
Title Delivering mobile cloud services to the user: description,
discovery, and consumption

Authors O'Sullivan, Michael J.;Grigoras, Dan

Publication date 2015-06

Original Citation O'SULLIVAN, M. J. & GRIGORAS, D. 2015. Delivering Mobile Cloud
Services to the User: Description, Discovery, and Consumption.
2015 IEEE International Conference on Mobile Services (MS). New
York City, USA, 27 Jun - 2 Jul. 2015. IEEE. pp. 49-56. doi:10.1109/
MobServ.2015.17

Type of publication Conference item

Link to publisher's
version

10.1109/MobServ.2015.17

Rights © 2015 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-26 06:21:55

Item downloaded
from

https://hdl.handle.net/10468/1965

https://hdl.handle.net/10468/1965

Delivering Mobile Cloud Services to the User:
Description, Discovery, and Consumption

Michael J. O’Sullivan, Dan Grigoras
Department of Computer Science

University College Cork, Cork, Ireland
{m.osullivan, grigoras}@cs.ucc.ie

Abstract – The mobile cloud computing paradigm can offer
relevant and useful services to the users of smart mobile devices.
Such public services already exist on the web and in cloud
deployments, by implementing common web service standards.
However, these services are described by mark-up languages,
such as XML, that cannot be comprehended by non-specialists.
Furthermore, the lack of common interfaces for related services
makes discovery and consumption difficult for both users and
software. The problem of service description, discovery, and
consumption for the mobile cloud must be addressed to allow
users to benefit from these services on mobile devices. This paper
introduces our work on a mobile cloud service discovery solution,
which is utilised by our mobile cloud middleware, Context Aware
Mobile Cloud Services (CAMCS). The aim of our approach is to
remove complex mark-up languages from the description and
discovery process. By means of the Cloud Personal Assistant
(CPA) assigned to each user of CAMCS, relevant mobile cloud
services can be discovered and consumed easily by the end user
from the mobile device. We present the discovery process, the
architecture of our own service registry, and service description
structure. CAMCS allows services to be used from the mobile
device through a user's CPA, by means of user defined tasks. We
present the task model of the CPA enabled by our solution,
including automatic tasks, which can perform work for the user
without an explicit request.

Keywords: mobile cloud, middleware, services, description,
discovery, consumption

I. INTRODUCTION
Mobile cloud computing (MCC) research often explores

the feasibility and methods for offloading the required
computation by demanding applications from the mobile
device to the cloud. By performing this offload, applications
that could not run on the mobile device due to constraints such
as limited CPU processing capability, low memory and
storage capacity, can now be delivered to users of these
devices. However, implementing the MCC model faces
various difficulties of its own, such as continuous network
connectivity requirements, and the high energy usage as a
result. These demands add to the complexity of this model.
Our approach to the mobile cloud focuses on an alternative
route, by making use of web services already deployed in the

cloud. Such services form the basis of service-oriented
architecture (SOA), and can be used for delivering useful and
relevant functionality and information to the mobile user.

As with other MCC application models, taking an SOA
approach presents problems of its own. Services deployed in
the cloud conform to web service standards, such as the
Simple Object Access Protocol (SOAP) [1], and
Representational State Transfer (REST) [2]. How to describe,
discover, and consume these services from a mobile device,
presents several challenges. In terms of description, services
are often described using the Web Services Description
Language (WSDL), which is XML-based, and cannot be
understood by non-specialist users, and therefore, on its own,
is useless for describing a service to an end user. As a result of
these XML-based descriptions, the user has traditionally been
unable to take part in the discovery process. However, it is
widely agreed that XML was never supposed to be directly
presented to end users, and is only for use by software and
developers; a new approach is therefore required. RESTful
services often do not have associated descriptions at all, aside
from API documentation. In the area of service discovery,
existing research has shown that automatic discovery of
appropriate services is simply not mature enough for
widespread use, and is therefore still a very manual,
developer-oriented process. For service consumption,
solutions must be able to work with various different kinds of
services and web service technologies. Clients can be
developed to access SOAP and RESTful services. To-date,
standards do not exist for comparing similar services, nor for
invoking services that may take similar input parameters, and
output similar content.

We address these problems by implementing our own user-
oriented service discovery process, which allows discovery of
existing web services from our own service registry solution.
The primary contribution of this particular registry is the
means by which stored service description records are
structured; the design goal being a user-oriented approach.
The requirement for this work results from our MCC
middleware, Context Aware Mobile Cloud Services (CAMCS)
[3]. Each user of CAMCS is assigned their own Cloud
Personal Assistant (CPA) [4]. By means of a thin client

application running on the mobile device, an end-user can
request a task to be completed by their CPA, and view the
result, saved at the CPA, at a later time. The CPA uses cloud-
based services that it has discovered to complete these tasks.
Users need to be able to select from discovered cloud-based
services capable of completing their task, in a user-friendly
way. His/her CPA will use the selected service for the task.
Therefore, our solution is demonstrated through user CPAs.

The motivation behind CAMCS and user CPA’s, is to
deliver mobile cloud services to the user, in a disconnected
fashion – if the user looses network connectivity, breaking
their connection to cloud-based infrastructure, work assigned
to the CPA will continue to execute without interruption. As
the CPA works with cloud-based services, this approach to
MCC brings the advantages of low data transfer between the
mobile device and a CPA, and no requirement for a
continuous connection between them, resulting in device
energy savings. This is in comparison with other MCC
solutions, which offload code-bases or virtual machines to
cloud infrastructure, and require continuous connection and
frequent data transfer. The focus of this work is in the
problems of discovery and use of cloud-based services, by the
mobile user, with their CPA.

In this paper, we introduce our MCC registry model, along
with the service description structure used to store service
information within. We present how a CPA uses our solution
to discover services by querying the registry; a user can then
choose from among these whichever service they believe
suitable for the task. We show how the data required for
consuming the service is collected from the user, and how a
service is consumed for the purposes of completing a task. We
will also present the model used by the CPA, for representing
user tasks, and how these tasks run with discovered services.
Enabled features are also presented, such as automatic task
execution, which allows the CPA to execute tasks without any
request from the user, enabling disconnected operation.

The remainder of this paper is organised as follows;
Section II describes the MCC service registry and the structure
of service descriptions used. Section III will present the
discovery and consumption process used by the CPA. Section
IV will present the task model of the CPA that uses our
registry solution. Section V discusses related work, followed
by conclusions in Section VI.

II. MCC SERVICE REGISTRY FOR USER ORIENTED
SERVICE DESCRIPTIONS

Many services providing various functionalities already
exist in the cloud. These conform to existing web service
access technologies, and service registries exist containing
descriptions of these services; these are not designed for
human interaction. By means of the CPA, mobile users can
take advantage of these services, stored in our own registry
with our user-oriented description format. The user-friendly
descriptions will allow an average user with little or no
technical experience to easily find and use cloud-based
services. We will first present the registry implementation,
followed by the service description structure used to store
service records.

A. The Service Registry
The service registry implementation is a JavaEE based

application that is deployable to any application container
running on a cloud-based server. The registry provides an API
for querying services by search terms, which then returns a list
of matched services. The registry is built on top of a NoSQL
database, MongoDB. A NoSQL database was chosen because
it is a document based data-store. Therefore, each service
record is represented by a document in the database. This is
easier to work with than having several various tables in a
relational database such as MySQL, which need to cross-
reference each other.

The search operation takes a string-based query provided
by the user. The Apache OpenNLP [5] library is used to
tokenise the query, and this is matched against a set of
descriptive terms that are stored as part of each service record
within the registry (discussed further in Section III). The
results of the query, which will contain a list of matching
services found in the registry, are returned to the caller in
JSON format. The search algorithm of the registry can be
modified in the future to include semantic matching
techniques between the user query and the descriptive terms.
For the time being, the current approach has proved to be
more effective than querying a UDDI registry, which we used
in a previous work [4]. The limited scope for querying with a
UDDI registry (exact or approximate match queries on service
names) was one of the issues that drove the creation of our
own solution.

Service providers or developers need to be able to add
services into the registry in order for users to find them.
Currently, another of our API endpoints allows developers to
add their services to the registry by means of a HTTP PUT
request; if the service is described according to the format by
which we store services in the registry, the service will be
added. The service description will again be marked-up in
JSON and sent in the body of the HTTP request. Future
possibilities we are considering include automatic converters
to extract the required information from existing WSDL files
in order for them to be automatically added to our registry.
Another possibility includes a web-based interface where
developers can describe their service without having to
provide any existing description file for the service. This
would be far more appropriate for RESTful based services,
which typically do not use service description files. Both of
these approaches will allow existing web services to be added
to the registry with little additional effort; they would not need
to be manually converted to our own format.

The registry, along with CAMCS, is currently deployed on
the IBM Bluemix platform, which is built on CloudFoundry.

B. Service Description Structure
The structure of the service descriptions we use within our

registry gives power and flexibility to our MCC service
solution more so than the registry itself – see Fig. 1. The aim
of the descriptions in this registry is that they will allow
simple user interaction to discover and utilise a service, with
no technical details or mark-up of any kind presented to the
user. The registry will store references to two types of service,

Fig. 1. Service Structure. Services contain ServiceMethods, which in turn contain Parameters. Each entity contains user-friendly names and
descriptions for use during the discovery and service selection process by the user. In this implementation, we have placed our focus on
RESTful services, and specific entities for these services can be seen.

SOAP and RESTful. In our current implementation, we have
only used RESTful services for evaluation. Ultimately, the
high level descriptions will be the same for both.

1) Service

A Service is simply a high level record/abstraction for a
service offered by a provider. A Service features a name, a
description, and a provider. These are in place for human
consumption in the service discovery process. The Service
abstraction also features a type, which can either be “soap” or
“rest”, indicating which web service technology is used to
implement the service. As described in the previous
subsection, a Service also contains a collection of descriptive
terms that can be specified by the developer. The name and
description are also queried for matching terms in the query,
along with the collection of descriptive terms. A Service
contains a collection of several ServiceMethods.

2) ServiceMethod

A ServiceMethod record corresponds to a
function/operation that is offered as part of the service. If one
were to compare with WSDL, there is one ServiceMethod for
each operation. A ServiceMethod, like the Service record, also
features a name and description. These are also high-level
descriptions for human consumption in the discovery process,
and describe what the operation does. They also feature a
path, which is the URL endpoint for calling that
ServiceMethod as a function/operation, over HTTP. Where the
URL takes parameters, these are represented in the path string
with “$” placeholders, such as /users/get/$userid.
ServiceMethods also feature a type, which, for RESTful
services in this implementation, represents which HTTP verb
the ServiceMethod will respond to (a
GET/PUT/POST/DELETE request). A Result Template URL
can also be found in a ServiceMethod record. This is a URL to
a HTML template webpage, which the service developer
specifies. This template will be used to display the service
results, and can be customised to a company’s own branding.

Results are described in more detail in Section IV. Finally, a
ServiceMethod features a collection of Parameters.

3) Parameter

As the name would imply, a Parameter is an input data
parameter to the service. Once again for human consumption
in the discovery process, a Parameter features a name and
description (how these are used is shown in Section III). A
Parameter only contains one other attribute, a type. For a
RESTful service, a parameter type indicates if it is a URL
parameter to be passed to the service in the URL, or a body
parameter, to be passed marked-up in the HTTP request body.
If it is a URL type parameter, the name will match up to the
respective placeholder used in the path attribute of the
ServiceMethod, and will replace it with the actual parameter
data value at call time. Parameters also feature a Data Param
Type attribute. End users need not be concerned with required
data types; our Android thin client application uses this for
collecting valid data from the user. Currently, it supports
Strings, numeric types, and datetime types. This is described
in more detail in Section III.

For complex parameter data types, a Parameter can include
a sub-collection of Parameters, which make up the complex
type. These are not presented to the user in any different way
in the discovery process compared to simple data type based
Parameters; the user will not see anything which resembles the
underlying data types.

One area that caused some trouble was the requirement of
several web service API’s to have a developer key sent with
the request. Every end user with a CPA will not have a
developer key. To overcome this, the CAMCS developer key
was inserted into the registry as a Parameter of each
ServiceMethod that required a key (unseen by the end user).
This is not ideal, and we believe that more open web and
cloud service API’s will be required for an MCC approach
based on SOA.

C. Querying
When queried for services, the registry can either return

complete Service records as described, or reduced versions of
the Service records, which just contain the names and
descriptions for the ServiceMethods and corresponding
Parameters.

III. SERVICE DISCOVERY AND CONSUMPTION
WITH THE CPA

The CPA will query the registry, with the task description
as the query string. Interactions can be seen in Fig. 4.

A. Discovery
With a user-provided description of a task to complete,

consisting of a task name and description, the CPA will query
the registry with this description (or “query-string”). The
registry will return the full Service descriptions for matching
services, including the ServiceMethods offered by a service,
and the Parameters for each of the ServiceMethods. The initial
query of the registry by the CPA, given the query-string
provided by the end-user, is the beginning of the discovery
process.

With this list of discovered services from the registry, the
CPA notifies the mobile user that services have been
discovered for a given task – see Fig 2. The user is presented
with the discovered Services, and each of their
ServiceMethods, presented as “operations” on the device – see
Fig. 3. The user will see the name and description of each
operation. This is something of an MCC service market, where
the user has indirectly searched for a service through their
CPA, and can browse the results until they find an appropriate
service. The user selects the operation to be used for the task,
and this is sent to the CPA. At this point, the CPA
differentiates between tasks that are new, and tasks that have
run before, but this paper focuses on new tasks only (further
information about tasks is given in Section IV). For the chosen
ServiceMethod, the CPA extracts the parameter record from
the ServiceMethod record. This is sent to the thin client. A
form is displayed to the user with a field for each of the
parameters that are described in the Parameter record – see
Fig. 5. The user is provided with the name and description of
each parameter, and is prompted to fill in each of the
parameters required by that service. For parameters with
DataParamType attribute numeric, the user is restricted to
numeric data entry on the keyboard. For datetime parameters,
a time and date selection spinner is presented to the user. Once
the user has filled in this form, the values for the parameters
are sent to the CPA for storage.

Service consumption with CAMCS, as hinted in the name,
supports sending contextual data gathered from the mobile
device, to services that can make use of this data. This works
by means of the Context Processor, a component of CAMCS,
described in a previous work [6]. This data is not collected
through the form-based interface; this is gathered from a
service within the thin client, and sent separately at user-
defined intervals to CAMCS, for storage with the Context
Processor, on behalf of the user. For services that take
contextual data as parameters, the CPA will gather the
relevant contextual data for the user, from the Context

Fig. 2. Current Tasks List. Shows all tasks currently executing at the
CPA for the user. Here, this task has finished service discovery.

Fig. 3. Discovered Services List. This shows the operations (service
methods) provided by discovered services that the user can choose
from, including their names and descriptions from the registry.

Processor, and send this data to the service with the data
parameters. The user must grant permission for a task to use
contextual data first. This will be presented a future work.

Before task data is sent to the CPA, it is queued. The thin
client observes the state of the mobile network, and depending
on the evaluation (which takes into account signal strength,
payload size, and current battery status), will either offload the
data, or wait until the network quality has improved. This is
explored in more detail, in a previous work [7].

B. Service Consumption
Now that the CPA has all the user-provided input values

for the parameters required by the service, the CPA can
consume the service, by sending it a HTTP request. As we are
currently working with RESTful services, this request will use
one of the previously described HTTP methods (GET, PUT,

Fig. 4. Sequence/Interaction Diagram. This shows the sequence of events in the composition, discovery, and execution processes for a user task
running for the first time. Tasks re-running, or tasks automatically started by the CPA, will not require service selection or parameter entry.

etc.); any parameters that are declared in the Parameter record
as being a URL parameter are inserted into the location
defined by the placeholders in the path attribute of the
ServiceMethod record being used. Parameters provided that
are declared as being of type body are converted into JSON,
following a {“paramName”: “paramValue”} format, and
inserted into the body of the HTTP request.

The result of the service execution is sent in the body of
the HTTP response to the request. The CPA will store this
result for the user, and a notification will be sent to the mobile
device. Upon opening the notification, the result is retrieved
and displayed on the mobile device. At this point, the task is
considered complete, and is moved to a completed tasks list.

IV. CPA TASK MODEL: FEATURES AND
IMPLEMENTATION

The task model of the CPA is implemented around the
disconnected operation principle. Once task details have been
sent to CAMCS, they are stored with the CPA of the user, and
the mobile device does not need to remain connected to the
cloud deployment for the task to execute. We will now present
the structure of a task, followed by the task execution process,
and how our model enables automatic task execution. We also
describe results storage and presentation.

A. Task Structure
The CPA and all of its related data (such as details for

users and tasks) are stored. Once a user has sent a task
description to CAMCS, this task is created at their CPA, and
placed into a current tasks list. This is represented as a
subdocument within MongoDB. Each task contains several
attributes:

• Name: a user specified task name, entered into the
thin client by the user on the mobile device

• Query: the query associated with the task, which
is the description entered into the thin client by
the user on the mobile device. This is the query
string sent to the registry for service discovery.

• Discovered Services: a list of discovered services
returned by the registry in response to a query
search.

• Service Record: this is the service selected by the
user that will be used to complete the task, as
chosen from the discovery results. Contains the
technical data required to invoke the service.

• Operation Name: this is the name of the operation
(ServiceMethod) offered by the service that the
user has chosen to use for completing the task.

• Results: a list of results. Tasks can be executed
more than once with different results each time.

• Task Data: a map which stores the values that the
user has provided for each parameter required by
the service.

B. Task Implementation
Within CAMCS, a runnable task is defined by a

TaskExecutable class. We use the Quartz Scheduler [8], which
provides a scheduler for “jobs”. TaskExecutable subclasses
the Quartz Job class, and is executed in its own thread of
execution. All tasks in CAMCS, from all CPA’s, are handled
by a Task Handler, which is responsible for taking the tasks
from the CPA’s, and starting them as Quartz jobs using the
TaskExecutable. The required information to execute a task is
passed by the Task Handler to the job by means of a map. This
data will include all the required data outlined previously.

Tasks can be executed either by an explicit request from
the user (running a new task or explicitly re-running a
completed task), or as an automatic task, whereby the CPA
chooses to run a task without any explicit user request.

1) User Requested Task Execution

A user creates a new task with a name and query using the
mobile thin client. Once this is sent to the CPA, the CPA starts
the task execution by passing the task to the Task Handler.
The Task Handler checks if a valid Service Record has already
been associated with this task. Being a new task, this will not
be the case, and so the Task Handler will begin service

discovery by taking the user provided query for the task, and
contacting the MCC service registry.

Once the user has selected the appropriate service and
operation, and task execution has completed, the task result is
returned to the CPA from the Task Handler, and the task status
is set to complete. When the user views the task result on the
thin client, the CPA moves the task from the current tasks list
to the completed tasks list.

The user can signal any completed task to run again from
the thin client. In this case, the name, query, and parameters
data, need not be collected from the user again, as they are
already stored with the CPA. Service discovery will not take
place again (unless the user specifies they wish to choose a
different service); task execution with a Quartz job using
TaskExecutable will take place immediately. If the user
wishes to change any of the previously given input parameters
to the service, they can request to do so, in which case they
can enter them into the parameter data collection form again.

2) Automatic Task Execution

The benefit of the CPA model is the ability to perform
work for the user without an explicit request. This furthers the
disconnected operation goal. In this case, even if the user is
disconnected from the cloud deployment, and hence the CPA,
work can still take place for the user. Based on times specified
by the user, the CPA can also automatically run a previously
completed task again, using the previously chosen service and
provided parameter data values.

In this implementation, when the user has re-executed a
task a given number of times (three currently), the CPA sends
a notification to the user, asking would they like to schedule
the task to run regularly on an automatic basis. The user can
set the days of the week, and times, when the task should
automatically execute – see Fig. 6. The repeat task data is
stored with the CPA. This data is used to schedule cron
triggers, with Quartz. These use regular expressions to define
when a trigger should run to start a given job (or task in our
case). The user can stop the automatic task execution at any
time. Whenever an automatically repeated task is executed,
the result is added to the results list of the task with the given
date and time of execution. The task is moved from the
completed tasks list, back to the current tasks list. A
completion notification is sent to the user. Another future
possibility is that tasks can automatically run based on patterns
of when the user has explicitly requested that the task should
run in the past. This way, the user would not have to manually
specify when a task should execute.

3) Task Results

Tasks can run several times. The results of a task can differ
depending on the different times it is executed, or if the user
changes the input parameters. Therefore, each result is stored
with a timestamp of execution. When the user opens a task,
they can view the results for each of the previous executions.

A result may range from textual data, (a hotel booking
reference number), or something numeric (statistical results
from a data processing service). To provide flexibility and

Fig. 5. Parameter Data Value Entry. The user enters the values for
each parameter that the service requires for task execution. The
description of parameters is displayed for the user. This is the list
events API call from Google Calendar, which fetches events from a
calendar. Upper/lower bound times are specified as datetime
parameters, so buttons are presented for time/date selection spinners.

customisation for service results, a HTML solution was used.
Companies such as Amazon could advertise other products
that they offer within a task result HTML page. The Result
Template of a ServiceMethod record contains a URL to a
template HTML page. This page, which should be stored on a
publically available server, makes use of JSON2HTML [9].
This library uses JavaScript to convert JSON data into a
HTML representation. This is accomplished by means of
specifying a transformation, which will convert a JSON string
to HTML. The transformation is already stored in the HTML
template page, along with any other mark-up/formatting
details (CSS, JavaScript) that the service developer has chosen
to include in the page. When the CPA has received the JSON
result data from the service, it will fetch the result template
page given by the URL. Using the JSoup library [10], the
JSON service result is written into the <head> section of the
page. The result HTML page is added into the result list for
the Task, and stored in this marked-up format.

Upon task completion, the user is notified of the result; this
is displayed in an Android WebView – see Fig. 7. When
loaded, the transformation is applied to the JSON result data.

V. RELATED WORK
Many approaches to implementing MCC take the form of

offloading entire applications or computations to a server,
such as the Cloudlet approach [11]. Cloudlets are small
servers deployed in areas where many people gather. Users
interact with virtual machines running on the Cloudlet through
their mobile device. Code offloading projects, such as MAUI
[12], and CloneCloud [13], offload execution of mobile
applications, normally at the method level, for execution to a
server, with results returned to the device. Our approach
focuses on offloading tasks, which are described with text
queries, and services in the cloud are used to complete them.

Some work in the mobile cloud web service discovery and
provisioning area includes a mobile web service provisioning
framework [14], and a mobile cloud web service discovery
solution, known as DaaS (Discovery as a Service) [15]. The
work presented for DaaS is similar to the work in this paper, in
that a discovery process takes place to find appropriate web
based services for users; the discovery process takes into
account even more features, such as user context, which is
something we are also implementing in future work, building
on our own previous work [6]. Where our work differs is that
in DaaS, and the mobile web service-provisioning framework,
the cloud is used for web service discovery, but the web
services themselves run on mobile devices, rather than in the
cloud. Another solution is the VOLARE middleware [16],
which monitors the mobile device context, so as to
dynamically change service providers at runtime to maintain a
certain Quality of Service (QoS) level. The Location-Aware
Service Provision and Discovery (LASPD) framework by Zhu
et al [17] is focused on web services, like the DaaS approach,
hosted on mobile devices, and implements locality based
discovery and consumption of services for mobile devices
located nearby. The work on SAMI by Sanae et al [18] uses an
SOA approach to deliver services to users that are provided by
mobile network operators.

 Other solutions that deliver web based services to mobile
devices include Google Now [19]. This can provide the user
with information relevant to the user’s situation, such as
weather at given locations, and traffic en-route to a workplace.
This is the same functionality our approach can deliver.
However, it only works with Google services and products,
whereas our solution can work with all kinds of cloud-based
services. It also carries out work locally on the mobile device,
whereas our architecture is completely cloud based. Apple Siri
[20] retrieves data from web services for the user, based on
voice queries. It does not work without an Internet connection.
In a work by Wang and Deters [21], a cloud-based middleware
was developed that can bring web services together into a
mash-up form. This work stores service data in a MySQL
database, and requires a user to enter WSDL file URLs for
discovery. In our approach, we used structured documents in a
NoSQL MongoDB database, and users do not need to know
any service description mark-up language. The ALILI
framework by Lomotey and Deters [22] used web services to
bring file storage and sharing to mobile devices. The work by
Sankaranarayanan et al [23] proposes the SMILE middleware,
which aims to deliver relevant services to mobile devices, by
allowing services to share related data with each other, such as
travel dates for flight and hotel booking. The Mobile Web
Services Mediation Framework by Srirama et al [24]
implements enterprise service bus technologies to deliver
features such as message compression, QoS guarantees and
transaction support for mobile clients using web services.

For service discovery, a study by Sun et al [25] compares
various service description languages in terms of what features
they provide, and suitability for a cloud environment. In the
area of sematic discovery, works such as [26] and [27] use an
extension to OWL, the Web Ontology Language, called
OWL-S, to describe web services semantically. OWL is a
W3C standard for marking up semantic content on the web.

Fig. 6. Automatic Task Repeat. The user can enter the date and time
details for when the CPA should automatically repeat a previously
completed task. The Quartz Scheduler within CAMCS is then
scheduled to re-execute the task, with results returned to the CPA.

Fig. 7. Task Results Display. The result of the task execution is
displayed as a HTML webpage using an Android WebView (personal
details hidden). Here, the transformed output from the Google
Calendar List Events API call is shown for the daily schedule of the
user.

VI. CONCLUSIONS
In this paper, we have introduced an MCC based solution

for enabling description, discovery, and consumption of
mobile cloud computing (MCC) services. The motivation
behind this solution is to utilise the existing web and cloud
based services to deliver information and functionality to the
mobile user. This is compared to existing MCC solutions
which are more demanding on mobile resources, where virtual
machines, or application code, are offloaded to remote cloud
servers for execution.

Several contributions have been made in this paper. First,
we have presented our service registry, which stores service
descriptions in our own description format, which was
designed with user-oriented discovery in mind. It will allow
users to be a part of the discovery process, not previously
practical with mark-ups such as XML. Secondly, the
discovery process allows the user to benefit from cloud-based
services through the device. We have shown how the solutions
have been applied to our MCC middleware project, Context
Aware Mobile Cloud Services (CAMCS). Through use of
CAMCS with each user’s own Cloud Personal Assistant
(CPA), a user can search for services to complete tasks; our
service descriptions from our registry are presented to the user
for this, bringing them into the discovery process. We have
shown how data for service parameters are collected from the
user, and how task results from services are stored and
presented. Finally, we presented the user task model for CPAs,
as well as automatic task execution. Automatic tasks enable
the design objective of disconnected operation for CPAs.

While this solution uses existing technologies and
protocols, due to the user-oriented discovery process and
services descriptions, this work opens a new direction in
accessing cloud services by mobile users. In our future work,
this MCC solution for describing, discovering, and consuming
cloud based services will continue to be developed. Context
data collected and stored with the Context Processor can be
used for service consumption; details of such capabilities will
be added to our service descriptions. We are also working on
complex service interactions. This involves service flows,
where a CPA makes many different calls to a service to
complete a task. Each call completes a different objective of
the overall goal. For example, a hotel booking service, where
one call retrieves available rooms, a second call will send
personal details of the user, and a final call will provide
payment information. For each step, the CPA can request the
required data from the user; this data can then be saved at the
CPA for future calls to the service, so the user does not have
to provide the same data again, supporting disconnected
operation and automatic task execution. Once the
implementation of CAMCS has been completed, user
evaluation studies will take place.

ACKNOWLEDGMENTS
The PhD research of Michael J. O’Sullivan is funded by

the Embark Initiative of the Irish Research Council.

REFERENCES
[1] Simple Object Access Protocol (SOAP) W3C Specification.
http://www.w3.org/TR/soap/. Last Accessed 28/10/14.
[2] R. T. Fielding. Architectural styles and the design of network-based
software architectures. PhD Thesis. University of California, Irvine, 2000.
[3] M. J. O’Sullivan, D. Grigoras. User Experience of Mobile Cloud
Applications – Current State and Future Directions, in Proceedings of the 12th
International Symposium on Parallel and Distributed Computing, Bucharest,
Romania, 27-30 June, 2013, pp. 85-92.
[4] M. J. O’Sullivan, D. Grigoras. The Cloud Personal Assistant for Providing
Services to Mobile Clients, in Proceedings of IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), Redwood City,
San Francisco Bay, California, USA, 2013, pp. 477-484.
[5] Apache OpenNLP. https://opennlp.apache.org/ Last Accessed 23/02/15.
[6] M. J. O’Sullivan, D. Grigoras. Mobile Cloud Contextual Awareness with
the Cloud Personal Assistant, Proceedings of the 2nd International Conference

on Future Internet of Things and Cloud (FiCloud-2014), Barcelona, Spain, 27-
29th August, 2014.
[7] M. J. O’Sullivan, D. Grigoras. Integrating Mobile And Cloud Resources
Management Using The Cloud Personal Assistant, Simulation Modelling
Practice and Theory, Vol. 50, pp. 20-41, January 2015, ISSN 1569-190X.
[8] Quartz Job Scheduler for Java. http://quartz-scheduler.org/. Last Accessed
28/10/14.
[9] JSON2HTML. http://json2html.com/ Last Accessed 23/02/15.
[10] jsoup. http://jsoup.org/ Last Accessed 23/02/15.
[11] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies. The Case for VM-
Based Cloudlets in Mobile Computing, IEEE Pervasive Computing, 2009;
8(4), pp. 14-23.
[12] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R.
Chandra, et al. MAUI: making smartphones last longer with code offload,
Proceedings of the 8th international conference on Mobile systems,
applications, and services, San Francisco, California, USA. 1814441, ACM,
2010, pp. 49-62.
[13] B-.G. Chun, S. Ihm, P. Maniatis, M. Naik,A. Patti. CloneCloud: elastic
execution between mobile device and cloud, Proceedings of the sixth
conference on Computer systems, Salzburg, Austria, 1966473, ACM, 2011,
pp. 301-314.
[14] K.Elgazzar, P. Martin, H. S. Hassanein. A Framework for Efficient Web
Services Provisioning in Mobile Environments, The 3rd International
Conference on Mobile Computing, Applications, and Services (MobiCASE
2011), Los Angeles, CA, 24-27 October, 2011.
[15] K. Elgazzar, H. S. Hassanein, P. Martin. DaaS: Cloud-based Mobile Web
Service Discovery, Pervasive and Mobile Computing, Vol. 13, pp. 67-84,
August 2014, ISSN 1574-1192.
[16] P. Papakos, L. Capra, D. S. Rosenblum. VOLARE: context-aware
adaptive cloud service discovery for mobile systems, in Proceedings of the 9th
International Workshop on Adaptive and Reflective Middleware (ARM '10).
ACM, New York, NY, USA, 2010, pp. 32-38.
[17] J. Zhu, M. Oliya, H. K. Pung, W. C. Wong. LASPD: A Framework for
Location-Aware Service Provision and Discovery in Mobile Environments,
Services Computing Conference (APSCC), 6-10 December, 2010, pp. 218-
225.
[18] Z. Sanaei, S. Abolfazli, A. Gani, M. Shiraz. SAMI: Service-based
arbitrated multi-tier infrastructure for Mobile Cloud Computing, 1st IEEE
International Conference on Communications in China Workshops (ICCC),
15-17 August, 2012, pp.14-19.
[19] Google Now. https://www.google.com/landing/now/ Last Accessed
23/02/15.
[20] Apple Siri. http://support.apple.com/en-ie/HT4992 Last Accessed
24/02/15
[21] Q. Wang, R. Deters. SOA's Last Mile-Connecting Smartphones to the
Service Cloud. Proceedings of the IEEE International Conference on Cloud
Computing (CLOUD), Bangalore, India, 21-25 September, 2009, pp. 80-87.
[22] R. K. Lomotey, R. Deters. Reliable Consumption of Web Services in a
Mobile-Cloud Ecosystem Using REST, IEEE Seventh International
Symposium on Service-Oriented System Engineering (SOSE), Redwood City,
California, USA, March 26-28, 2013, pp. 13-24.
[23] J. Sankaranarayanan, H. Hacigumus, J. Tatemura. COSMOS: A Platform
for Seamless Mobile Services in the Cloud, 12th IEEE International
Conference on Mobile Data Management (MDM), 2011, pp. 303-312.
[24] S. N. Srirama, M. Jarke, W. Prinz. MWSMF: a mediation framework
realizing scalable mobile web service provisioning, in Proceedings of the 1st
international conference on MOBILe Wireless MiddleWARE, Operating
Systems, and Applications (MOBILWARE '08), Brussels, Belgium, Article
No. 43.
[25] L. Sun, H. Dong, J. Ashraf. Survey of Service Description Languages and
Their Issues in Cloud Computing, Eighth International Conference on
Semantics, Knowledge and Grids (SKG), 22-24 October, 2012, pp.128-135.
[26] V. Suraci, S. Mignanti, A. Aiuto. Context-aware Semantic Service
Discovery, 16th IST Mobile and Wireless Communications Summit, 1-5 July,
2007, pp. 1-5.
[27] M. Klusch, B. Fries, K. Sycara. Automated semantic web service
discovery with OWLS-MX, in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems (AAMAS '06).
ACM, New York, NY, USA, pp. 915-922.

