
 Self-Adaptation to Mobile Resources in Service Oriented Architecture

Nour Ali
University of Brighton

Brighton, UK

N.Ali2@brighton.ac.uk

Carlos Solis
Paddy Power

Dublin, Ireland

Carlos.Solis@paddypower.com

Abstract—Mobile or pervasive systems continuously change

their environments and resources (e.g. battery or bandwidth).

Mobile applications require different services when they enter

or exit environments and as their resources change. In this

paper, we propose a service oriented architectural approach

that supports self-adaptation to changes in resources and

location topology when mobility occurs, by reconfiguring the

software architecture at runtime. The location topology and

mobility primitives are inspired from ambient calculus. Our

approach considers ambients to be autonomic elements that

can manage elements located in them to their environment and

provide them with new services suited to the available

resources, when mobility occurs. Ambients implement a

hierarchical and decentralized MAPE-K loop to adapt the

distributed and mobile service oriented architecture to the

resource requirements. We have designed an algorithm based

on swarm optimization technique in order to allow ambients to

optimally plan the reconfiguration process according to

available services and resources. Throughout the paper, we use

a scenario to illustrate our approach and perform initial

evaluations on the swarm algorithm.

Keywords- autonomic computing, mobile ambients, self-

adaptation, service oriented architectural model, mobile

resources, discrete swarm particle optimization

I. INTRODUCTION

As mobile applications evolve and become more
business critical it is essential to apply software engineering
processes and techniques to assure their quality. In his
overview paper, Wasserman discusses software engineering
issues for mobile application development [1]. He points out
that greater attention needs to be paid to the software
architecture of mobile applications as quality attributes are
very critical. For example, applications of mobile devices
need to take into account mobile device resources such as
power consumption.

A promising architectural style for designing mobile
applications is the Service Oriented Architecture (SOA) [2].
Several of its principles such as dynamic composition, loose
coupling, and well defined interfaces are suitable to define
the change and heterogeneity encountered in mobile
applications. However, to properly define mobile
characteristics SOA concepts have to be combined with
mobile ones.

Mobile applications continuously interact with devices,
networks, their environments, or pervasive services. At
runtime these interactions can continuously change and adapt
due to changes to the environments or to resources. An
emerging area of research is the one of architectural models
at runtime [5] which suggests representing architectural

information explicitly at runtime and use it to adapt systems
to changing user needs and/or operating environments. In
[6], we described a research agenda for architectural models
at runtime of mobile systems.

In this paper, we propose a model based software
architectural runtime approach for allowing mobile systems
to self-adapt to resources when they enter or exit
environments. Self-adaptation occurs by using the software
architectural topology at runtime, which is used as a
knowledge base, and selecting a service oriented
architectural configuration that best suits the resources when
mobility occurs.

Our approach is based on modelling ambients, which are
inspired from Ambient Calculus [3], as part of the software
architecture configuration. An ambient is a bounded place
where computation happens. An ambient can be a mobile
phone, a network, a laptop, a building or a room. Ambients
can have mobility capabilities which allow them to enter
sibling ambients and exit parent ones. Ambients have a tree
hierarchy of ambients as ambients can have other
subambients, e.g., a mobile phone is located in a room. Our
approach uses ambients to represent the location hierarchy
and mobility primitives (exiting or entering) of a service
oriented architecture. It also extends the traditional concept
of an ambient as in ambient calculus [3], with the capability
of being an autonomic element that can manage elements
located in its environment and self-adapt by reconfiguring
the service oriented architecture, e.g., by disconnecting
applications from a service. An ambient can manage the
resources of the elements in its environment, e.g., a mobile
device monitors and manages how its applications consume
the battery or bandwidth. Also, an ambient can choose a
software architectural configuration to minimize resource
consumption.

Another contribution to our approach is its usage of
swarm particle optimization technique [4] in order to select
the best possible runtime configuration based on the
resources available. This is important in a service oriented
architecture as services can appear and disappear in a mobile
environment and the usage of resources can change. Swarm
particle technique is efficient as it does not need all possible
configurations to be defined at design time. It also can
determine the nearly-optimal configuration based on the
available resources at runtime, specifying a number of
iterations.

This paper is structured as follows: Section 2 presents an
example scenario that is used throughout the paper to
illustrate our approach. Section 3 introduces the Ambient
Service Oriented Architectural Metamodel that represents
service oriented architectural models at runtime. Section 4

mailto:N.Ali2@brighton.ac.uk
mailto:Carlos.Solis@paddypower.com

explains how ambients are autonomic managers. Section 5
presents the algorithms that allow ambients to plan
adaptations of the service oriented architecture based on
resources. Section 6 demonstrates our approach through the
example. Section 7 explains our implementation and
evaluation. Section 8 discusses related work, and finally
sections 9 highlights conclusions and our further work.

II. EXAMPLE SCENARIO

Our scenario is a mobile device of Peter that is running
two applications: a cinema and a healthcare application. The
cinema application allows Peter to view the movie listings
and their times. The Health App allows Peter’s medical team
to monitor his health and involves sending medical data. The
Health App is essential to be executing as Peter will be
conducting an operation soon. The Health App needs internet
connection so the mobile device needs to be connected either
to the Data Service or to the Wireless Network.

The Cinema application performs differently when
located in the cinema or outside. When the cinema
application detects it is inside the cinema, it will connect to
additional services. The application will connect to two extra
services in the cinema: the Video Streaming Service which
allows Peter to view trailers of listed movies at the time and
the Friends Service to identify if any friends are in the
cinema or not, and where they are located. Also, when Peter
exits a Screening Room, the Cinema app will connect to a
Restaurant Service to advice Peter of restaurants and their
routes.

When Paul enters into the cinema, the cinema application
on the mobile device will consume more resources (e.g.,
battery) due to the extra services that it needs to connect to.
However, the Health App needs resources as it will need to
be executing as long as possible. Therefore, based on the
state of the resources at the time of entering the cinema, it
should be evaluated whether the Video Streaming, Friends or
Restaurant Services should be used by the Cinema App.

III. SELF-ADAPTABLE AMBIENTS SERVICE ORIENTED

ARCHITECTURE AT RUNTIME

To provide support for service oriented architecture at
runtime we have defined a metamodel (see Figure 1.). This
metamodel represents the architectural knowledge we will
maintain at runtime. The metamodel defines different kinds
of ambients appropriate for mobile software as well as
resources.

An ambient can contain different ambients inside its
boundary, including an ambient tree hierarchy. An ambient
can be a Location area, a Device, a folder or an application
Component. A location area can be a house, building or a
town area. For example, the cinema location can be an
ambient which has different screen rooms as subambients. A
mobile device is a Device ambient that can be located in a
cinema location or a screen room. When a mobile device is
located in the cinema, it is a subambient of the cinema (see
Figure 5.).

Ambients are architectural elements. They can provide
services to elements located in them and can participate in
Service Contracts. Service Contracts define the terms,
conditions, interfaces and choreography that interacting
participants must agree. They specify how services are
provided and consumed based on interactions and behaviours
involving the architectural elements (ambients and
components). An ambient can participate in service contracts
with its siblings (ambients and components). Also, a parent
ambient can participate in service contracts with elements
inside it. For example, a subambient application can have a
service contract with the ambient it is located in e.g., a
mobile device. In this case, the parent ambient has to provide
services to its subambients or other elements of its service
architecture.

Ambients have resources that need to be monitored at
runtime and can represent the CPU, memory, bandwidth or
battery power. The resources of an ambient are calculated
based on their hierarchy. Also, the resources of an ambient
are shared with its sibling hierarchy. For example, a mobile
device ambient that has a memory of 1GB, can have two
application component ambients, e.g., a health application
and the cinema application that have to share the 1GB
between them.

Ambients can be mobile or not. Those that are mobile
can request mobility services. For example, a mobile device
is a mobile ambient. Also, ambients provide two mobility
services: enter and exit. The enter service allows ambients to
enter inside the boundary. The exit service allows
subambients to exit parents’ boundary. The execution of
these services trigger the reconfiguration of the service
oriented architecture. For example, when a mobile device
enters into the cinema, new services are provided to the
cinema application in the mobile device that were not when
outside of the cinema. When the mobile device enters into a
screen room, and then exits it, the cinema application client
in the device can connect to the Restaurant Service.

Also, the resources that the mobile device consumes e.g.,
CPU and battery consumption are also affected because of
entering or exiting. For example, the mobile device in the
cinema can consume more battery as it will be using more
services. Also, when the mobile device enters the cinema, the
mobile device will be connected to the Wireless Service and
therefore, this resource will change as a result of entering
into the cinema.

In our approach, a software architect has to decide
whether an ambient is an autonomic element that is able to
manage and adapt the service architecture. In some
scenarios, ambients just represent the topology of a location
in the architecture e.g., a city. In other cases an ambient can
self-adapt its services and applications to resources, e.g., a
mobile device ambient can disable an application. Therefore,
we uniquely provide in our metamodel a concept called
Autonomic Ambient. Autonomic ambients are able to
create/delete service channels, enable/disable applications,
etc. In the next section, we describe how Autonomic
Ambients are supported.

Figure 1. Metamodel for Mobile Resources Architectural Model at Runtime

IV. AUTONOMIC AMBIENTS

As stated in the previous section, ambients can be
autonomic elements that can adapt how their elements can
use resources. However, not all ambients are autonomic
managers. Some of them just represent boundaries (see
Figure 1.). To provide with autonomic capabilities,
autonomic ambients follow the IBM MAPE-K (Monitoring,
Analysis, Planning, and Execution- Knowledge) loop [7].

A MAPE-K Loop distinguishes between the autonomic
manager that implements the MAPE-K loop and the
managed element which is observed and affected by the
autonomic manager. In our approach, ambients can be
autonomic managers that can manage subambients or
elements in their environments and coordinate them with
other ambients.

An ambient new MAPE loop is executed, each time a
change in the ambient hierarchy (topology) occurs triggered
by a mobility capability (enter or exit). In the following, we
explain each step of our adopted MAPE loop:

Knowledge: The knowledge in our approach is
represented as the Ambient-Service Oriented
Architectural Model represented with the ambients (and
their tree hierarchy), services, service contracts, resources of
each ambient, the service channels as represented in the
metamodel (see Figure 1), runtime data e.g., the resources
that need to be monitored, an approximation of the cost of
using services and applications and their utility.

Monitor: Captures runtime information represented in the
Ambient-Service Oriented architectural model. This includes
the topology of the software architecture which consists of
the hierarchy of the ambients, the connections between
elements (service channels), the services, and the current
values of resources represented in the model e.g., battery or
bandwidth. Each time a mobility service is executed (enter or
exit), the topology and configuration of the software
architecture and resources of the system will change.

Analyze: In this phase, we analyze any threats/failures
that can be caused to the functioning of any mobile
application due to the resource limitations in the
environment. As not all threats can be analyzed, the
constraints defined in the service contracts are checked and
compared with the actual state of the monitored architectural
information at runtime in order to detect any essential
threats. As resource information only exists at runtime,
applying resource analysis at design would not be valid as
changes in a topology or the applications in a device cannot
be anticipated. In our approach, mobility of ambients (exit or
enter) will cause a reconfiguration of the architecture due to
changes in resources and service provision.

Plan: Identifies a suitable set of actions that are needed
for adapting the software architecture in order to comply
with the resource constraints or priorities. This will include
planning the reconfiguration of the software architecture by
removing or adding service channels, adding or removing
services, etc. As an ambient selects the plan, the plan usually
will affect the elements inside its boundary (its subambients,
service channels, etc) or its sibling ambients (e.g., removing
a service channel between it and its sibling ambient). Parent
ambients act as coordinators between the other ambients and
the elements inside them. Therefore, the ambient analyzes
based on its current location and the resources available the
best service oriented architecture configuration available. For
choosing a nearly- optimal configuration, we have designed
a swarm particle algorithm (see section V).

Execution: The reconfiguration plan of the service
oriented architecture is executed in order to adapt which
implies removing or adding services, service channels,
components, etc. Before executing the plan, the state of all
architectural elements affected (components, services,
ambients, etc) are ensured to be safe to perform the changes.

In our approach, instead of having one centralized
MAPE-K Loop, each ambient in a tree hierarchy can have a

MAPE-K Loop that can manage and coordinate the
adaptation of its elements.

V. PLANNING ADAPTATION THROUGH DISCRETE

SWARM PARTICLE TECHNIQUE

When mobility capabilities are executed, the software
architecture of the mobile system needs to reconfigure. This
reconfiguration has to satisfy the constraints and requirement
specified in the service contracts and resource needs of the
applications. For example, when the mobile device enters
into the cinema, the Cinema App will need to connect to
extra services. The provision of these services, however, will
need to take into account the resources that are needed by the
Health App.

When an ambient enters/exit it is able to know according
to its location in the ambient hierarchy which are the
reachable services (these are services provides by its parent
ambient or its sibling ambients). These services are
connected to applications deployed on the ambient, and
which consume resources. When an ambient enters/exits the
ambient has to analyze which is the best reconfiguration
suitable for the resources based on the choices of combining
the services.

To enable to analyze and choose the service oriented
according to the resources needs, an algorithm needs to be
designed. This algorithm receives as input the services that
could be connected to the applications, the service contract
constraints related to the resources, the current value of the
resources e.g., the battery value when entering or exiting,
and the resource utility and cost for each reachable service
and applications deployed on the ambient.

The ambient calculates the sum of resource consumption
for each service and application when connected and
disconnected and compares it to the resource constraint
defined in the service contract, creating different
combinations of services and applications. The best
combination of services and applications is the one chosen.

To analyze and plan the new configuration, a naïve or
exact algorithm can search all the possible combinations of
services and resources. However, this algorithm is only valid
when the number of combinations is small (i.e., the number
of possible services or resources to take into account) as its
computational cost is O(n3). Also, the algorithm is not
appropriate for searching valid combinations when there are
constraints to be satisfied and there is an NP-hard problem
[8]. Due to these limitations, we have decided to use
optimization techniques and design a more efficient
algorithm based on discrete swarm particle optimization [4].
This algorithm finds the best-optimal solution in a number of
iterations by considering a set of candidate solutions which
are explored by particles. Particles can change their positions
according to their predisposition to change. When particle
redisposition they can evaluate and compare solutions to a
best selected solution and reposition them in the next
iteration according to their distance to the best solution.

In our approach, we have defined a candidate solution (or
configuration) as a string of bits where each bit can represent
a resource, a service or a mobile application (see Table 1 for
possible solutions). For example, if our problem has 2

resources, 5 services and two applications, the solution will
consist of 9 bits, where the two first bits will be representing
resources. Each particle will represent possible
combinations, where 1 represents the selection of that bit and
0 its non-selection. Each of these solutions (or combinations)
has to be evaluated based on a utility function.

The Utility Function that we have defined (see Algorithm
1) takes a possible combination and calculates the goodness
of the solution. First, we check if the combination is valid
(e.g., either we use the WLAN or the Data Service, not both
together). If it is a valid combination, the algorithm
calculates the resourceCost for each resource based on the
selected services. If the resourceCost is less than the
indicated cost (which is the value of the current resource e.g.,
the state of the battery at that time), the utility is the sum of
the utilities for each services and resources in a valid
combination.

Algorithm 2 presents the swarm algorithm used to choose

the configuration of the service oriented architecture based
on the resources. Particles are randomly initialized in the
solution space. The algorithm checks whether the Utility of
that position (candiadate solution) of a particle is higher than
the bestUtility, if it is, then the utility of that solution
becomes the bestGlobal. Particles then calculate their new
position, i.e., a new candidate solution to explore. The value
of bestGlobal after the iterations is the solution
(configuration) chosen by the algorithm.

Then based on the combination chosen e.g., the Health

App, the Video Streaming Service, etc a plan is created. For
example, enabling/disabling the applications, or creating or
deleting service channels that connect applications to the
services.

VI. ILLUSTRATION OF THE APPROACH

THROUGH THE SCENARIO

In this section, we illustrate our approach through the

scenario described in section II to allow the reader to
understand its different parts.

In this example, we have five ambients: Mobile Device,
which is a mobile and autonomic ambient, Cinema and
Screening Room (SR), which are Location Ambients, and
HealthApp and CinemaApp, which are Application
Ambients. The Cinema App can be connected to the
VideoStreaming and the Friends Services when the Mobile
Device enters into the Cinema. When the Mobile Device
enters a Cinema and exits a ScreeningRoom, the Cinema
App can connect to the Restaurant Service.

Paul installs the the CinemaApp and the HealthApp in his
mobile device. When he installs the CinemaApp contracts
between the CinemaApp and the MobileDevice are created.
The Specification of one of the contracts between the
CinemaApp and the MobileDevice is the
CinemaAppRestaurantService (see Figure 2.). The Contract
indicates that when the Mobile Device exits the
ScreeningRoom, the Restaurant Service is connected. Also,
that the RestaurantService is connected only when the
Mobile Device is located in the Cinema. These contracts
form part of the Knowledge Base that is monitored at
runtime by the Mobile Device Autonomic Ambient. We also

have two other constraints: that either the WLAN or the Data
Services are selected but not both, and that the HealthApp
has to be selected at all times.

Figure 2. Specification of CinemaAppRestaurantService Contract

When the HealthApp is installed, the Mobile Device and

the HealthApp create a HAppResources Contract that
indicates that the Mobile Device has to provide the
HealthApp with the resource requirements. As a result, the
Mobile Device creates a composite service called
PrioritizeResources that allows it to alter the services of
other applications in order to optimize the resources for
HealthApp (see Figure 3.). We have used the Service
Oriented Architecture Modelling Language [9] to graphically
represent contacts.

Figure 3. PrioritizeResources Composite Service Contract

Figure 4. shows the configuration of the service oriented
architecture before the Mobile Device enters into the
Cinema. The Mobile Device has the Autonomic Element
that implements the autonomic MAPE-K Loop explained in
section IV. The Autonomic element realizes the
PrioritizeResources contract with HealthApp. The Cinema
has the screening Room ambient and the three Services
(Restaurant, VideoStreaming, and Friends) which are not
reachable by the Mobile Device. The Cinema ambient, and
the Mobile Device ambient provide the Enter Service which
allows mobile ambients to enter into their boundary. In this
case, the Mobile Device requests the enter service from the
Cinema ambient. When the Cinema accepts the
MobileDevice, the autonomic element will have monitored a
change in the ambient hierarchy due to entering and
detecting new reachable services.. Therefore, the algorithm
defined in V will be executed in order to select an optimal
configuration based on the resources available.

Service_Contract CinemaAppRestaurantService

Trigger

 RestaurantService when (exit(ScreenRoom));

Constraint

 always {ParentAmbient==CinemaLocation};

End_Service_Contract

Figure 4. Configuration of the Service Oriented Architecture before entering the Cinema

TABLE I. gives examples of possible solutions that are
created by the algorithm when the mobile device enters into
the cinema. If you notice they consist of 5 bits, two for the
resources, one for the HealthApp, one for the Video
Streaming (VS) and the Friend Service (FS). The utility
functions for the last two solutions in TABLE I. are going to
be 0 because they are invalid combinations (the one in the
fifth row has both the WLAN and Data selected and the one
in the sixth row has the HealthApp unselected). For
example, when the utility functions are calculated for all
solutions by using the battery costs in TABLE II. and the
value of the current battery is 100, the utility function results
will also be 0 because the cost of these services is more than
the current value of the battery. However, when the battery is
200 and WLAN is available at runtime, the chosen solution
can be WLAN, HealthApp, VideoStreaming and Friends
Services.

TABLE I. POSSIBLE SOLUTIONS CONSIDERED BY THE ALGORITHM

WHEN ENTERING INTO CINEMA

The Mobile Device will then create the service channels

that connect the CinemaApp to the VideoStreaming and the
Friends Services (see Figure 5.). Similarly happens when the
Mobile Device enters and exits the ScreeningRoom.
However, when the device exits the ScreeningRoom the
algorithm will create solutions based on 6 bits as Restaurant
Service will be considered.

Figure 5. Configuration when the Mobile Device enters the Cinema and

Restaurant and VideoStreaming are selected

TABLE II. RESOURCE COSTS AND UTITLY

 Battery COST

with DATA

(mA)

BatterY

COST WITH

WLAN (mA)

Utility

Health App 70 50 100

VideoStreaming

Service

60 60 50

Friends Service 70 50 10

Restaurant

Service

50 30 10

VII. IMPLEMENTATION AND EVALUATION

To perform initial evaluations for our approach, we first
implemented our metamodel in Ecore by using the Eclipse
Modeling Framework (EMF) [10] (see Figure 6.).

We have also implemented our swarm particle
optimization algorithm (algorithm 1 and 2) in Java and
applied it to the above example and using the costs and
utility in TABLE II. We conducted preliminary experiments

where we assumed that the current value of the battery is 200
mA and the length of the solution combinations is of 5 bits.
We have indicated to the algorithm that the maximum
number of iterations to perform is 1000. For all cases when
the WLAN is available, the algorithm always selects the
WLAN services. This demonstrates the accuracy of the
approach.

Figure 6. Metamodel implemented in Ecore

We also did experiments in order to compare the
solutions obtained using the swarm particle algorithm with
the optimal solutions (percentage of success), with different
number of particles. Figure 7 shows results of 8 cases with
different values for the number of particles, when the mobile
device enters the cinema and with the objective of selecting
the best configuration which is selecting the WLAN, the
HealthApp, and VideoStreaming and Friends Services. We
can observe that as the number of particles increases, the
percentage of success increases. After using 25 particles, the
number of iterations became around 50. The execution times
used to find the best solution dramatically improved after 25
particles. The best execution time was 0.99 ms when 25
particles were used, with an average of 46.4 iterations and
96.4% success.

VIII. RELATED WORK

In previous work, we developed an aspect-oriented and

component based approach called Ambient-PRISMA [11]
[12] where the software architecture automatically
reconfigures due to agent mobility based on Ambient

Calculus [3]. However, in this approach, the reconfiguration
was always performed due to one single preplanned strategy.
We also defined a metamodel called Ambient-SoaML to
provide the design of service oriented architecture of mobile
devices in a technology independent way [13] and a
graphical modelling tool [14]. In all the above approaches,
we did not consider the usage of the architectural model after
design and did not make usage of architectural models at
runtime.

0

0.5

1

1.5

2

2.5

3

3.5

4

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

m
s

No Of Particles

No Of Iterations

Percentage of Success

Time in ms

Figure 7. Experiments when incresing number of Particles

Obtaining the runtime models has many advantages:

models can be used to fix design errors, to include new
design decisions, for reasoning, or to observe the runtime
behaviour. The usage of models at runtime have been
explored for creating simple graphical user interfaces for
legacy systems [15], or their use for adapting requirements
models [16].

Many approaches for self-adaptation use a Variability
Tree at design time e.g., Ali et al [17]. Fluch et al. [18] use
architectural models that describe variability at runtime to
choose among components to plug in applications. Rouvey et
al. [19] also define an approach where they require the
availability at runtime of all the valid configurations. None
of these approaches considers self-adapting to the resources
of the mobile environment. Our approach is different to the
mentioned approaches as it specifically considers mobile
environments as well as it does not need predefined all the
valid configurations, as well as a variability model.

Gustavo et al. [20] present a software architectural
approach that has the objective to self-adapt component
based configurations to mobile resources. Their approach is
based on calculating the differences between previous and
new configurations by navigating through a variability model
and using a genetic algorithm. Our approach is different in
that our swarm algorithm creates the possible configurations
based on the reachable services at runtime and the
constraints defined in the service contracts without the need
for a Variability Tree in the knowledge base. There are other
several differences between our approaches: 1) Our approach

is based on a service oriented architecture that assumes that
services appear and disappear at runtime, whereas they use a
component based architecture that is fixed 2) We have
mobility primitives and resources as first class citizens for
adaptation. Since our metamodel includes mobility
capabilities and ambients, our approach analyzes the
configuration when mobility occurs 3) Their approach has a
centralized autonomic model, whereas in ours ambients
control adaptation of their own sub-architecture.

IX. CONCLUSIONS AND FURTHER WORK

In this paper we have presented a novel approach that
provides support for the dynamic reconfiguration of service
oriented architecture of mobile applications to the available
resources, when mobility occurs. Our approach considers
ambients to be autonomic elements that manage elements
located in them and are able to observe and monitor the
change in resources and services as mobility occurs.
Ambients are able to plan the reconfiguration of the
architecture by using a swarm particle optimization
technique that can find the nearly-optimal configuration.

Although our initial results are promising, we still have
to extend and work on many aspects of our approach. These
are related to the validation, the analysis and planning of
adaptation and the provision of tools for users. In terms of
validation, we are working on validating our approach by
considering a wider number of services and resources, real-
time data and perform tests on different mobile devices. We
also would like to perform additional experiments in order to
understand the optimal number of iterations and particles our
algorithm should go through in order to find the best solution
on a mobile device.

In terms of tooling, we are extending our own graphical
modeling tool presented in [14] by using the Graphical
Modeling Framework and including the new primitives
presented in this paper such as the resources. This will allow
users to define initial configurations and generate their code.
In addition, one of our main objectives is to allow software
engineers to also monitor the system by using the graphical
notation in order to collaborate on the decisions in planning
the reconfiguration or perform changes to initial
requirements. For example, users can change the utility of
the resources provided at runtime.

ACKNOWLEDGMENT

This work has been partly funded by the University of
Brighton Rising Star Scheme awarded to Nour Ali.

REFERENCES

[1] Wasserman, A. I., Software engineering issues for mobile application

development. In FSE/SDP workshop on Future of Software
Engineering Research (FoSER '10). ACM, pp.397-400.

[2] Singh, M., P., Huhus, M. N., “Service-Oriented Computing Sematics,
Processes, Agents”, John Wiley & Sons, ISBN: 0-470-09148-7.

[3] L. Cardelli, “Abstractions for Mobile Computation.” In Vitek, J. and
(Eds.), C. J., editors, Secure Internet Programming: Security Issues
for Distributed and Mobile Objects, volume 1603 of LNCS, Springer
Verlag, pp. 51-94.

[4] Kennedy, J.; Eberhart, R.C., "A discrete binary version of the particle
swarm algorithm," Systems, Man, and Cybernetics, 1997. 1997 IEEE
International Conference on Computational Cybernetics and
Simulation.,vol.5, no., pp.4104,4108 vol.5, 12-15 Oct 1997

[5] Garlan, D., Schmerl, B. Using Architectural Models at Runtime:
Research Challenges, First European Workshop on Software
Architecture, LNCS 3047, Springer, 2004, pp. 200-205.

[6] N. Ali and C. Solis. 2014. Mobile architectures at runtime: research
challenges. In Proceedings of the 1st International Conference on
Mobile Software Engineering and Systems (MOBILESoft 2014).
ACM, New York, NY, USA, 41-44.

[7] IBM. An architectural blueprint for autonomic computing, 2004

[8] Jules White, Brian Dougherty, Douglas C. Schmidt, Selecting highly
optimal architectural feature sets with Filtered Cartesian Flattening,
Journal of Systems and Software, Volume 82, Issue 8, August 2009,
Pages 1268-1284, ISSN 0164-1212

[9] Service oriented architecture Modeling Language (SoaML) -
Specification for the UML Profile and Metamodel for Services
(UPMS) Revised Submission, OMG document: ptc/2009-04-01

[10] Eclipse Modeling Framework:
http://www.eclipse.org/modeling/emf/docs/

[11] Ali, N., Ramos, I., Solís, C. Ambient-PRISMA: Ambients in mobile
aspect-oriented software architecture. Journal of Systems and
Software 83(6): 937-958 (2010).

[12] N. Ali, J. Pérez, C. Costa, I. Ramos, J. A. Carsí, Mobile Ambients in
Aspect-Oriented Software Architectures. SET 2006: 37-48

[13] N. Ali and M. A. Babar, 'Modeling Service Oriented Architectures of
Mobile Applications by Extending SoaML with Ambients', Proc. 35th
Euromicro Conference SEAA, IEEE Computer Society, Patras, 27-29
August, 2009, 442-449.

[14] N. Ali, F. Chen, C. Solis, "Modeling Support for Mobile Ambients in
Service Oriented Architecture," 2012 IEEE First International
Conference on Mobile Services (MS), pp.1,8, 24-29 June 2012.

[15] Song, H., Gallagher, M., Clarke, S. Rapid GUI development on
legacy systems: a runtime model-based solution. In 7th Workshop on
Models@run.time (MRT '12), 2012, 25-30.

[16] Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.,
Requirements reflection: requirements as runtime entities, 32nd
International Conference on Software Engineering, 2010, pp. 199-
202.

[17] R. Ali, C. Solis, I. Omoronyia, M. Salehie, B. Nuseibeh, “Social
Adaptation at Runtime”, Evaluation of Novel Approaches to Software
Engineering Communications in Computer and Information Science
Volume 410, 2013, pp 110-127.

[18] Floch, J., et al., “Using Architecture Models for Runtime
Adaptability,” IEEE Software, vol. 23, no. 2, 2006, pp. 62-70.

[19] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. O. Hallsteinsen, J.
Lorenzo, A. Mamelli, U. Scholz:, MUSIC: Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented Environments.
Software Engineering for Self-Adaptive Systems 2009: 164-182

[20] Gustavo G. Pascual, Mónica Pinto, Lidia Fuentes, Self-adaptation of
mobile systems driven by the Common Variability Language, Future
Generation Computer Systems, Volume 47, June 2015, Pages 127-
144, ISSN 0167-739X,
http://dx.doi.org/10.1016/j.future.2014.08.015.

http://www.eclipse.org/modeling/emf/docs/
http://dx.doi.org/10.1016/j.future.2014.08.015

