shortcomings of existing MDE 
approaches and discuss what additional features should be 
provided to address these limitations. 
 

A. DICEnv Example 
DataInc is a small software vendor selling cloud-based 
environmental software. The company managers have just 
signed a contract to develop DICEnv, a warning system for 
floods in rural regions. Local authorities will use DICEnv 
for hazard prediction by monitoring local environmental 
conditions collecting soil, weather, and water data through 
sensors and by fetching precipitations data from satellite 
image streams published by NASA. Hazard predictions on 
areas at risk will be shown to local authorities through a web 
interface. DICEnv exploits Big Data technologies and cloud 
capacity for online water simulations and MapReduce for 
batch processing of historical data.   
As DICEnv is a critical system for citizen safety, local 
authorities impose strict quality requirements with the 
contractor.  DICEnv is expected to remain up 24/7. 
Furthermore, in periods of heightened environmental 
hazards (e.g., during heavy rains), DICEnv should quickly 
ramp up data intake rates, as well as memory and compute 
capacities, to update more frequently the hazard 
management control room. Besides, risk-critical 
computations related to disaster hazards must meet 
deadlines at all times.  
Unfortunately, the contract won by DataInc requires 
delivering an initial version of DICEnv within 3 months, 
capable of serving a small area, with the goal of increasing 
coverage of areas, sensors and compute capacity on a 
monthly basis. Yet, software developers are puzzled on how 
to implement a complex cloud application in such a short 
time. How could they satisfy all the quality requirements? 
What architecture should be adopted to take into account the 
future evolution of the system? How should they accelerate 

quality testing for this initial release?  
 
 

B. Limitation of Existing MDE Approaches 
The DICEnv example gives some insights on the challenges 
of offering a quality-aware MDE tool chain for Big Data 
applications. Here, we discuss these challenges using the 
reference OMG model-driven architecture, in particular the 
Platform Independent Model (PIM), which describes the 
behavior of the software while hiding the underlying 
technology platform, and the Platform Specific Model 
(PSM) level, which refines the PIM by mapping the design 
to a specific technology platform. Existing QA tools for 
quality-aware MDE tend to use information from both these 
layers.  

PIM Layer Limitations. We argue that in the design of an 
application like DICEnv, existing MDE approaches would 
face limitations at the PIM layer, for example when 
expressing requirements for data transfer and data 
processing. Today, it is possible with MDE to express 
entity-relationship models, basic dependencies between 
components and data, field types and values, and data 
semantics. However, new MDE approaches are required to 
explicitly annotate at the PIM layer information such as: 
• static characteristics of data: e.g., volumes, value, 

storage location, replication pattern, cost for accessing 
data via cloud storage services, known schedules of 
data transfers, data access control;  

• dynamic characteristics of data, e.g., read rates, write 
rates, update rates, burstiness in data streams, caching; 

• data dependencies, e.g., graph-based relationships 
between data archives and streams, for example to 
describe interdependencies in rates and characteristics 
due to complex-event processing.  

 

In the DICEnv example, if the developers were to use a 
state-of-the-art MDE approach for cloud computing without 
the above annotations at the PIM layer, they would not be 
able to describe:  
• individual dependencies between components and data 

streams, therefore it would be impossible for the QA 
tool chain receiving the PIM model to understand how a 
refactoring is going to affect latencies, costs and 
reliability for the data-intensive part of the application;  

• the relationships between compute and memory 
requirements of individual software components and 
the volumes and I/O rates of the data, which would 
make it difficult to predict quality at design time. 

• the lack of an explicit annotation for data characteristics 
would make it difficult to integrate in the QA tool chain 
a feedback analysis and performance anti-pattern 
detection capability, since the QA tool chain would not 
be in a condition to synchronize the models with 
monitoring data collected from the runtime.  

These shortcomings call for enriching PIM with information 
about static and dynamic characteristics of data and data 
dependencies. 
PSM Layer Limitations. Similar challenges arise at the PSM 



level, where the heterogeneity of Big Data technologies 
makes it difficult to identify common concepts across 
technology platforms. For the same reason, the automatic 
translation of PSM models into deployment plans is also 
challenging. For example, Hadoop-based clusters are highly 
configurable, with hundreds of available parameters ranging 
from distributed file system configuration to number of map 
and reduce tasks. Supporting this configuration complexity 
requires work to enrich the expressiveness of the PSM 
models and of the deployment plans, compared to those 
used in current MDE approaches, to encompass Big Data 
technologies and platforms. An emerging standard like 
TOSCA, the OASIS model for topology and orchestration 
specification in cloud applications, could be a candidate for 
these extensions. However, at present TOSCA is still 
agnostic of data. Also, TOSCA has no native support for 
Big Data applications, and no explicit notion of quality, but 
covers the abstractions needed to describe the deployment of 
cloud applications.  
 

QA Tool chain limitations. Assuming that the PIM can 
provide the required data annotations and the PSM is 
sufficiently expressive to generate deployment and 
configuration plans for Big Data technologies, several 
challenges would then arise for the QA tool chain to ensure 
that these plans respect cost and quality constraints and they 
are optimal according to some objective function. In order to 
provide the predictions and decision-support features that 
are expected for quality-aware MDE, one would then need 
to develop transformations to automatically generate 
performance, reliability and safety models, and then analyze 
these models to extract quality metrics. Such metrics could 
then either be reported to the developer or used for 
exploring the design space of the application.  
The key problem to address for optimal decision-making is 
that analytical models used today for performance and 
reliability evaluation, such as queueing networks, are meant 
to describe contention at processing resources, but they have 
limited expressiveness when it comes to correlating 
contention to memory consumption. This is a problem, 
because peak memory usage is a primary concern in Big 
Data applications. Furthermore, fork and joining of streams 
and phase synchronizations (e.g., map/reduce/shuffle) is 
complex to describe analytically in a way that preserves the 
tractability of the queueing models, although some initial 
works have been done in this area [Zha10]. Stochastic Petri 
nets appear more flexible in this respect, but their evaluation 
cost tends to be higher than queueing models since they 
often require simulation. However, simulation can be 
inefficient for optimal decision-making, since it is typically 
too slow for use in conjunction with non-linear 
programming algorithms.  
Summarizing, several limitations and novel challenges exist 
in current MDE solutions that require major innovations in 
order to enable functional and quality modeling of Big Data 
application and defined effective QA tools.  

III. DICE MDE APPROACH 
The main goal of DICE is to define an MDE approach and a 
QA tool chain to continuously enhance data-intensive cloud 
applications with the goal of optimizing their service level. 
Summarizing the discussion in Section II, we believe that 
the methods and tools shown in Table 1 are required to 
provide a comprehensive quality-aware MDE approach for 
Big Data applications. The DICE IDE will guide the 
developer throughout this methodology. It will initially offer 
the ability to specify the data-intensive application through 
UML models and a novel DICE profile that will address the 
limitations outlined in Section II. From these models, the 
tool chain will guide the developer through the different 
phases of quality analysis (e.g., simulation and formal 
verification), deployment, testing, and acquisition of 
feedback data through monitoring. This data will then be 
processed and fed back to the IDE through the iterative 
quality enhancement tool chain, which will analyze runtime 
data to detect quality incidents and anti-patterns in the 
application design. This will provide feedbacks to guide the 
developer through cycles of iterative quality enhancement. 
 
DICE profile A novel data-aware UML profile to develop 

data-intensive cloud applications and annotate 
the design models with quality requirements. 

DICE IDE Integrated development environment with code 
generation to accelerate development. 

Quality analysis  A tool chain to support quality-related decision-
making composed by simulation, verification 
and optimization tools. 

Iterative quality 
enhancement  

A set of tools and methods for iterative design 
refinement through feedback analysis of 
monitoring data. 

Deployment and 
testing  

A set of tools to accelerate deployment and 
testing of data-intensive applications on private 
and public clouds. 

Table 1. DICE Tools 
 

A. DICE Profile: MDE for Data-Intensive Applications 
Models in DICE should be formulated at three levels, called 
DPIM, DTSM, DDSM, which we discuss next.  
 
 

DICE Platform Independent Model (DPIM). The DPIM 
model corresponds to the OMG MDA PIM layer and 
describes the behavior of the application as a directed 
acyclic graph that expresses the dependencies between 
computations and data. This model should also express 
source data formats, synchronization mechanisms in the 
computation logic, and quality requirements for both 
computation logic and data transfers.  
 
Figure 2 shows a possible example of DPIM for an 
application including four Data Sources (DS1-DS4) and 
four Computational Logic elements (CL1-CL4).  At the 
DPIM layer the designer can specify the data format (e.g., 
structured or semi-structured data, flat files, etc.) and  



indicate if the data is transferred between processing steps 
via a shared storage system (e.g., S1) or obtained from data 
streams (e.g., DS3 and DS4 flows).  A computational logic 
element can process multiple flows both synchronously or 
asynchronously. Data locations, estimated size (e.g., 600-
900 TB for DS1), computation logic workload (e.g., 200 
requests/h for CL3) and service-level constraints (e.g., CL1 
runtime less than 15 minutes) may also be specified.  

Figure 2. DICE platform independent model (DPIM) 
 
DICE Platform and Technology Specific Model (DTSM). A 
DTSM, illustrated in Figure 3, consists of a refinement of 
the DPIM and includes some technology specific concepts, 
both for computational logic and data storage, but that are 
still independent of the deployment. For example, data and 
computational logic elements may be associated at the 
DTSM layer with specific technologies.  DS1 and S1 may 
be required to be based on the Hadoop File System (HDFS), 
DS2 on a relational database (RDBMS), CL2 on complex 
event processing (CEP), and so forth.  
 

 
Figure 3 DICE Platform and Technology Specific Model (DTSM) 

DICE Platform, Technology and Deployment Specific 
Model (DDSM). The DDSM, shown in Figure 4, is a 

specialization of the DTSM model which adds information 
about the technology in use and the application deployment 
characteristics. For example, the deployment may be 
specified at the DDSM layer with details on the system 
capacity (e.g., CL1 will be hosted on 50 EC2 Elastic 
MapReduce xlarge instances). DICE will help the developer 
deciding deployment characteristics by identifying through 
numerical optimization a deployment plan of minimum cost, 
subject to performance and reliability requirements. 
Additionally, deployment tools will be able to process the 
information provided by the DDSM to minimize the effort 
required to deploy the application. Transformations between 
DPIM, DTSM and DDSM models will be supported by the 
DICE tool chain. 

 
Figure 4 DICE Platform, Technology and Deployment Specific 
Model (DDSM) 

B. Quality Annotations 
The DICE profile will enable the design of data-intensive 
cloud applications. In particular, as highlighted in Section II, 
we envision that the DICE profile needs to include at least: 
(i) quantitative annotations on the availability of a data 
source or intermediate by-products resulting from a data 
transformation;  (ii) annotations to specify rates, latencies 
and utilizations of resources, including the possibility to 
specify service level constraints on data transfers; (iii) 
annotations to specify costs of data-intensive applications; 
(iv) safety annotations that will be treated as hard 
constraints. 
 

C. Deployment 
The last set of requirements for the DICE approach to be 
effective concerns the development of appropriate tools to 
support the application deployment and initial testing. 
Ideally, the primary target of an MDE methodology for Big 
Data should be either private cloud applications or public 
cloud applications that can use cloud platform services for 
Big Data, such as Amazon Elastic MapReduce or cloud-
based storage services. Automatic deployment and 
configuration from DDSM models could be achieved using 
extensions of tools such as Brooklyn, Puppet or Chef. 



Continuous integration and QA testing approaches should 
be featured to validate and evolve the application code after 
initial deployment. 
 

IV. QA TECHNICAL APPROACH 
 

In this section, we identify and discuss some important 
quality dimensions for Big Data applications, followed by 
an initial proposal of a QA tool chain for MDE capable of 
analyzing these dimensions. 

A. Quality Dimensions 
 In our view, a QA tool chain for data-intensive applications 
should focus at least on the following quality dimensions: 
 

• Data-aware reliability: quantitative annotations on the 
availability of a data source and on the reliability of 
data transfer and data processing operations. The 
notions of data replication and integrity need to be 
explicitly correlated to the reliability requirements.  

 

• Data-aware efficiency in resource utilization: data 
operations consume resources such as memory, network 
bandwidth, storage and cache space, CPU time, 
software pool resources, etc. Service requirements at 
these resources need to be expressible in the DICE 
model through rates and latencies. Annotations should 
also give the ability to express service level objectives, 
such as maximum acceptable resource utilization levels. 

 

• Data-aware efficiency in costs: data efficiency also 
deals with costs, which are more complex to assess for 
data-intensive applications than for canonical web 
applications. One example is the quantification of 
network costs, which can vary if a stream transports 
some data between components operating on the same 
cloud or between a component and an end-user external 
to the cloud. This requires developing a novel 
annotation to relate deployment and data transfer 
characteristics with costs. 

 

• Data-aware safety: annotations are needed to deal with 
constraints that must be guaranteed for safety reasons. 
QA tools need to support the specification of portions 
of the application that must logically and physically be 
isolated, together with the elicitation of formally correct 
requirements for a sequence of messages, states or 
events that relate application components. 

 
UML profiles like MARTE and DAM4 provide a suitable 
starting basis for extending the above dimensions in meta-
models of Big Data applications. Other relevant baselines 
can be found in [Ber12]. 

B. Quality Tools 
We now move to the problem of identifying a set of QA 
capable of fully exploiting the DICE profile and assess the 
quality dimensions we have described. 
 

4 https://bitbucket.org/mberenguer/marte-dam/wiki/Home 

Quality analysis transformation tool. The goal is to map 
DICE profile models to quality analysis models. This entails 
the challenge of compensating uncertainties or ambiguities in 
the design specification, for example by restricting the use of 
ambiguous constructs or by interpreting them using 
predefined heuristics. A model-to-model transformation 
approach leveraging conceptual models should be used to 
define this tool. 

 
 

Discrete-event simulation. The goal is to assess reliability 
and efficiency in Big Data applications. The main challenge 
is to assess cost and quality of given design scenarios, 
accounting for stochastic evolution of the environment 
(variability in the number of end-users, in the capacity 
offered by cloud resources, in the number of data sources and 
in their performance characteristics). The approach could 
leverage simulation of stochastic models of the DICE 
application based for example on stochastic Petri nets or 
queueing networks. 
 

 
 

Formal verification tools. Verification tools are needed to 
assess safety risks in Big Data applications. The challenge is 
to find design flaws causing order and timing violations in 
message and state sequences. A possible approach to cope 
with this challenge involves formal verification of DICE 
models through transformation into metric temporal logic 
formulae and use of bounded model checking. The tools 
could then be used to verify, for example, that deadlines are 
met, requirements that a certain data value be observed at a 
given instant, or the correct ordering and timing of a 
sequence of computations or application states.  
The underpinning models can be based on a precise and 
metric notion of time that is exploited to precisely express 
timing constraints, as for example the ones offered by UML 
MARTE. Models can then be automatically analyzed 
through tools based on state-of-the-art techniques such as 
satisfiability modulo theories solvers. Quantifier-elimination 
techniques may be investigated to extend currently available 
temporal logic-based verification mechanisms with the 
possibility to generalize verification results to systems made 
of an arbitrary number of components of the same kind, in 
order to describe parallelism in data processing. 

 
 
 

Architecture optimization tool. The goal is to find 
architectural improvements to optimise costs and quality. 
The challenge is to define algorithms to quickly find good 
designs given new requirements, which is a difficult 
challenge since simulation tends to be slow. However, 
adopting a decomposition-based analysis approach, where 
compute and memory requirements are analyzed and 
optimized separately, simulation-based evaluation of 
performance metrics may still be used in optimization 
program, since decomposition would reduce the number of 
decision variables in the optimization problem.  
A possibility to make optimization more efficient is to resort 
to so-called fluid approximation of stochastic models, which 
enable the simulating the behaviour of a system using 
ordinary differential equations instead of discrete-event 
systems. Initial work to illustrate the gains of the fluid 
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approach in architectural design can be found in [Per13, 
Per15]. Fluid methods can provide very large speedups in 
optimization programs, at the expense of low model 
approximation accuracy for subsystems where parallelism 
levels are small. Nicely, fluid models become more accurate 
as the system scale grows. Therefore, since large scale 
applications are becoming increasingly common in Big Data, 
fluid techniques may be promising to support decision 
making for architectural optimization activities.  

 
 

Feedback analysis. Feedback analysis requires the automated 
extraction from the monitored data of key parameters 
required to define simulation and verification models. This is 
a novel challenge for Big Data applications. For example, 
there is a shortage of techniques for automated 
parameterization of stochastic models involving for example 
fork/join synchronizations. These abstractions are required to 
model MapReduce workloads, where map, shuffle and 
reduce phases need to synchronize. This challenge may be 
addressed by defining techniques capable of extracting 
model parameters through log mining and statistical 
estimation methods.  
Another major issue to be addressed is the existence of 
different abstraction levels between design concepts (i.e., 
abstractions in the DICE profile) and runtime measurements, 
since the latter are implementation-dependent while the 
former are abstract models. This calls for defining novel 
statistical estimation techniques to breakdown resource 
consumption into its atomic components on the end-to-end 
path of requests, correlate these atomic components with the 
modeling abstractions in the DICE profile, and later analyze 
this information to identify bottlenecks and quantify the 
levels of reliability and availability offered by the 
application. 

V. RELATED INITIATIVES 
In the literature there is a variety of platforms to support the 
MDE for cloud applications. For example MODAClouds 
(www.modaclouds.eu) offers a quality-aware model-driven 
approach and offers basic tools to support DevOps. 
However, MODAClouds focuses on multi-cloud and in the 
Big Data domain only supports NoSQL databases.  
The SeaClouds project (www.seaclouds-project.eu) aims at 
giving to organisations the capability of “Agility after 
Deployment”. It takes care of different aspects of the cloud 
development life-cycle, such as an open, generic and 
interoperable foundation to orchestrate parts of cloud-based 
applications. Since DICE focuses on design-time and testing, 
as opposed to runtime management, the results of projects 
such as SeaClouds may be integrated with the DICE tools to 
cover the runtime operation aspects not developed within the 
DICE vision. 
The main objective of U-QASAR (www.uqasar.eu) is to 
create a flexible Quality Assurance, Control and 
Measurement Methodology to measure the quality of 
Internet-related software development projects and their 
resulting products. The methodology is based on knowledge 
services, whereas DICE emphasizes the integration of MDE 
with stochastic and nondeterministic models for verification.   

VI. CONCLUSION 
We have described the research agenda of DICE, a vision 
for a novel model-driven engineering approach specifically 
tailored to Big Data applications. We have identified several 
challenges that arise in this area due to limitations in current 
models and quality analysis tools that arise from the 
inability to fully describe data operations and data 
characteristics. The authors are working towards 
implementing the vision described in this paper as part of a 
novel European research and innovation action started in 
February 2015 (www.dice-h2020.eu). This initiative will 
apply the DICE MDE approach to industrial demonstrators 
in the domains of news and media processing, maritime 
operations, and e-government. Challenges to be undertaken 
in these demonstrators include the ability to cover social 
media stream data (news/media domain), analysis of 
positional real-time data (maritime operations), and data-
intensive applications that can cope with legacy systems and 
legacy data formats (e-government).  
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