
DICE: Quality-Driven Development of
Data-Intensive Cloud Applications

G. Casale1, D. Ardagna2, M. Artac3, F. Barbier4, E. Di Nitto2, A. Henry4, G. Iuhasz7, C. Joubert5, J. Merseguer6,

V. I. Munteanu7, J. F. Pérez1, D. Petcu7, M. Rossi2, C. Sheridan8, I. Spais9, D. Vladušič3

1: Imperial College London, UK; 2: Politecnico di Milano, Italy; 3: XLAB, Slovenia; 4: Netfective, France; 5: Prodevelop, Spain;
6: Universidad de Zaragoza, Spain; 7: Institute e-Austria Timisoara, Romania; 8: Flexiant Technologies, UK; 9: Athens Technology Center SA, Greece.

Abstract— Model-driven engineering (MDE) often features

quality assurance (QA) techniques to help developers creating
software that meets reliability, efficiency, and safety
requirements. In this paper, we consider the question of how
quality-aware MDE should support data-intensive software
systems. This is a difficult challenge, since existing models and
QA techniques largely ignore properties of data such as
volumes, velocities, or data location. Furthermore, QA requires
the ability to characterize the behavior of technologies such as
Hadoop/MapReduce, NoSQL, and stream-based processing,
which are poorly understood from a modeling standpoint. To
foster a community response to these challenges, we present
the research agenda of DICE, a quality-aware MDE
methodology for data-intensive cloud applications. DICE aims
at developing a quality engineering tool chain offering
simulation, verification, and architectural optimization for Big
Data applications. We overview some key challenges involved
in developing these tools and the underpinning models.

Index Terms— Big Data, quality assurance, model-driven
engineering

I. INTRODUCTION
Recent years have seen the rapid growth of interest for
developing enterprise applications that use data-intensive
technologies, such as Hadoop/MapReduce, NoSQL, and
stream processing [Zak11]. These technologies are
important in many application domains, from predictive
analytics to environmental monitoring, from e-government
to smart cities. However, quality assurance in the software
engineering process for data-intensive applications is still in
its infancy. We therefore believe that it is a timely moment
to focus on this investigation and present a research agenda
for DICE, a novel quality-aware MDE approach for data-
intensive applications.
MDE is well-established as a paradigm for the design,
development, deployment and evolution of complex
software systems. Quality-aware MDE focuses in particular
on defining software systems that meet service-level
objectives. For example, UML MARTE1 and PCM2 add to
MDE the ability to describe quality and timing requirements
for a component-based application. The resulting models are
processed by QA tools that automatically generate
performance, scalability and reliability predictions for

1 http://www.omgmarte.org/
2 http://www.palladio-simulator.com/science/palladio_component_model/

different deployment scenarios [Men2010, Mar10]. These
predictions are useful to drive the early stages of the
application design and to identify an optimal architecture.
Recently, quality-aware MDE approaches for component-
based software systems have found application also in cloud
software engineering [Ard11]. In this context, MDE relies
on domain-specific languages (e.g., CloudML3) to capture
cloud concepts and abstract the heterogeneity in the
offerings of different providers. QA methods for cloud
application extend the ones used in canonical MDE by
explicitly accounting for pricing of cloud resources (e.g., on
demand and spot prices) and by modeling quality risks in
multi-tenant environments, such as performance variability
throughout the business day [Fra13].
The growing importance of Big Data applications now calls
to extend MDE and QA methods to better support Big Data
technologies, which raises specific challenges. For example,
data-intensive applications are often based on
Hadoop/MapReduce. Therefore, functional and non-
functional modeling annotations are needed to describe map
and reduce tasks and relevant operations on network and
data storage. In some classes of Big Data applications, direct
acyclic graphs should also be supported to describe data
transformations and data transfers. These abstractions are
important to provide a complete description of the design-
space of a Big Data application and thus enable automated
reasoning on the best architectural and deployment choices.
Unfortunately, the definition of models and QA tools that
can address these needs is challenging. For example,
modeling quality characteristics of Hadoop/MapReduce
applications requires to: i) explicitly model the
synchronization of the map and reduce processing phases;
ii) characterize the impact of network latencies during the
shuffle phases; iii) statistically characterize the execution
times of each phase and its memory and storage
requirements, which in turn depend on data volumes; iv)
describe technology-specific queueing, scheduling and
failure mechanisms. This puts a high barrier for
implementing QA techniques in MDE for Big Data.
However, automated tools are needed to bring QA to
software developers not trained in quality engineering.

DICE aims at addressing this issue by making quality-aware
MDE accessible to developers of Big Data applications

3 http://cloudml.org/

http://www.omgmarte.org/
http://www.palladio-simulator.com/science/palladio_component_model/
http://cloudml.org/

through an automated MDE tool chain, DICE tools will rely
on UML meta-models annotated with information about
data, data processing and data transfers. The DICE QA tool
chain will cover simulation, verification and architectural
optimization. These tools will be coupled with feedback
analysis methods to help the developer iteratively improve
the application design, based on monitoring data obtained
from test or production environments. In the rest of this
paper, we discuss the challenges for realizing this vision and
outline the research agenda for DICE. Section II gives a
motivating example that illustrates the challenges of QA for
Big Data applications. Section III outlines the DICE
modeling approach. A technical approach is defined in
Section IV. Section V briefly summarizes some related
research initiatives. Concluding remarks are given in
Section VI.

II. TOWARDS QUALITY-AWARE MDE FOR BIG DATA
In this section, we identify and discuss in more details what
we see as key challenges in quality-aware MDE for Big
Data applications. We use a motivating example to provide
context, then we evaluate the shortcomings of existing MDE
approaches and discuss what additional features should be
provided to address these limitations.

A. DICEnv Example
DataInc is a small software vendor selling cloud-based
environmental software. The company managers have just
signed a contract to develop DICEnv, a warning system for
floods in rural regions. Local authorities will use DICEnv
for hazard prediction by monitoring local environmental
conditions collecting soil, weather, and water data through
sensors and by fetching precipitations data from satellite
image streams published by NASA. Hazard predictions on
areas at risk will be shown to local authorities through a web
interface. DICEnv exploits Big Data technologies and cloud
capacity for online water simulations and MapReduce for
batch processing of historical data.
As DICEnv is a critical system for citizen safety, local
authorities impose strict quality requirements with the
contractor. DICEnv is expected to remain up 24/7.
Furthermore, in periods of heightened environmental
hazards (e.g., during heavy rains), DICEnv should quickly
ramp up data intake rates, as well as memory and compute
capacities, to update more frequently the hazard
management control room. Besides, risk-critical
computations related to disaster hazards must meet
deadlines at all times.
Unfortunately, the contract won by DataInc requires
delivering an initial version of DICEnv within 3 months,
capable of serving a small area, with the goal of increasing
coverage of areas, sensors and compute capacity on a
monthly basis. Yet, software developers are puzzled on how
to implement a complex cloud application in such a short
time. How could they satisfy all the quality requirements?
What architecture should be adopted to take into account the
future evolution of the system? How should they accelerate

quality testing for this initial release?

B. Limitation of Existing MDE Approaches
The DICEnv example gives some insights on the challenges
of offering a quality-aware MDE tool chain for Big Data
applications. Here, we discuss these challenges using the
reference OMG model-driven architecture, in particular the
Platform Independent Model (PIM), which describes the
behavior of the software while hiding the underlying
technology platform, and the Platform Specific Model
(PSM) level, which refines the PIM by mapping the design
to a specific technology platform. Existing QA tools for
quality-aware MDE tend to use information from both these
layers.

PIM Layer Limitations. We argue that in the design of an
application like DICEnv, existing MDE approaches would
face limitations at the PIM layer, for example when
expressing requirements for data transfer and data
processing. Today, it is possible with MDE to express
entity-relationship models, basic dependencies between
components and data, field types and values, and data
semantics. However, new MDE approaches are required to
explicitly annotate at the PIM layer information such as:
• static characteristics of data: e.g., volumes, value,

storage location, replication pattern, cost for accessing
data via cloud storage services, known schedules of
data transfers, data access control;

• dynamic characteristics of data, e.g., read rates, write
rates, update rates, burstiness in data streams, caching;

• data dependencies, e.g., graph-based relationships
between data archives and streams, for example to
describe interdependencies in rates and characteristics
due to complex-event processing.

In the DICEnv example, if the developers were to use a
state-of-the-art MDE approach for cloud computing without
the above annotations at the PIM layer, they would not be
able to describe:
• individual dependencies between components and data

streams, therefore it would be impossible for the QA
tool chain receiving the PIM model to understand how a
refactoring is going to affect latencies, costs and
reliability for the data-intensive part of the application;

• the relationships between compute and memory
requirements of individual software components and
the volumes and I/O rates of the data, which would
make it difficult to predict quality at design time.

• the lack of an explicit annotation for data characteristics
would make it difficult to integrate in the QA tool chain
a feedback analysis and performance anti-pattern
detection capability, since the QA tool chain would not
be in a condition to synchronize the models with
monitoring data collected from the runtime.

These shortcomings call for enriching PIM with information
about static and dynamic characteristics of data and data
dependencies.
PSM Layer Limitations. Similar challenges arise at the PSM

level, where the heterogeneity of Big Data technologies
makes it difficult to identify common concepts across
technology platforms. For the same reason, the automatic
translation of PSM models into deployment plans is also
challenging. For example, Hadoop-based clusters are highly
configurable, with hundreds of available parameters ranging
from distributed file system configuration to number of map
and reduce tasks. Supporting this configuration complexity
requires work to enrich the expressiveness of the PSM
models and of the deployment plans, compared to those
used in current MDE approaches, to encompass Big Data
technologies and platforms. An emerging standard like
TOSCA, the OASIS model for topology and orchestration
specification in cloud applications, could be a candidate for
these extensions. However, at present TOSCA is still
agnostic of data. Also, TOSCA has no native support for
Big Data applications, and no explicit notion of quality, but
covers the abstractions needed to describe the deployment of
cloud applications.

QA Tool chain limitations. Assuming that the PIM can
provide the required data annotations and the PSM is
sufficiently expressive to generate deployment and
configuration plans for Big Data technologies, several
challenges would then arise for the QA tool chain to ensure
that these plans respect cost and quality constraints and they
are optimal according to some objective function. In order to
provide the predictions and decision-support features that
are expected for quality-aware MDE, one would then need
to develop transformations to automatically generate
performance, reliability and safety models, and then analyze
these models to extract quality metrics. Such metrics could
then either be reported to the developer or used for
exploring the design space of the application.
The key problem to address for optimal decision-making is
that analytical models used today for performance and
reliability evaluation, such as queueing networks, are meant
to describe contention at processing resources, but they have
limited expressiveness when it comes to correlating
contention to memory consumption. This is a problem,
because peak memory usage is a primary concern in Big
Data applications. Furthermore, fork and joining of streams
and phase synchronizations (e.g., map/reduce/shuffle) is
complex to describe analytically in a way that preserves the
tractability of the queueing models, although some initial
works have been done in this area [Zha10]. Stochastic Petri
nets appear more flexible in this respect, but their evaluation
cost tends to be higher than queueing models since they
often require simulation. However, simulation can be
inefficient for optimal decision-making, since it is typically
too slow for use in conjunction with non-linear
programming algorithms.
Summarizing, several limitations and novel challenges exist
in current MDE solutions that require major innovations in
order to enable functional and quality modeling of Big Data
application and defined effective QA tools.

III. DICE MDE APPROACH
The main goal of DICE is to define an MDE approach and a
QA tool chain to continuously enhance data-intensive cloud
applications with the goal of optimizing their service level.
Summarizing the discussion in Section II, we believe that
the methods and tools shown in Table 1 are required to
provide a comprehensive quality-aware MDE approach for
Big Data applications. The DICE IDE will guide the
developer throughout this methodology. It will initially offer
the ability to specify the data-intensive application through
UML models and a novel DICE profile that will address the
limitations outlined in Section II. From these models, the
tool chain will guide the developer through the different
phases of quality analysis (e.g., simulation and formal
verification), deployment, testing, and acquisition of
feedback data through monitoring. This data will then be
processed and fed back to the IDE through the iterative
quality enhancement tool chain, which will analyze runtime
data to detect quality incidents and anti-patterns in the
application design. This will provide feedbacks to guide the
developer through cycles of iterative quality enhancement.

DICE profile A novel data-aware UML profile to develop

data-intensive cloud applications and annotate
the design models with quality requirements.

DICE IDE Integrated development environment with code
generation to accelerate development.

Quality analysis A tool chain to support quality-related decision-
making composed by simulation, verification
and optimization tools.

Iterative quality
enhancement

A set of tools and methods for iterative design
refinement through feedback analysis of
monitoring data.

Deployment and
testing

A set of tools to accelerate deployment and
testing of data-intensive applications on private
and public clouds.

Table 1. DICE Tools

A. DICE Profile: MDE for Data-Intensive Applications
Models in DICE should be formulated at three levels, called
DPIM, DTSM, DDSM, which we discuss next.

DICE Platform Independent Model (DPIM). The DPIM
model corresponds to the OMG MDA PIM layer and
describes the behavior of the application as a directed
acyclic graph that expresses the dependencies between
computations and data. This model should also express
source data formats, synchronization mechanisms in the
computation logic, and quality requirements for both
computation logic and data transfers.

Figure 2 shows a possible example of DPIM for an
application including four Data Sources (DS1-DS4) and
four Computational Logic elements (CL1-CL4). At the
DPIM layer the designer can specify the data format (e.g.,
structured or semi-structured data, flat files, etc.) and

indicate if the data is transferred between processing steps
via a shared storage system (e.g., S1) or obtained from data
streams (e.g., DS3 and DS4 flows). A computational logic
element can process multiple flows both synchronously or
asynchronously. Data locations, estimated size (e.g., 600-
900 TB for DS1), computation logic workload (e.g., 200
requests/h for CL3) and service-level constraints (e.g., CL1
runtime less than 15 minutes) may also be specified.

Figure 2. DICE platform independent model (DPIM)

DICE Platform and Technology Specific Model (DTSM). A
DTSM, illustrated in Figure 3, consists of a refinement of
the DPIM and includes some technology specific concepts,
both for computational logic and data storage, but that are
still independent of the deployment. For example, data and
computational logic elements may be associated at the
DTSM layer with specific technologies. DS1 and S1 may
be required to be based on the Hadoop File System (HDFS),
DS2 on a relational database (RDBMS), CL2 on complex
event processing (CEP), and so forth.

Figure 3 DICE Platform and Technology Specific Model (DTSM)

DICE Platform, Technology and Deployment Specific
Model (DDSM). The DDSM, shown in Figure 4, is a

specialization of the DTSM model which adds information
about the technology in use and the application deployment
characteristics. For example, the deployment may be
specified at the DDSM layer with details on the system
capacity (e.g., CL1 will be hosted on 50 EC2 Elastic
MapReduce xlarge instances). DICE will help the developer
deciding deployment characteristics by identifying through
numerical optimization a deployment plan of minimum cost,
subject to performance and reliability requirements.
Additionally, deployment tools will be able to process the
information provided by the DDSM to minimize the effort
required to deploy the application. Transformations between
DPIM, DTSM and DDSM models will be supported by the
DICE tool chain.

Figure 4 DICE Platform, Technology and Deployment Specific
Model (DDSM)

B. Quality Annotations
The DICE profile will enable the design of data-intensive
cloud applications. In particular, as highlighted in Section II,
we envision that the DICE profile needs to include at least:
(i) quantitative annotations on the availability of a data
source or intermediate by-products resulting from a data
transformation; (ii) annotations to specify rates, latencies
and utilizations of resources, including the possibility to
specify service level constraints on data transfers; (iii)
annotations to specify costs of data-intensive applications;
(iv) safety annotations that will be treated as hard
constraints.

C. Deployment
The last set of requirements for the DICE approach to be
effective concerns the development of appropriate tools to
support the application deployment and initial testing.
Ideally, the primary target of an MDE methodology for Big
Data should be either private cloud applications or public
cloud applications that can use cloud platform services for
Big Data, such as Amazon Elastic MapReduce or cloud-
based storage services. Automatic deployment and
configuration from DDSM models could be achieved using
extensions of tools such as Brooklyn, Puppet or Chef.

Continuous integration and QA testing approaches should
be featured to validate and evolve the application code after
initial deployment.

IV. QA TECHNICAL APPROACH

In this section, we identify and discuss some important
quality dimensions for Big Data applications, followed by
an initial proposal of a QA tool chain for MDE capable of
analyzing these dimensions.

A. Quality Dimensions
 In our view, a QA tool chain for data-intensive applications
should focus at least on the following quality dimensions:

• Data-aware reliability: quantitative annotations on the
availability of a data source and on the reliability of
data transfer and data processing operations. The
notions of data replication and integrity need to be
explicitly correlated to the reliability requirements.

• Data-aware efficiency in resource utilization: data
operations consume resources such as memory, network
bandwidth, storage and cache space, CPU time,
software pool resources, etc. Service requirements at
these resources need to be expressible in the DICE
model through rates and latencies. Annotations should
also give the ability to express service level objectives,
such as maximum acceptable resource utilization levels.

• Data-aware efficiency in costs: data efficiency also
deals with costs, which are more complex to assess for
data-intensive applications than for canonical web
applications. One example is the quantification of
network costs, which can vary if a stream transports
some data between components operating on the same
cloud or between a component and an end-user external
to the cloud. This requires developing a novel
annotation to relate deployment and data transfer
characteristics with costs.

• Data-aware safety: annotations are needed to deal with
constraints that must be guaranteed for safety reasons.
QA tools need to support the specification of portions
of the application that must logically and physically be
isolated, together with the elicitation of formally correct
requirements for a sequence of messages, states or
events that relate application components.

UML profiles like MARTE and DAM4 provide a suitable
starting basis for extending the above dimensions in meta-
models of Big Data applications. Other relevant baselines
can be found in [Ber12].

B. Quality Tools
We now move to the problem of identifying a set of QA
capable of fully exploiting the DICE profile and assess the
quality dimensions we have described.

4 https://bitbucket.org/mberenguer/marte-dam/wiki/Home

Quality analysis transformation tool. The goal is to map
DICE profile models to quality analysis models. This entails
the challenge of compensating uncertainties or ambiguities in
the design specification, for example by restricting the use of
ambiguous constructs or by interpreting them using
predefined heuristics. A model-to-model transformation
approach leveraging conceptual models should be used to
define this tool.

Discrete-event simulation. The goal is to assess reliability
and efficiency in Big Data applications. The main challenge
is to assess cost and quality of given design scenarios,
accounting for stochastic evolution of the environment
(variability in the number of end-users, in the capacity
offered by cloud resources, in the number of data sources and
in their performance characteristics). The approach could
leverage simulation of stochastic models of the DICE
application based for example on stochastic Petri nets or
queueing networks.

Formal verification tools. Verification tools are needed to
assess safety risks in Big Data applications. The challenge is
to find design flaws causing order and timing violations in
message and state sequences. A possible approach to cope
with this challenge involves formal verification of DICE
models through transformation into metric temporal logic
formulae and use of bounded model checking. The tools
could then be used to verify, for example, that deadlines are
met, requirements that a certain data value be observed at a
given instant, or the correct ordering and timing of a
sequence of computations or application states.
The underpinning models can be based on a precise and
metric notion of time that is exploited to precisely express
timing constraints, as for example the ones offered by UML
MARTE. Models can then be automatically analyzed
through tools based on state-of-the-art techniques such as
satisfiability modulo theories solvers. Quantifier-elimination
techniques may be investigated to extend currently available
temporal logic-based verification mechanisms with the
possibility to generalize verification results to systems made
of an arbitrary number of components of the same kind, in
order to describe parallelism in data processing.

Architecture optimization tool. The goal is to find
architectural improvements to optimise costs and quality.
The challenge is to define algorithms to quickly find good
designs given new requirements, which is a difficult
challenge since simulation tends to be slow. However,
adopting a decomposition-based analysis approach, where
compute and memory requirements are analyzed and
optimized separately, simulation-based evaluation of
performance metrics may still be used in optimization
program, since decomposition would reduce the number of
decision variables in the optimization problem.
A possibility to make optimization more efficient is to resort
to so-called fluid approximation of stochastic models, which
enable the simulating the behaviour of a system using
ordinary differential equations instead of discrete-event
systems. Initial work to illustrate the gains of the fluid

https://bitbucket.org/mberenguer/marte-dam/wiki/Home

approach in architectural design can be found in [Per13,
Per15]. Fluid methods can provide very large speedups in
optimization programs, at the expense of low model
approximation accuracy for subsystems where parallelism
levels are small. Nicely, fluid models become more accurate
as the system scale grows. Therefore, since large scale
applications are becoming increasingly common in Big Data,
fluid techniques may be promising to support decision
making for architectural optimization activities.

Feedback analysis. Feedback analysis requires the automated
extraction from the monitored data of key parameters
required to define simulation and verification models. This is
a novel challenge for Big Data applications. For example,
there is a shortage of techniques for automated
parameterization of stochastic models involving for example
fork/join synchronizations. These abstractions are required to
model MapReduce workloads, where map, shuffle and
reduce phases need to synchronize. This challenge may be
addressed by defining techniques capable of extracting
model parameters through log mining and statistical
estimation methods.
Another major issue to be addressed is the existence of
different abstraction levels between design concepts (i.e.,
abstractions in the DICE profile) and runtime measurements,
since the latter are implementation-dependent while the
former are abstract models. This calls for defining novel
statistical estimation techniques to breakdown resource
consumption into its atomic components on the end-to-end
path of requests, correlate these atomic components with the
modeling abstractions in the DICE profile, and later analyze
this information to identify bottlenecks and quantify the
levels of reliability and availability offered by the
application.

V. RELATED INITIATIVES
In the literature there is a variety of platforms to support the
MDE for cloud applications. For example MODAClouds
(www.modaclouds.eu) offers a quality-aware model-driven
approach and offers basic tools to support DevOps.
However, MODAClouds focuses on multi-cloud and in the
Big Data domain only supports NoSQL databases.
The SeaClouds project (www.seaclouds-project.eu) aims at
giving to organisations the capability of “Agility after
Deployment”. It takes care of different aspects of the cloud
development life-cycle, such as an open, generic and
interoperable foundation to orchestrate parts of cloud-based
applications. Since DICE focuses on design-time and testing,
as opposed to runtime management, the results of projects
such as SeaClouds may be integrated with the DICE tools to
cover the runtime operation aspects not developed within the
DICE vision.
The main objective of U-QASAR (www.uqasar.eu) is to
create a flexible Quality Assurance, Control and
Measurement Methodology to measure the quality of
Internet-related software development projects and their
resulting products. The methodology is based on knowledge
services, whereas DICE emphasizes the integration of MDE
with stochastic and nondeterministic models for verification.

VI. CONCLUSION
We have described the research agenda of DICE, a vision
for a novel model-driven engineering approach specifically
tailored to Big Data applications. We have identified several
challenges that arise in this area due to limitations in current
models and quality analysis tools that arise from the
inability to fully describe data operations and data
characteristics. The authors are working towards
implementing the vision described in this paper as part of a
novel European research and innovation action started in
February 2015 (www.dice-h2020.eu). This initiative will
apply the DICE MDE approach to industrial demonstrators
in the domains of news and media processing, maritime
operations, and e-government. Challenges to be undertaken
in these demonstrators include the ability to cover social
media stream data (news/media domain), analysis of
positional real-time data (maritime operations), and data-
intensive applications that can cope with legacy systems and
legacy data formats (e-government).

ACKNOWLEDGEMENT
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No. 644869 (DICE).

REFERENCES
[Ard12] D Ardagna, E Di Nitto, et al. MODAClouds: A model-
driven approach for the design and execution of applications on
multiple Clouds, Proceedings of MiSE 2012, 50-56.

[Ber12] S. Bernardi, J. Merseguer, D. C. Petriu. Dependability
modeling and analysis of software systems specified with UML.
ACM Computing Surveys, 45(1), p. 2, 2012.

[Deb11] P. Debois. Devops: A software revolution in the making?,
J. Information Technology Management, 2011

[Men10] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malek, J. P.
Sousa. A framework for utility-based service oriented design in
SASSY. Proceedings of ACM/SPEC WOSP/SIPEW 2010, 27-36.

[Mar10] A. Martens, H. Koziolek, S. Becker, R. Reussner.
Automatically improve software architecture models for
performance, reliability, and cost using evolutionary algorithms.
Proceedings of ACM/SPEC WOSP/SIPEW 2010, 105-116

[Fra13] D. Franceschelli, D. Ardagna, M. Ciavotta, E. Di Nitto.
Space4Cloud: A tool for system performance and cost evaluation of
cloud systems. Proceedings of MultiCloud workshop, 27-34, 2013.

[Per13] J. F. Perez and G. Casale. Assessing SLA compliance from
Palladio component models. Proceedings of the 2nd Workshop on
Management of resources and services in Cloud and Sky computing
(MICAS), IEEE Press, 2013.
[Per15] J.F. Pérez, G. Casale, and S. Pacheco-Sanchez. Estimating
Computational Requirements in Multi-Threaded Applications.
IEEE Transactions on Software Engineering, to appear in 2015.
[Zha10] H. Zhao, C. H. Xia, Z. Liu, D. F. Towsley. A unified
modeling framework for distributed resource allocation of general
fork and join processing networks. Proceedings of ACM
SIGMETRICS 2010: 299-310.

[Zik11] P. Zikopoulos, C. Eaton. Understanding Big Data:
Analytics for Enterprise Class Hadoop and Streaming Data.
McGraw-Hill Osborne, 2011.

http://www.modaclouds.eu/
http://www.seaclouds-project.eu/
http://www.uqasar.eu/
http://www.dice-h2020.eu/

	I. Introduction
	II. Towards Quality-aware MDE for Big Data
	A. DICEnv Example
	B. Limitation of Existing MDE Approaches

	III. DICE MDE Approach
	A. DICE Profile: MDE for Data-Intensive Applications
	B. Quality Annotations
	C. Deployment

	IV. QA Technical Approach
	A. Quality Dimensions
	B. Quality Tools

	V. Related Initiatives
	VI. Conclusion
	Acknowledgement
	References

