
Streamlining scenario modeling with

Model-Driven Development: a case study

Miguel Goulão, Ana Moreira, João Araújo, João Pedro Santos

Departamento de Informática, CITI, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

{miguel.goulao, amm, ja, joao.santos}@di.fct.unl.pt

Abstract—Scenario modeling can be realized through different

perspectives. In UML, scenarios are often modeled with activity

models, in an early stage of development. Later, sequence

diagrams are used to detail object interactions. The migration

from activity diagrams to sequence diagrams is a repetitive and

error-prone task. Model-Driven Development (MDD) can help

streamlining this process, through transformation rules. Since

the information in the activity model is insufficient to generate

the corresponding complete sequence model, manual refinements

are required. Our goal is to compare the relative effort of

building the sequence diagrams manually with that of building

them semi-automatically. Our results show a decrease in the

number of operations required to build and refine the sequence

model of approximately 64% when using MDD, when compared

to the manual approach.

Keywords–Scenario Modeling; Model Transformations; Model-

Driven Engineering

I. INTRODUCTION

Scenarios [1, 2] are widely used in Requirements Engineering
(RE) to represent paths of possible behavior of a use case.
Approaches using UML [3] represent scenarios through
activity [4] and sequence models [5]. While activity models are
mostly used in the preliminary stages of software development
process, sequence models tend to be used later, when detailed
descriptions of object interactions become necessary.

Some behavioral and structural abstractions present in
activity models can be reused automatically in sequence
models by means of transformations. Petriu and Sun proposed
a process to generate activity models from sequence models [6]
in a reverse engineering approach, where the source model is
more fine-grained than the generated model. This is useful
when handling legacy systems. However, in a context where
we first model the system at higher levels of abstraction and
then progressively move towards a more fine-grained models,
the solution proposed in [6] does not help. In [7] we discussed
how we can use Model-Driven Engineering (MDE) techniques
[8-10] to define transformations from activity to sequence
models. The generated models then may be refined to add
required details that are not present in activity models. Our goal
was to decrease the effort involved in modeling scenarios. For
this study, we assume that the activity model is correct and
models the original use case faithfully. However, in a general
case this may not be so, what would result in a need to remove
of modify elements in the generated sequence diagram.

In this paper, our goal is to conduct a case study to assess
the impact of our MDD approach to streamline scenario
modeling, with respect to its effort of construction, and

compare it with that of generating similar scenario models
manually. As a surrogate for effort, we use the number of
refinement operations (insertions and removals) performed
while developing the models. Our case study uses 11 scenarios
from the mobile media domain.

The models built following this MDD approach are also
potentially easier to trace back to the activity models (with the
help of the transformation rules) and are built using sequence
models design best practices, although a detailed discussion of
these benefits is outside of the scope of this paper.

The remaining of this paper is organized as follows. Section
II outlines transformation rules to map activity models into
sequence models and addresses the refinement of the generated
models. Section III introduces the supporting tool to implement
those transformations. Section IV illustrates our approach with
a scenario of a case study. Section V compares the effort of
modeling the scenario by hand with that of refining the
generated model and Section VI discusses related work.
Finally, Section VII concludes the paper and provides
directions for future work.

II. MIGRATING FROM ACTIVITY TO SEQUENCE MODELS

This section summarizes the transformation rules and the
refinements that can be applied to the generated model (for
further details, see [7]). We assume that the activity models are
deterministic.

A. Generating Sequence Models

Rule 1: Generating Objects in Sequence Models. Boundary
and control objects are created by default in sequence models
with the name of the activity model that represents the scenario
under study. In activity models, it is common to represent
access operations (read or write) to objects, with flows
between activities and objects. We map objects found on
activity models to entity objects in the sequence model. Actors
in a sequence model are generated to match actor swimlanes on
the activity model.

Rule 2: Generating Messages in Sequence Models. Each
activity in an activity model is mapped into a message in the
sequence model. Decomposable messages can then be refined
into a set of messages. Our approach uses sub-rules to identify
the source and target objects of the generated messages, i.e.,
which object is the caller and which is the callee.

 Rule 2.1: Object flows. The direction of the flow
connecting an activity to an object indicates if it is a
read or a write operation. For a write operation, a return
message with type void from the entity to the control

object is created. Read operations require a return
message with type not void, which is created from the
control to the entity object.

 Rule 2.2: Message name. Some message names
implicitly give information about the objects’ type
(boundary, control, or entity). For example, a message
with a name such as showMessage() is typically sent to
boundary objects to display messages to the user.

 Rule 2.3: Swimlanes. When a message is generated
from an activity that is inside an actor’s swimlane, the
source object of that message is of type actor. As actors
only access interfaces, the pattern is that the source and
target of the message are the actor and boundary
objects, respectively.

 Rule 2.4: Redirecting Messages. Boundary objects
redirect messages from actors to control objects, and
vice-versa. Messages to achieve this goal are created
automatically.

Rule 3: Generating Sequence Model Operators. Sequence
models may use several kinds of fragments: ALT (or
alternative), PAR (or parallel), OPT (optional), and LOOP.
Each of these fragments is generated by sub-rules.

 Rule 3.1: Generating PAR Operators. A PAR operator
is created in the sequence model for each pair of fork-
join elements is in the activity model. The elements
between fork and join are included in a PAR fragment.

 Rule 3.2: Generating ALT, OPT and LOOP
Operators. Algorithms for graphs with cycle detection
mechanisms can be used to detect cycles in an activity
model. Activity models can be viewed as graphs, where
activities and flows between activities are seen as nodes
and edges, respectively. For each cycle detected, a
LOOP operator is created with a guard condition,
respective messages and sub-operators. If the number of
output flows is 1, an OPT fragment is created with its
guard condition. If the number of outgoing flows is
greater than 1, a fragment ALT is created. Within this
fragment, there should be an alternative for each
outgoing flow with its guard condition. The elements
inside the flow of each guard are moved to the
respective fragment.

B. Refining Sequence Models

After generating the sequence model, the domain analyst
must refine it. This is needed because sequence models are
more fine-grained than activity models and, hence, additional
information should be provided to the generated model. The
modeler should follow these typical refinements: add
arguments and types; decompose a message to a set of
messages; add return messages; add variables; initialize guards;
delete undesired elements.

III. TOOL SUPPORT

We implemented a plug-in for the Eclipse platform [11] to

support the transformations described in the previous section.

We used the Eclipse Modeling Framework (EMF) and UML2

plug-in for Eclipse
1
. After this generation, the user can use the

EMF environment to refine the sequence model.

A traceability metamodel is used to link abstractions from

the activity to sequence models (Figure 1). This metamodel is

composed of activity (left) and sequence (right) model

elements. Metaclasses are used to link activity to sequence

abstractions (center). The central abstractions unify the

concepts present on activity and sequence models and reflect

the result of the transformation. The metamodel element with

name Activity-Message allows preserving the connection

between activities and the sequence model messages that are

generated. The element Object–EntityObject connects the

objects found on the activity model and the generated entity

object in the sequence model. Finally, the element Swimlane-

Actor shows how swimlanes in the activity model are the

source for the actor objects.

Figure 1 - Activities and Sequence Models Unified Metamodel

IV. APPLICATION TO A CASE STUDY

Mobile Media [12] is a software system offering operations
on photos, music and videos on mobile devices. The use case
model for this case study is shown in Figure 2.

Figure 2 – Use case model for the Mobile Media

The user can manipulate data, such as adding and deleting
media, configure a media file as a favorite, add or delete media
albums. He can access the data on the device, list albums,
media, view the favorites media or eventually play a media file

1 www.eclipse.org/uml2/

 uc Mobile Media

User

Label Files

List Albuns

Play Media

Delete

Album

Send Media

Send Media v ia

SMS

Send Media

v ia Email

Create

Media
Delete

Media

Create

Album

Add Media

to Album

List Media

Configure

Fav orite Media

http://www.eclipse.org/uml2/

(play a video, see a photo or hear a sound). Finally, the user
can share the media data with other mobile media users, by
sending messages. These messages can be sent via an SMS or
Email protocol.

For illustration purposes consider the Send Media via SMS
scenario (Figure 3). In Send Media via SMS, the user starts by
selecting the Send Media via SMS option, then the system asks
for media to send. The user selects the media to send in the
message. Then, he specifies the target number of the message.

This information is enough to send the message to the target
mobile device (activity Send Message). If the message is sent
without errors, it is saved locally in the Mobile Media system
and “Message Sent Successfully” is shown to the user.

We generate the sequence model depicted in Figure 4 for
the scenario Send Media via SMS applying the rules discussed
in Section II-A. To illustrate the transformation process, some
elements in Figure 4 contain a red numbered circle to denote
part of the transformation rules that were applied.

Figure 3 - Activity model for Send Media via SMS

Table I shows how each numbered element was created and
the corresponding transformation rule. After the generation of
the candidate sequence model, some refinements must be done
to improve it. The following shows some of the possible
refinements for this example:

 The message selectMedia() can be completed with an

argument of type String, denoting the path of the

selected media.

 The message selectTargetNumber() can be completed

with an argument of type integer, denoting the

destination number of the message.

 The message sendMessage() can be completed with

two arguments: the path of the selected media and the

destination number of the message. The return of that

message should also be assigned to a variable

sendError which will be evaluated on the LOOP

operator.

 The variable retry of the loop fragment must be

initialized to be evaluated on the first iteration of the

loop. In this case, the value should be retry = yes in

order to execute the loop the first time. The

answerRetry() return value should also be assigned to

the retry variable.

The result of the refinements is presented in Figure 5.

TABLE I. RULES APPLIED FOR SEQUENCE MODEL GENERATION

Number Rule Applied

1 Rule 2.2. This message was created from the activity Select Send Media Via SMS. The source of the message is the actor object, since it was the first

generated message.

2 Rule 2.4. This message was created using the rule that redirects a message from the actor object to the control object.

3 Rule 2.3. This message has interface as the target object since the message name fits with the pattern ShowMessage

4 Rule 2.1. This message was created with name Media since the last created message denotes a read operation.

5 Rule 2.2. The name of this message was derived from an activity with the same name. This message has the control object as source and target, since

no other rules were applicable in this situation.

6 Rule 3.2. This fragment was created as a loop was detected in a decision node with an outgoing flow with guard [sendOK = no]. Since the cycle

includes also the outgoing flow with guard [yes] both conditions must be true to enter the loop fragment.

7 Rule 3.2. This fragment was created since a decision node with two outgoing flows and no loops were detected on the activity model.

8 Rule 2.1. This message was created with type void since the previously created message denotes a write operation.

1

2

3

4

5

7

6

8

Figure 4 - Sequence model for the scenario Send Media Via SMS

1

2

3

4

5
6

7

8

Figure 5 - Refined sequence model for the scenario Send Media Via SMS

V. VALIDATION AND DISCUSSION

In this section, our goal is to analyse sequence models built

with and without our sequence model generation approach, for

the purpose of comparing model construction, with respect to

the relative effort, from the point of view of modellers, in the

context of the Mobile Media case study.

Our research hypothesis is that the usage of our approach

allows a significant effort reduction, when compared to

building sequence models from scratch. To compare the effort

of creating a sequence model from scratch with that of using

our approach to generate a model and then refining it, we

associate each sequence model element action with a cost.

Consider the following actions made in a sequence model:

(i) removal of any kind of element;

(ii) insertion of a variable/argument name;

(iii) insertion of a variable/argument type;

(iv) insertion of an operator (PAR, ALT, etc.) and

respective guard conditions;

(v) insertion of an object and its name;

(vi) insertion of a message and the corresponding

procedure call name (if necessary).

For simplicity, assume all these actions have a similar time

cost and assign one unit of time cost to each of them. If we

were to build the model presented in Figure 5 from scratch,

this would require 72 editions. In contrast, if we start by

generating the model in Figure 4 and then apply a sequence of

editions, we only need 32 editions (30 additions + 2 removals)

to obtain the model in Figure 5. The effort has decreased from

72 to 32 editions, which corresponds to a reduction of around

55%. As part of our validation effort, more scenarios were

developed and sequence models generated successfully, in the

context of the Mobile Media case study. To simplify, we

consider all types of action as having the same cost. Table II

summarizes this information, showing for each scenario:

(i) number of elements that the sequence model contains;

(ii) number of insertions necessary during refinement;

(iii) number of deletions performed during refinement;

(iv) total number of refinements (insertions + removals).

If we consider a model with n elements, the assumption is

that the effort for building that model is the effort for making

n editions, corresponding to the n additions required for

building the model, when we are starting with an empty

model. Note that we assume that the effort for any extra

edition to the model is fixed, so that the overall effort is

linearly proportional to the number of editions.

The effort to create the listed sequence models from

scratch is 270 editions (the number of elements), while the

total cost to refine them is 97 (the number of refinements).

The effort has decreased from 270 to 97 editions, a value that

shows a significant improvement of around 64%. We can also

observe that most refinement actions are insertions (88) rather

than deletions (9). This means that most of the automatically

generated elements are correct. Additional edits to the

generated models are dominated by insertions, with relatively

few deletions. In fact, 5 of the scenarios required no deletions

at all.

TABLE II. NUMBER OF ELEMENTS AND REFINEMENTS FOR EACH SCENARIO

Scenarios

N
u

m
b

er
 o

f

E
le

m
en

ts

N
u

m
b

er
 o

f

In
se

rt
io

n
s

N
u

m
b

er
 o

f

R
em

o
v
a

ls

N
u

m
b

er
 o

f

R
ef

in
em

en
ts

Send Media via SMS 72 30 2 32

Send Media via Internet 74 31 2 33

Create Media 20 4 1 5

Delete Media 8 2 0 2

Create Album 20 4 1 5

Add Media to Album 32 6 2 8

List Media 8 2 0 2

Configure Favourite Media 10 2 1 3

List Albums 8 2 0 2

Play Media 10 3 0 3

Delete Album 8 2 0 2

Total 270 88 9 97

Table III presents descriptive statistics on our sample,

namely the number of scenarios, mean, standard deviation,

minimum and maximum values, skewness and kurtosis, for

elements, insertions, deletions, and refinements (i.e. insertions

and deletions). The relevant metrics for testing our research

hypotheses, emphasized in bold in table II, are the number of

elements in a sequence model designed from scratch

(Elements), and the total number of refinements required for

building a sequence model starting from the model generated

with our approach (Refinements). The former represents the

effort in the baseline approach to build sequence models,

while the latter represents the effort of refining sequence

models from the models built using our approach.

TABLE III. DESCRIPTIVE STATISTICS

Metric N Mean SDev Min Max Skew Kurt

Elements 11 24.55 25.125 8 74 1.570 1.099

Insertions 11 8.00 11.198 2 31 1.869 1.916

Deletions 11 0.82 0.874 0 2 0.409 -1.621

Refinements 11 8.82 11.856 2 33 1.821 1.791

In order to test our research hypothesis, we start by

specifying it in terms of a null and an alternative hypothesis.

H0: The two samples come from identical populations,

meaning that our approach does not reduce time

costs in scenario modeling.

H1: The two samples come from different populations,

meaning that our approach reduces time costs in

scenario modeling.

The first thing to check is whether or not our two samples

have a normal distribution. The descriptive statistics hint to an

asymmetric (right-skewed) distribution in both samples and,

therefore to a non-normal distribution.

Table IV summarises the results of two normality tests: the

Kolmogorov-Smirnov, with Lilliefors Significance correction

[13], and the Shappiro-Wilk tests [14]. The null hypothesis in

both tests is that the samples have a normal distribution. The

alternative is that the samples have a non-normal distribution.

Both tests confirm that the distributions of Elements and

Refinements are not normal, with p < 0.01.

TABLE IV. NORMALITY TESTS

 Kolmogorov-Smirnov Shapiro-Wilk

Metric Statistic df Sig. Statistic df Sig.

Elements 0.229 11 0.007 0.690 11 0.000

Refinements 0.354 11 0.000 0.608 11 0.000

The outcome of the normality tests leads us to use a non-

parametric test to test our research hypothesis. We will use the

Wilcoxon Signed Rank test [15] to determine whether the

differences among added elements and refinements of our

paired samples are statistically significant. This test is a non-

parametric alternative to the paired samples Student’s t-test

[16]. The null hypothesis is that the number Elements and

Refinements could come from the same sample. The

alternative is that they come from different samples.

Table V presents the output of this test’s ranks. The

differences are separated into 3 groups: Negative Ranks

(Refinements < Elements), Positive Ranks (Refinements >

Elements) and Ties (Refinements = Elements). Note that all

cases present negative ranks. In other words, in all cases we

have fewer Refinements than Elements.

TABLE V. RANKS

 N Mean Rank Sum of Ranks

Refinements -

Elements

Negative Ranks 11 6.00 66.00

Positive Ranks 0 0.00 0.00

Ties 0

Total 11

Table VI presents the test statistics. With p = 0.003 < 0.01,

we can reject the null hypothesis and accept the alternative.

TABLE VI. TEST STATISTICS

 Refinements-Elements

Z -2.952

Asymp. Sig. (2-tailed) 0.003

In summary, the results seem to indicate that our approach

decreases costs (mean rank of 0.00 vs. mean rank of 6.00).

The Wilcoxon signed rank test shows that the observed

difference between both measurements is significant. Thus we

can reject the null hypothesis that both samples are from the

same population, and we may assume that using our approach

leads to a significantly lower cost in building sequence

diagrams, when compared to the alternative of building them

from scratch.

Figure 6 further illustrates our point. It depicts a graph

where, for each scenario, the number of elements that it is

composed of is represented by the vertical coordinate (it

reflects the number of actions needed to construct the scenario

model from scratch) and the number of actions needed to

refine the scenario when our approach is used is represented as

the horizontal coordinate. Figure 6 also shows the line that

best fits the drawn points. We can see that the different

scenarios differ substantially in terms of their number of

elements. Functionalities such as List Media, List Albums and

Delete Media, are simple functionalities of the mobile media.

Other functionalities such as Send Media via SMS and Send

Media via Internet are functionalities that involve more

objects and communications (through messages) among them.

All the points are relatively close to the line that best fits

these points, meaning that this line characterizes well the

relationship between the number of model elements of a

scenario, and the number of elements needed to refine in the

case our approach is applied. We could analyze these points

with more detail by applying theory of linear regression.

However, it is visually clear that the line fits well with the

observations. There is a linear relationship between the

number of model elements of a scenario and the number of

actions needed to refine that scenario when our approach is

applied. Indeed Elements and refinements have a Spearman

correlation of 1.000, significant at 0.01 level (2-tailed). The

slope of this line also shows that as the number of elements of

a scenario increases, the number of refinements also increases

linearly. However, the number of refinements needed is only a

percentage of the total number of the scenario model elements

(around 64%, as we saw previously). Having a linear increase

means that our approach is also scalable or, in other words,

that the relative number of refinement actions does not

increase unexpectedly as the number of scenario model

elements increases.

Figure 6 - Graphic showing Number of Elements vs Number of Refinements

In any experimental-based validation effort, one must

always consider potential threats to validity, limiting our

capacity of generalization of the statistical test results for all

the cases, all the software domains, all the scenarios.

The statistical tests presented previously, were performed

on sequence diagrams produced in the context of the Mobile

Media system, which is a system that interacts intensively and

mainly with the user to access and write data. This means that

the interfaces, processes and data tiers of each scenario are

well established and thus, sequence models are good models

to define and represent bounds. In the context of other

domains or scenarios, if these bounds are not so clear, the

results can be different. Further experimentation in those

domains would be required to assess this approach on those

domains.

Another threat to validity is related to the fact that, in order

to obtain such good results, the names of the activities should

follow some patterns, to enable using the set of transformation

rules defined. Objects in activity diagrams should also be

defined to represent readings and writings since some of the

transformation rules need this information to be present in the

model.

The usage of a non-weighted effort unit for insertions and

deletions which is agnostic to whether these are made in the

context of a model built from scratch, or in the context of a

model refinement is also a potential threat. This simplification

should not affect significantly the outcome of this validation,

as deletions represent less than 10% of all the refinements

performed upon the generated sequence models. Nevertheless,

further research is required to calibrate the efforts of deletions,

in contrast with those of insertions, as well as the impact of

building the model from scratch vs. refining a model generated

with our MDD transformations.

A related issue concerns the relative weight of editing a

model built from scratch when compared to editing a

generated model. When editing a generated model (or, for that

matter, a model built by someone else), we might also want to

consider the time invested in understanding the existing

model, before making changes to it. Again, further research is

required to assess the extent to which that effort is

significantly different from the one spent when editing a

model built manually.

One important limitation of our approach is related to the

reuse of refinements performed by the user when the sequence

model is re-generated. The refinements done previously are

currently lost and must be redone by the modeller. We are

now working to support reuse of refinement information as a

future step.

VI. RELATED WORK

In [17], the authors present an algorithm to automatically

generate UML statecharts from a collection of scenarios

represented using UML sequence models. In this work, they

address several issues, such as detecting conflicts arising from

the merging of independently developed sequence models and

find behavioural similarities between different sequence

models. They do this at the algorithm or transformation level.

In [18], Activity Models are extended with process goals

and performance measures to make them conceptually visible.

They also provide transformation rules to BPEL (Business

Process Execution Language) to make the measures available

for execution and monitoring. In this work, the additional

notation defined, for the activity models, allow both models

being semantically closer, which made the definition of the

transformation rules easier.

Finally, in [19] the authors propose to generate

automatically, through model transformations, an activity

model representing the use case scenario from a textual

template. In this work, we observed that the semantics

inherent to the abstractions present on the template (if-then-

else, requirements numeration indicating parallelism) and on

the activity model were very close, which resulted in a

relatively trivial set of transformation rules.

In our approach, we have not extended the activity and

sequence models standard notation; we concentrate our effort

on the definition of transformation rules to facilitate the semi-

automatic generation of sequence models from activity

models. Both models have different levels of granularity,

representing different system perspectives, which makes the

definition of transformation rules more difficult. However,

since some information between them overlaps, such as, for

example, conditional behaviour or concurrency, it is possible

to automate part of the process using model transformations.

The evaluation performed in this case study uses the

number of editions made in a sequence diagram as a surrogate

for the effort required for building it. In the case of the

sequence models built manually, this corresponds to the

number of model elements used in the model. The idea of

using model elements as surrogates for effort has been used in

several occasions. For example, Use Case Points have been

used to predict the development effort for software systems

[20]. This approach was influenced by a previous approach for

effort prediction (Function Points Analysis [21]). These are

two of the many examples in the literature where a high level

view of a software system is used for estimating the effort

required for building it. In that sense, both Use Case Points

and Function Points are also used as surrogates for effort.

As noted in section V, our assessment of the quality of the

generated models is that the vast majority of the generated

model elements are kept during model refinement, which

suggests a high quality of the model transformation. Indeed,

the low number of element removals during model refinement

is an indicator of the quality of the model generator. In a

nutshell, we are able to generate a significant portion of the

model, with few mistakes. There are other possible

perspectives on model transformation quality, not followed in

this paper. For example, the quality of the input model can be

contrasted with that of the output model [22], although this is

not applicable for our context, as the input and output models

are at different abstraction levels. Another perspective is to

assess the quality of the model transformation rules

themselves, as proposed in [23] and [24]. Again, these metrics

are not directly helpful for our research question (essentially,

can we decrease the effort in model building without

sacrificing the quality of the final model?), as they focus on

the quality of the transformation rules, from a complexity

perspective. The same applies to metrics-based approaches to

assessing the efficiency of model transformations [25]. While

complexity and efficiency of model transformations are

relevant concerns, we are more interested in the deliverables

of the transformation process, and how they can help us

speeding up modeling activities.

VII. CONCLUSIONS AND FUTURE WORK

Modeling scenarios with activity and sequence models of a

system can be semi-automated by using transformation

techniques, a key concept in MDE. By using transformations,

it is possible to reuse abstractions that were directly mapped

from one model to another. This frees the burden of the

modeller from creating similar abstractions that can be

automatically generated and also avoids modeling errors,

concentrating the effort on the refinement stage of generated

artefacts. Transformation rules were defined to generate

sequence models artefacts from activity models artefacts. Our

transformational rules support the automation of the creation

of objects, messages and operators for sequence models from

the information contained in activity models.

Our initial validation effort, through the case study,

described in Section IV, provided encouraging feedback

concerning the desired effort reduction. Indeed, the number of

edits required for building a sequence model from the activity

model decreased by around 64%, when using our semi-

automatic transformation approach. The advantages, from a

quality point of view, include: (i) a reduction in the effort

building the sequence model, (ii) increased traceability among

models (through the semi-automatic translation rules), (iii)

error prevention when migrating from different scenarios

notations, and (iv) support for reuse of sequence models

design best practices, thus providing a good stepping stone for

high quality scenario modeling.

 For future work, we plan to implement the transformation

rules described in this paper, and apply our approach in

projects where real case studies are available in order to

further validate the claim about time costs improvement

provided by our approach. Finally, we plan to extend our

approach to support reuse of refinement information.

ACKNOWLEDGMENT

The research described in this paper was partially funded
by European AMPLE Project IST-33710 and CITI – PEst -
OE/EEI/UI0527/2011, Centro de Informática e Tecnologias da
Informação (CITI/FCT/UNL) - 2011-2012) – for the financial
support for this work.

REFERENCES

[1] I. F. Alexander and N. Maiden, Scenarios, Stories, Use Cases: Through

the Systems Development Life-Cycle: John Wiley and Sons, ISBN: 0-470-

86194-0, 2004.
[2] M. Karen and H. Karan, User-centered requirements: the scenario-based

engineering process: Lawrence Erlbaum Associates, Inc., ISBN: 0-8058-

2065-5, 1997.
[3] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language User Guide: Addison Wesley Longman Inc., ISBN: 0-201-

57168-4, 1998.
[4] M. Alférez, U. Kulesza, A. Sousa, J. Santos, A. Moreira, J. Araújo, and

V. Amaral, "A Model-Driven Approach for Software Product Lines

Requirements Engineering," Proc. 20th International Conference on
Software Engineering and Knowledge Engineering, Knowledge Systems

Institute Graduate School, San Francisco Bay, USA, July 1-3, 2008, pp.

779-784.
[5] W. Hongyuan, Z. Ke, F. Tie, C. Haiyan, and Z. Yinshi, "Synthesizing

Statecharts Through Sequence Diagrams Analysis," Proc. Conference on

Software Engineering and Applications, IASTED/ACTA Press, 2004, pp.
617-622.

[6] D. C. Petriu and Y. Sun, "Consistent behaviour representation in activity

and sequence diagrams," Proc. UML 2000 - The Unified Modeling
Language. Advancing the Standard: Third International Conference,

Springer Berlin / Heidelberg, York, UK, October 2-6, 2000, pp. 359-368,

doi: 10.1007/3-540-40011-7_27.
[7] J. P. Santos, A. Moreira, J. Araújo, and M. Goulão, "Increasing Quality in

Scenario Modelling with Model-Driven Development," Proc. 7th

International Conference on the Quality of Information and
Communications Technology (QUATIC'2010), IEEE Computer Society,

Porto, Portugal, September 29 - October 2, 2010, pp. 204-209, doi: DOI

10.1109/QUATIC.2010.36.
[8] M. Volter and T. Stahl, Model-Driven Software Development. Glasgow,

UK: Wiley, ISBN: 0-470-02570-0, 2006.

[9] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software
Development. Berlin, Germany: Springer, ISBN: 354025613X, 2005.

[10] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA Distilled Principles of

Model-Driven Architecture. Boston, MA, USA: Addison-Wesley, ISBN:
0-201-78891-8, 2004.

[11] D. Carlson, Eclipse Distilled: Addison-Wesley Professional, ISBN: 978-

0321288158, 2005.
[12] T. Young, "Using AspectJ to Build a Software Product Line for Mobile

Devices," Master of Science Dissertation, advisor: G. Murphy, The

University of British Columbia, 2005, doi: 10.1.1.94.9977.
[13] H. W. Lilliefors, "On the Kolmogorov-Smirnov test for normality with

mean and variance unknown," Journal of the American Statistical

Association, vol. 62, No. 318, pp. 399-402, June, 1967.
[14] S. S. Shapiro and M. B. Wilk, "An Analysis of Variance Test for

Normality (Complete Samples)," Biometrika, vol. 52, No. 3/4, pp. 591-
611, December, 1965, doi: 10.1093/biomet/52.3-4.591.

[15] F. Wilcoxon, "Individual Comparisons by Ranking Methods," Biometrics

Bulletin, vol. 1, No. 6, pp. 80-83, December, 1945.
[16] D. W. Zimmermann, "A Note on Interpretation of the Paired-Samples t

Test," Journal of Educational and Behavioral Statistics, vol. 22, No. 3,

pp. 349-360, September, 1997, doi: 10.3102/10769986022003349.
[17] J. Whittle and J. Schumann, "Generating Statechart Designs from

Scenarios," Proc. International Conference on Software Engineering,

ACM, Limerick, Ireland, June 4-11, 2000, pp. 314-323, doi:
10.1145/337180.337217.

[18] B. Korherr and B. List, "Extending the UML 2 Activity Diagram with

Business Process Goals and Performance Measures and the Mapping to
BPEL," Proc. 25th International Conference on Conceptual Modeling

(ER), Springer, Tucson, AZ, USA, November 6-9, 2006, pp. 7-18, doi:

10.1007/11908883_4.

[19] J. J. Gutiérrez, C. Nebut, M. J. Escalona, M. Mejías, and I. M. Ramos,

"Visualization of Use Cases through Automatically Generated Activity

Diagrams," Proc. Model Driven Engineering Languages and Systems
(MoDELS 2008), Springer-Verlag Berlin Heidelberg, Toulouse, France,

September 28 - October 3, 2008, pp. 83-96, doi: 10.1007/978-3-540-

87875-9_6.
[20] B. Anda, H. Dreiem, D. I. K. Sjøberg, and M. Jørgensen, "Estimating

Software Development Effort Based on Use Cases - Experiences from

Industry," Proc. «UML» 2001 — The Unified Modeling Language.
Modeling Languages, Concepts, and Tools. Fourth International

Conference, Springer-Verlag Berlin Heidelberg, Toronto, Canada, 1-5

October, 2001, pp. 487-502, doi: 10.1007/3-540-45441-1_35.
[21] A. J. Albrecht, "Measuring Applications Development Productivity,"

Proc. IBM Applications Development Division Joint SHARE/GUIDE

Symposium, Monterey, CA, USA, 1979, pp. 83-92.
[22] M. Saeki and H. Kaiya, "Measuring Model Transformation in Model

Driven Development," Proc. CAiSE Forum, CEUR Workshop

Proceedings, 2007.
[23] A. Vignaga, "Metrics for Measuring ATL Model Transformations,"

Universidad de Chile Technical Report TR/DCC-2009-6, 2009.

[24] M. F. van Amstel, "The Right Tool for the Right Job: Assessing Model
Transformation Quality," Proc. IEEE 34th Annual Computer Software

and Applications Conference Workshops, IEEE Computer Society, Seoul,

Korea, July 19-23, 2010, pp. 69-74, doi: 10.1109/COMPSACW.2010.22.
[25] M. F. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires, "Performance in

Model Transformations: Experiments with ATL and QVT," Proc. Theory

and Practice of Model Transformations, 4th International Conference,
ICMT 2011, Springer Berlin / Heidelberg, June 27-28, 2011, pp. 198-212,

doi: 10.1007/978-3-642-21732-6_14.

