
Validation of Embedded System Verification Models

Jelena Marincic∗, Angelika Mader†, and Roel Wieringa∗
∗Faculty of Computer Science

†Faculty of Control Engineering
University of Twente, The Netherlands

Email: {j.marincic, mader, roelw}@ewi.utwente.nl

Abstract—The result of a model-based requirements veri-
fication shows that the model of a system satisfies (or not)
formalised system requirements. The verification result is
correct only if the model represents the system adequately.
No matter what modelling technique we use, what precedes
the model construction are non-formal activities. During these
activities the modeller has to learn how the system works,
what the requirements are, and to decide what is relevant to
model and how to do it. Due to a partly non-formal nature
of modelling steps, we do not have a formal proof that the
model represents the system adequately. The most we can
do is to increase the confidence in the model. In this paper
we explore non-formal model validation steps while designing
a formal model. On the example of a Uppaal performance
model we designed in a company that produces printers, we
will show what validation steps were necessary to increase the
stakeholders’ confidence in the model. Based on this case study,
we propose more general, but non-formal model validation
steps, that can structure model validation. The steps we propose
deal with the same design elements and issues present in other
model-based verification activities, therefore can accompany
them as well.

Keywords-conceptual analysis of modelling; case study; for-
mal models; non-formal, design steps;

I. INTRODUCTION

There are many techniques, languages, and methods for

modelling software-intensive systems. Our interest is mod-

elling as a design activity. From this perspective, we see

modelling as a cycle of mutually intertwined (1) problem

analysis, (2) model design and (3) validation. Within the

problem analysis a modeller learns about the system and

its requirements, through a discovery process; the solution

(model) design subsumes system and problem decomposi-

tion, decisions what exactly to model and how; finally, as

in any other design process, intermediate design steps are

validated.

These modelling decisions are partly non-formal, they are

creative, and non-predictable given that there are many mod-

els that suit the purpose. Given their non-formal nature, we

cannot make these steps automated. Instead, to ensure model

quality, different heuristics, standards, reusable solutions are

used to steer the modeller’s creativity and personal choices

during the design process.

We focus on modelling for formal verification of embed-

ded systems. More concretely, we are looking at systems

in which embedded software controls the movement and

positions of mechanical parts; the mechanical parts can

manipulate some external products. For example, a system

that conveys bottles and labels them is a system that has

mechanical parts whose position and precision is important,

and it also manipulates bottles that are not part of the system.

To prove that the requirement for the whole system holds

we model both the plant (mechanical parts and processes

controlled by the software) and the software. The existing

techniques to structure and guide non-formal modelling

decisions are helpful but they also have limitations. Some

of the already existing reusable solutions cannot apply for

the plant modelling because they are more focused on the

software modelling. Other techniques are useful to roughly

structure modelling, but they are too general and leave the

modeller still quite large solution space to explore. Finally

some techniques are closely related to the language chosen

and cannot be used with another formalism. Many of the

non-formal decisions stay implicit, so the reasoning that led

to a model cannot be traced and reviewed.

The goal of our work is to characterise non-formal mod-

elling decisions for the systems of our interest, and make

them explicit. Our analysis aims at better understanding of

the non-formal aspects of modelling decisions, but also it can

serve as a framework that guides the modeller. In this paper

we are looking at validation steps. The goal of validation is

to increase confidence in the model, and consequently into

the verification result.

The question we want to answer in this paper is: How

can we validate the model in order to have confidence in

the verification result? What are the modelling steps that

have to be made explicit, and then examined, in order to

increase confidence in the verification result based on the

resulting model? We are focusing on the industrial systems

where resources (time and people) are most often under tight

constraints. There, not too much time can be spent validating

the model; however, if a rigorous system verification based

on models is chosen, some validation of models should be

performed.

In the next section we will present a high-level conceptual

analysis of non-formal modelling decisions with the special

focus on the validation part. We will then describe the

industrial case study of modelling a printer’s performance.

978-1-4577-0959-3/11/$26.00 ©2011 IEEE 48

We will discuss related work and finally conclude with

remaining open questions and future work.

II. MODEL VALIDATION

Formal verification is the way to prove mathematically

that a model of a system satisfies (or not) some properties.

In order to draw meaningful and correct conclusion about

the system itself, the model should represent the system

adequately. This means that all the system aspects and

components relevant to the property should be described in

the model. Also the model’s properties that are subject of

verification queries should encode the requirement we want

to verify.

The system that is modelled is non-formal, it belongs to

the physical world, and a model belongs to the mathematical,

formal domain. Modelling steps are partly formal, partly

non-formal, which results in lack of a formal proof that the

model is correct. Instead, we have to rely on insight. The

modelling steps must be explicit and structured so that we

can understand them and be able to confirm or discard them.

If we have broken down the modelling in such easy steps

that can be understood, then we also have more confidence

in the resulting model.

In some approaches only the software is modelled. As

software is already an object in a formal language, its

modelling can be formalized to a greater extent. But, to

argue that the overall system behaviour is satisfied, an extra

argument that makes a statement about the plant behaviour,

is needed. This argument, again, cannot be a formal one, and

we have again that a non-formal argument has to be made

explicit and examined.

In the approaches in which we model both the plant

and the software, we have the argument that ’connects’ the

software interface with the observable, end-user behaviour,

formal as well. Still, there will always be assumptions and

additional domain properties that have to be taken into

account in the correctness argument. Altogether, part of

the verification process consists of building the correctness

argument of the model, and this can never be completely

formal.

A. Roles and stakeholders in model design

The modeller is not necessarily someone who knows the

system or the requirements, but it can merely be an expert in

using formal languages and tools. So she needs other stake-

holders to provide her knowledge about the requirements,

the problem and the system.

Another role involved in modelling are domain experts
– engineers specialised in different areas (e.g. mechanical,

chemical engineers) whose responsibility is a certain aspect

of the system (mechanical components, chemical processes

etc.). For highly modularised systems, every component has

a system engineer who is in charge of the component. For

the modeller, the component expert is a source of knowledge

about how the component works internally, and how it

communicates with the outside world.

A system architect provides the modeller an overview

how the system as a whole works, whereas a requirements
engineer has an overview of all high-level and low-level

requirements, and also can explain their rationale. Finally

a software architect provides knowledge about software

specification.

As users of the model, stakeholders have to have confi-

dence in the results of modelling and sometimes they are

using the model themselves to simulate, visualise and/or

analyse the system.

B. Categorisation (Taxonomy) of Modelling Decisions

Figures 1 and 2 show our classification of non-formal

modelling decisions.

As a design process, modelling comprises of problem

analysis, solution design, and solution validation. However,

as Hall and Rapanotti suggested [1], we are not validating

only the design of our solution, but also our understanding

of the problem. The steps of validation therefore intertwine

with all the other steps. At the same time we are not claiming

that the modeller will validate each and every step explicitly,

it is a subjective decision of both the modeller and its

users what modelling steps will be addressed, explained,

questioned and validated.

Another categorisation of modelling distinguishes knowl-

edge gathering and knowledge representation. Part of the

modelling problem is deciding what to model, this is not

given in advance. In order to decide what is relevant to

model, the modeller needs to understand the modelling

problem and how the system works. This knowledge is

obtained by accessing documentation, talking to different

roles and possibly using the system or its prototype.

During this process the modeller learns how the system is

structured by different domain experts, and also makes her

own structure of the system. Later this may be mapped into

the structure of the model, but the model can be designed

with a different structure as well.

Deciding what to model means that the system properties

not relevant for the requirement are abstracted away. The

relevant properties are represented in the model, by using

different idealisations, abstractions and transformations.

C. Validation Aspects and Steps

1) Model Validity and Credibility: The modeller needs to

validate her understanding of the problem and the solution

steps. On the other hand in order to have the model used,

the stakeholders should trust the model. Is it enough to only

trust the modeller or more can be done? To establish the

credibility of the model, the modeller can explain the model

and build an argument that the model represents the system

correctly. These are two different types of validation steps.

49

��������	�
��
	

��	���
��

��������	�
��
	

��	����������

��������	�
��
	
�����	����������
�

���������	��������

���������	���������

��������	���

�	�����

�����	������
���

���������	��
���
�

�
��

�
��

	�
��
��
��
�

�
��
�

��
�	

��
��
����������	���

�	�����

������
���	��		
���
���	��������

������
���	��		
�����	������

Figure 1. Taxonomy of modelling decisions.

��������	���

�	�����

���������
����

�
���
����

!�������
����

"���
���
���������

Figure 2. Taxonomy of modelling decisions (ctd).

III. MODELLING PRINTER PERFORMANCE - CASE

STUDY

In this section we will reflect on the case study we per-

formed in a company. Our task was to design a performance

model of a printer. What follows is not the explanation

of the model itself, that would lead us to the topic of

modelling scheduling processes and performance. What we

want to present here is the validation aspect of modelling

in industrial context. From the concrete validation steps we

will generalize to lessons learnt for validation in general.

A. Introduction to the Case

We performed a case study in a company that produces

printers for office use. Printers are produced in product

lines to suit different purposes, such as printing on large

formats and printing high-quality books and brochures. It

is a large company, with a few hundred people employed

in research and development department. As part of their

business strategy the company has innovativeness as one of

their core values. This results in encouraging innovativeness

within the company and collaborating with academia and

researcher institutes.
At the time we performed the case study, the printer that

we modelled was in the one of the last development phases,

with the plant and software already designed and tested.

Some fine tuning of the control was discussed in order to

improve performance requirements. Our work was related to

performance estimation, therefore in the further text we will

focus on this problem and the relevant printer aspects.
To execute printing, multiple printer components work

synchronously, performing different mechanical, electrical

and chemical processes with high precision and speed.

The control software ensures components’ correct behaviour

in time and space. The control software also stores and

transforms data to be printed.
We can decompose printing of documents into four main

processes. They are as follows.

• Transporting paper sheets.

• Processing printing data.

• Forming toner image.

• Printing.

Paper sheets are moved along the paper path, from the

trays to the module where the actual printing takes place. In

case of double-sided printing, the sheet is turned over and

brought back to the printing module, otherwise it proceeds

to the exit tray.
After a print request, printing data is stored into the

local printer memory. It is processed and transformed into a

corresponding matrix of electromagnetic signals. The matrix

further serves for forming the toner image.
Forming the toner image and printing are performed

by two different, mutually connected, modules. The toner

image is formed in the Cold Process (CP) component, and

printing takes place in the Warm Process (WP) component.
Obviously, the paper path passes through the WP compo-

nent. The block diagram of the printer’s main components

is shown on Fig. 3.
Besides performing their main functions, the CP and WP

component perform a number of supporting processes which

are not directly part of the printing process. These processes

prevent premature wear-out of the parts and keep them in

a state that ensures maximal printout quality. For example,

the belt along which a sheet of paper moves while the toner

is applied to it, shifts its position occasionally, in order to

prevent sharp edges of papers carving the belt and thus

wearing it out prematurely.
Each supporting process starts under different conditions,

at different points in time. Among conditions that trigger

a supporting process are the following events: a certain

number of pages is printed since the process is completed the

50

#������	!����
��������	
	���������	
	�

����
���

�����
��
�

�
�	�

Figure 3. A diagram of the printer’s main modules.

Figure 4. Processes and physical components performing them of a similar
printer, taken from [2].

last time, a certain button is pressed by a user, a temperature

of a part reached a critical value. Some of the processes need

to be executed as soon as such an event occurs, some of them

can be postponed. Furthermore, some of the processes can be

interrupted if a print request arrives during their execution,

some cannot. The execution times of the processes differ

as well, from a couple of seconds to tens of minutes. The

components performing these processes are shown on Fig. 4.

The printer states relevant for the performance are the

Standby and Run states. The printer is in the Run state while

it is printing. If for a certain period of time the printer is

not printing and there are now new print requests the printer

control puts the printer into standby state. Some of the

supporting processes are done in the run state and some in

standby state. There are also in between states, during which

there are also standby processes that can be performed.

Apart from controlling printing, the printer control starts

the supporting processes. They are executed in two parallel

sequences of processes. This is because the control modules

separately control CP and WP component so the processes

done by them are independent, with exception of those

processes who need to be performed by both modules at the

same time. The CP and WP controls have to be in the same

states, that is, it cannot happen that the CP control brings the

CP component to the standby state, and WP control leaves

the WP component in the run state.
The scheduling of the processes affects different printer’s

performance properties, so a trade off has to be made be-

tween the different features. For example, we could optimise

printing so that the waiting time for printouts is minimal

starting from the moment the first sheet in a batch is printed,

or we could optimise the waiting time for the printing to

start. The latter is more convenient in cases we need to print

one or two pages.

B. The modelling task
The modelling task was to describe the printing process,

supporting processes and their different scheduling strate-

gies. The modelling language and tool used was Uppaal [3].

Uppaal is used to describe concurrent processes, it has a

simulation tool, which was an important to the stakeholders.
Verification should enable comparison of different strate-

gies and trade-offs between different performance require-

ments, like for example smallest number of interruption

versus minimal total printing time, or minimal delay before

starting a printing job.
The two scenarios in which the performance is measured

are as follows. In the first scenario a user is printing a couple

of pages, checks whether the printouts are good, and then

prints a large number of pages. In the second scenario a

large number of pages is printed.

C. The solution
Uppaal is a tool that integrates a description language, a

simulator and a model-checker. ”It is appropriate for systems

that can be modelled as a collection of non-deterministic

processes with finite control structure and real-valued clocks,

communicating through channels or shared variables.” [3]
The high-level structure of the model we designed is

shown on the Fig. 5. The squares on the diagram stand for

an automaton or a set of automata describing relevant printer

behaviours. The arrows informally describe which processes

share variables or synchronised channels.
The processes and printing all have the same simple,

two-state structure that describes beginning and finishing

the process. They describe the plant, and therefore cannot

interrupt, start or stop themselves, this is the task of the

control. On the other ’end’ of the control, the user sends

printing request.
The task of the control is to start and stop processes via CP

control and WP control components, and to directly change

printer states. It implements the following strategies:

51

$���

"�	���
��� %�	���
���

����	���
���	

��������������������������� ����
��� ����
��	�
�
��

Figure 5. The high-level structure of the model describing the printer
under different scheduling strategies.

S1 If a run is not finished, but interrupted for an urgent

process, do only the urgent processes and continue

printing.

S2 If a run is not finished, but interrupted for an urgent

process, do the urgent processes. If there is an indica-

tion that during the current run a condition for other

urgent processes will occur, perform them as well.

S3 If one of the CP or WP control is idle while waiting

for the other to finish, check if there are other non-

urgent processes that the idle sub-control can finish in

the meantime and finish them.

S4 If the run is finished, do all the urgent and non-urgent

support processes without checking if there was a print

request issued in the meantime.

S5 If the run is finished, do all the urgent processes and

check if there is a print request.

S6 If the run is finished, do processes by process, no matter

whether it is urgent or no, and after each process check

whether there is a print request. If there is, finish only

the urgent processes and start printing.

D. Validation Steps

We performed two kinds of validations – testing the

model itself by review, simulation and model-checking;

and explaining the model to the model stakeholders. What

follows are validation steps elaborated in the light of the

taxonomy of modelling decisions.

1) Knowledge increase: The validation of the modeller’s

steps during knowledge increase goes into two directions.

First, it ensures that the modeller understood the problem

correctly and that the stakeholders gave correct information

about the system and formulated the problem correctly.

By understanding the problem we mean the following: (1)

understanding how the system works, (2) understanding the

system requirements, and (3) understanding the requirements

for the model itself.

To discover how the system works, we used the existing

documentation and talked to domain experts. We explored

(1) how the control works, (2) how individual components

shift from one state to another and (3) how processes and

plant parts work. Our discovery was related to finding the

right abstraction level to represent these components, for

both the problem-owner and the modeller.

The problem owner gave too detailed descriptions of

some components and simplified the others. The sources of

model errors in the first versions of the model were: (1) the

modeller did not understood correctly the documentation or

the sketches of the domain experts; and (2) the problem-

owner gave too detailed or too simplified explanations of

some components – only after we explained, component

by component how the model behaves, it became clear

that changes in the model were necessary. For example,

the documentation describes active, standby and in between

states of the printer. It turned out that the printer as a whole,

its modules, the control as a whole and control components

are assigned states with the same names. Most of the time

they mean the same thing, but not always. For example, the

sub-control module that controls CP component will wait

until all the parameters show that the CP component reached

the standby state. It will then assign itself the same state

to reflect and the situation in the plant and will let know

the high-level control about this. Only when both CP and

WP sub-controls report reaching the standby, the high-level

control will also shift to the standby state.

An aspect of the problem validation is requirements

elicitation. In this assignment, the main goal was to check

how already a satisfactory performance can be improved.

Modelling scenarios forced the problem-owner (the software

architect) to be more precise, and brought insights and

structure into their own perspective of the problem. This

is inherent to requirements elicitation.

Another set of requirements were those for the model.

Some of the requirements were already given us in advance,

whereas some came up while explaining the model and

possibilities and restrictions of the Uppaal tool and model-

checking in principle. Also, there were the requirements

to improve model’s understandability by leaving out some

simplifications. For example, we simplified the description

of user behaviour, with an equivalent model that led to

a valid verification result. However, the users wanted to

simulate the scenario they were given, because it was easier

to follow the simulation.

2) Modelling decisions: In the classification of the solu-

tion design steps we distinguish decomposition, abstractions,

idealizations, and creating analogies.

Finding the right abstractions and idealizations is also part

of the knowledge discovery and we identified what were

three groups of components that we needed to validate and

understand.

52

When it comes to decomposition, it was necessary to

validate those components whose structure did not match

the structure of the existing control. We decomposed the

control into a number of automata with a smaller number of

states and needed to come up with an argument that these

two models (the existing control software specification) and

the control in our model are equivalent with respect to the

problem we modelled.

Creating analogies are ’modelling tricks’ that simplify

the model, by choosing a different decomposition or by

designing a structure or an element in the model that does

not exist in the system, but that results in modelling sharing

the relevant behaviour or properties with the system.

To address the last two elements, we validated the model

by designing queries that explored different safety and

liveness model properties. In our model, the most important

thing was to check whether all components are in a correct

states, given that this was not obvious for some border

conditions. We also had to model-check whether the order

of processes execution was correct.

E. Model’s Credibility

The steps we performed to validate the model for our-

selves in the role of the modeller overlapped with the

steps we need to perform to establish the credibility of the

model for the problem-owner. Establishing model credibility

ensures that the model-users have confidence in the model

and the results they get from model-checking.

As we said, the model did not follow the system decom-

position. One reason was simplification of the model and the

other were Uppaal limitations, namely lack of hierarchies in

Uppaal. So, we designed queries for the problem-owner to

validate the model.

Explanations the model to establish credibility is another

non-formal step, especially in the case in which the problem-

owners do not ’speak’ the modelling language. On the one

hand, Uppaal language has almost the same syntax as the

state charts used for software specification. Still, there are

differences, and even though we explained what means what

in the model, it is not really easy for someone who has not

been using formal methods earlier to grasp the concept of

urgent channels and other elements of Uppaal, that are not

present in state charts.

To minimize the risk, we also developed additional test

queries that addressed phenomena described with urgent

channels and locations.

Another set of test were those that checked performance

for initial conditions and parameters for which already the

results were known or could have been easily calculated.

F. Verification Validity

We already mentioned that verification results hold under

additional assumptions. We collected these assumptions and

checked if they are fulfilled when printing is in the states

we modelled. We delivered the list of assumptions together

with the model. This list is never complete, but some of the

assumptions are important to document, otherwise they can

be easily overlooked.

We presented them to the domain experts in order to check

their validity. We also classified them in order to check with

the domain experts if there are more assumptions that we

overlooked. Some of these assumptions always hold, and

some are the idealisations that we introduced. Their role is

to (1) document conditions under the modelling results are

correct and (2) to test with the model-stakeholders if the

idealisations we made still result in an adequate model.

Following assumptions and classes are just some of those

we collected, given as illustration.

• Decomposition to: User, Environment, Plant, Paper,

Control. Here for example, we documented an assump-

tions that during printing, the user will not try to open

the printer door (this refers to the printer behaviour).

Also, we documented that the time to forward the print

request through the network is negligible. The first

assumption is the condition under which the user can

expect the performance that is promised by the pro-

ducer. The latter assumptions is more an idealisation,

but it should be explored what happens if there is a

delay.

• Decomposition to processes performed on paper: print-

ing, transporting. Here, one of the assumptions recorded

was that printing takes 0.5 seconds. This is the assump-

tion under which the result of the verification hold. It

can happen that under some circumstances we need to

take into consideration longer page printing times.

• Functional decomposition - here we focused on

the assumptions we took about individual processes

like:”Component X will never become too hot.”

• Errors and faults - one of the assumption here is ”Paper

jam will not happen”.

• Initialization and finalization concerns - here we ad-

dressed initial values of different counters.

IV. RELATED WORK

The conceptual analysis we perform coincides partly with

the work of Hall and Rapanotti. We adopted their model

of designing of a solution to a problem with validation of

both problem analysis and solution validation [1]. Also, the

conceptual analysis of requirements engineering present in

the work of goal-oriented community [4].

There are many standards that recommend the verification

and modelling process, but as case studies show[5] it is too

expensive to use them for the systems that are no safety-

critical.

In social sciences, experiments are performed to validate

simulation models and there is also a concept of a model

credibility. An example how this is done is shown in [6] and

53

[7]. Also, for the simulation models in general, establishing

validity is a known issue.

Finally, the tests that we performed on the model using

the model-checker to establish the model’s validity are part

of the modeling practice in model-checking.

V. DISCUSSION AND CONCLUSION

The goal of this paper is to explore what non-formal

modelling and verification steps should be validated in order

to trust verification results. As we shown in our case study,

there are different roles and stakeholders involved and there

should be trust from all sides in the verification results.

For modelling the plant as a discrete system, we do no

have an established theory to use like for example in physics

or dynamic (control) systems where models and theories are

well established and validated. Moreover, a lot of domain-

specific knowledge that has to go into the model makes

it difficult to identify a generic modelling pattern, or even

impossible. It is always necessary to go into technical details

of the system while modelling. As a result, most of the

models are build from scratch. It is what Vincenti [8] called

a radical design. Accordingly, the validation argument needs

to be build from scratch as well.

As a ’way out’, we propose to generalize within narrow

classes of systems. In domain-specific cases, it is possible

to identify modelling decisions and elements that can serve

as guidelines and heuristics. In the case we presented, we

started from a more general taxonomy and recorded the

steps that will possibly useful for modelling the nexy system

generation.

Another lesson learned from our case study is, that

when it comes to increasing the stakeholders’ confidence

in the model, it can be a negotiation process. For complex

industrial systems, one model does not cover all the aspects

and the requirements, and for some analysis, a model that

is not ’perfect’ may be good enough.

Finally, there is a danger in explaining the model to the

stakeholders that are not experts in the language and the

methods that the modeller used. In our example, Uppaal

diagrams look very much like some of the state diagrams

the stakeholders used, but there are semantic differences that

can change the complete meaning of the model.

REFERENCES

[1] J. G. Hall and L. Rapanotti, “The discipline of natural design,”
in Proceedings of the Design Research Society Conference
2008, 16-19 July, 2008, Sheffield, UK. Sheffield Hallam
University Research Archive, 2008, 16-19 July 2008.

[2] M. Heemels and G. Muller, Eds., Boderc: Model-based design
of high-tech systems. Embedded Systems Institute, Eindhoven
The Netherlands, 2006.

[3] “UPPAAL home page,” http://www.uppaal.com.

[4] A. Lamsweerde, Requirements Engineering: From
System Goals to UML Models to Software Spec-
ifications. John Wiley, 2009. [Online]. Available:
http://books.google.com/books?id=AYk AQAAIAAJ

[5] S. Robinson and R. J. Brooks, “Independent verification and
validation of an industrial simulation model,” Simulation,
vol. 86, pp. 405–416, July 2010. [Online]. Available:
http://dx.doi.org/10.1177/0037549709341582

[6] K. M. Carley, “Validating computational models,” 1996.

[7] J. Thomsen, R. E. Levitt, J. C. Kunz, C. I. Nass, and
D. B. Fridsma, “A trajectory for validating computational
emulation models of organizations,” Computational &
Mathematical Organization Theory, vol. 5, pp. 385–
401, 1999, 10.1023/A:1009624719571. [Online]. Available:
http://dx.doi.org/10.1023/A:1009624719571

[8] W. G. Vincenti, What engineers know and how they know it:
Analytical studies from aeronautical history. Baltimore: Johns
Hopkins University Press, 1990.

54

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

