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Abstract—Distributed  evolutionary  algorithms are of
increasing interest and importance for three main easons: (i)
a well designed dEA can outperform a ‘standard’ EAIn terms
of reliability, solution quality, and speed; (i) they can (of
course) be implemented on parallel hardware, and Hmee
combine efficient utilization of parallel resourceswith very fast
and reliable optimization; (iii) parallel hardware resources are
increasingly common. A dEA operates as separate dving
populations with occasional interaction between tha via
‘migration’. A specific dEA is characterized by the topology
and nature of these interactions. Although the fial is sizeable,
there is still relatively little exploration of the performance of
alternative topologies and interaction mechanisms. In this
paper we compare some simple, novel dEA topologiesth the
cube-based topology that forms the basis of Alba etl's GD-
RCGA (a state of the art dEA). We find the best results (when
topologies are compared on a like for like basis iterms of
number of processors) emerge from a three-level teehased

topology.

Keywords- function optimization, evolutionary algorithms,
parallel evolutionary algorithms.

l. INTRODUCTION

Distributed evolutionary algorithms (dEAs) operaby
having several independent populations of chromesom
with occasional interaction between them. In adgbdEA,
the separate populations will evolve independefibly a
number of generations, and then “migration” willcag in
which chromosomes from one or more of the poputati@r
‘demes’) will be copied into one or more of the eth

populations. The populations then continue to ewolv

independently until the next migration event, an@s. Such
an EA design is well known to have several desirab
properties. Not least is the fact that several difes well
known to perform more successfully than standard Erat
are otherwise the same (e.g. in terms of operatodstotal
population size) — that isyhen implemented on a single

processor, both solution quality and speed (in terms ofltota

fitness evaluations) can be very favourable. SdgondEAS
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are of course highly parallelizable, and offer ghty natural
way to exploit a variety of different parallel artelttures.
The latter advantage is becoming increasingly more
important as parallel hardware resources

There are two main kinds of dEA (note that these ar
often simply called ‘parallel genetic algorithmdh the
simplest, a standard EA is distributed over seya@tessors
but otherwise is little changed algorithmically. €Th
alterations to the EA itself are only those necgssbany, to
enable exploitation of the parallel hardware. Exksp
include [1,2].

The second (and main) line of research in distetUEAs
involves the establishment of (largely) independent
(sub)populations, each using its own processorsuch a
scheme, a ‘migration’ strategy is used to commuaica
information between processors at intervals [3jeréhare a
great variety of alternative migration schemes. figration
strategy is typically to copy good chromosomes framme
populations to others. The broad dynamics of sudEA
amount to healthy forms of exploration (promoted by
independent subpopulations, mostly non-interactiagp
exploitation (promoted by migration) that are nbared by
single-population EAs. As mentioned, this typicdépds to
improved performance in terms of both solution duand
speed.

Such dEAs are often termed eithéne-grained or
coarse-grained, depending on the sizes of the sub-
populations. The ‘ultimate’ fine-grained models baa
single individual per processor (e.g. [4]). A mdaoured
approach, which is more in tune with the majoritfy
hardware configurations, is the coarse grained in¢elg.
[5—9]. The Genitor algorithm [8] is a particularkyell-
known example, in which the subpopulations werkelhin
a ring topology — migration events involved chromss
being copied from a population to its immediateghbburs
in the ring. A more recent example is that of [@]which the
populations are linked in a cube topology, in which
| subpopulations are vertices of the cube, and esalthkied to
three others along the edges of the cube. We exglach a
cube topology in this paper; the dGA model explaref’]
has several other sophistications; we do not impterthose
here, being interested for current purposes onlythie
performance of alternative simple topologies.



The remainder of the paper is set out as follovestiGn
Il describes our basic parallel EA control strategyd
migration/interaction mechanism, and introduces
topologies that we test in this paper. SectiortHén covers
some experimental design details,
functions and the evaluation strategy. In sectidh we
present our results and an associated discussierpraévide
a concluding discussion in Section IV.

II.  ALGORITHMS, TOPOLOGIES ANDINTERACTIONS

A. EA Pseudocode: Master and Client Threads

Our dEA implementations are all physically paratied
asynchronous, utilizing a collection of standardkstations
via sockets technology. In each case, the implemtient is
done via a master thread and several client threads

The basic operation, in all models, is as follows.
are

Following initialization, in which connections
established, a Master thread receives continuadtepdrom
each client thread concerning their best chromosoamel
the associated fitness. When a chromosome is felat
improves the best fitness so far, the master sémsigo the
client that currently has the worst “best fitheastording to
its latest information. Meanwhile, client threadsemate the
population on a single processor, and incorpora@ n

chromosomes as and when they are sent by the master

thread. Whenever a new chromosome is received, i i
fitter than the current best in that populationerthit is

included in the population and the current worstisearded.
At frequent intervals, each client sends its basbmosome
to the master thread.

The first model we discuss (model 1) operates in
precisely the way above, and uses a straightforward

architecture in which the master is directly coneédo each
client. In models 2 and 3, however, the topologwltered,
and the master thread connects to a restricted eumb
clients, depending on the topology. In each cdseniaster
connects to a group of clients, and the group @ntd

the

4. Receive and store up to date data from clients

5. Distribute appropriate data to clients

including thet tes

The master pseudo code operates three threads, as
follows:

Threadl:

Connect Master with Clients;
For each Client:
Send all parameters;
Send “Start Process”;
End for
Run Thread?2; // for receiving data
Run Thread3; // for sending data

Thr ead2:

Repeat
For each Client
Listen to Connection Stream and store
received data in DataString;
Decode DataString and Convert it to
real Chromosome and Fitness;
If OptimChrom = Null // first one
Set OptimChrom;
Set OptimFitVval;
Else if this Fitness is better
than OptimFitval
Set OptimChromosome;
Set OptimFitVal;
End if;
End for;
Until target Fitness Value reached, or max
time reached

Thread3:

communicate directly with each other. We now presen

pseudocode clarifying the operation of the master eient
threads. In the case of model 1, the pseudocoseribes
exactly what goes on. In the cases of models 23ankere
are differences that will be clarified later. Insesce,
however, the topology defines a set of (perhapslameing)
groups of clients, and each client operates as &attaster
and a client within its group, while an overall nesishread
operates over the groups.

The overall responsibilities of the master threael as
follows:

1. Establish connections between the clients
2. Establish and initialize parameters

3. Start and Terminate the optimization

Repeat
If there is a new OptimChrom
Send OptimChrom and its fitness
back to worst client;
Sleep(100);
Until Reach target Fitness Value;

The client threads operate as follows. Thread 1 is
responsible for connecting to and receiving datanfrthe
master thread. It connects with the master, andtwar a
“Start Process” signal. When this is receivedidtts threads
2 and 3. Thread 2 runs the evolutionary algorittmthat
client’s processor, and thread 3 takes care ofisgnghdated
data on this client’s best chromosome to the master



Thread 1:

wait for “Start Process” signal from master;
Run Thread 2;
Run Thread 3;
While connection is established
Store received data in DataString;
Decode and Convert DataString to
NewChrom and its FitnessValue;
If new FitnessValue is better than
Current OptimFitVval
Set OptimChromosome;
Set OptimFitVal;
Replace worst chromosome in
Population with NewChrom
End if
End While

Thread 2:

Create and Initialise Population;
Set Count =0;
Find best chromosome and call it OptimChrom;
Set OptFitVal;
Repeat
Count++;
Select chromosomes c1 and c2
Crossover(cl1,c2), producing children
c 1"and c2’
Mutate(c1’), producing ¢ 1"
Mutate(c2’), producing c2”
Calculate fitness of c1”;
Calculate fitness of c2'";
If fitness(c1”) better than OptFitVal
SendNewData=True;
Set OptFitVal = fitness(c1”)
Set OptChrom = c1”
If fitness(c2") better than OptFitVal
SendNewData=True;
Set OptFitVal = fitness(c1”)
Set OptChrom = c1”
Until OptFitVal <= TargetFitVal or
Count=MaxCount

Thread 3:
While Thread2 is running
If SendNewData
Send OptChrom and its fitness
to Master;
SendNewData=False;
Sleep(100);
End If;
End While;

B. Evolutionary Algorithm and Other Implementation
Details

In all models we use a generational evolutionagp@athm

that operates with a truncation selection stratg@}, in
which, in each generation, the best 33% of the [atjon

are retained, and, selecting only from this bes$633
crossover and mutation are employed to generate the
remaining 66% of the new population.

Our EA uses crossover and mutation operators ddtail
in [7]; specifically the fuzzy connective-based ssover
operators: F- Crossover, S- Crossover, L- Crossover
Crossover, along with one-point, two-point, and fommn
crossover. Each time a crossover operator is ahptiés a
uniform random choice between these seven. Mutation
(Gaussian mutation of a single randomly chosenrpeter)
is performed on a child of crossover with probapili.25.

All our models use 15 individuals per subpopulation
and (where applicable) a migration is performedrg\as
generations. The probability of update an individbg
mutation is 0.25, and the crossover probabilit§.& There
is a predefined maximum number of generations (@P00
but a trial run will terminate if it has reachedetharget
fitness values.

The physical hardware used is a cluster of eight
personal computers running Microsoft widows XP
Professional SP3, each one having an Intel Pertuh99
GHz processor and 2 GB of memory. The machines are
interconnected by a Fast-Ethernet (100 Mbps) nétwor

C. Topologies

In model 1 (T1), the master connects directly toheaf
16 clients, and clients operate two per processer ére
distributed over 8 machines). Figure 1 illustratexiel 1.

conon nenm
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Figure 1. Model 1 topology for 16 clients.
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Figure 2. Model 2 topology for 16 clients.

Model 2 (T2) differs in a simple way from modelkiyt
in a way which leads to potentially quite differesgarch
dynamics. In Model 2, which is illustrated in Fig., each
master connects directly with each of eight groaps] each
group consists of precisely two intercommunicatifignts.
Recall that, with the basic model (model 1), thestmakeeps
track of the current overall optimum, and will cofiys to

In this model, each client is connected directlytiee other
clients — the ones with which it shares an edgecmline
cube. When such a client finds a new best chromesom
(with respect to only its own population) it chossa
random one of its neighbours, and sends the chromego
that neighbour. Each client does this every 2%erions.
At the master level, there are just two groups;rne\zs
generations, the best chromosome within the fistu (i.e.
from all populations in the first cube) is sentat@andomly
chosen client from the second cube. The same thppeims
vice versa. Finally, we tested both 8-populatiow 46-
population examples of each model. In the 8-pojmrat
cases, the details of T1 and T2 (using 4 groupg)cdre
straightforward. In the case of T3, this resultedising just
one cube, and hence did not involve migration atgher
level than the cube itself.

I1l.  EXPERIMENTS

A. Test Functions

We compare the three models by using six well-known
test functions, and use two versions of each —stasdard
version, and the ‘shifted’ version in which the b
optimum is subject to random translation, renderthg
function less decomposable. In Table | we indictte
functions used, and also indicate the target finés most
cases this is the global optimum. In all experimgerhe

the currentworst client whenever a new optimum is functions had a dimension of 30 (i.e. 30 paramgters

discovered. This is so for model 2 at the leveg@iups; in
model 2, a new best chromosome will first be tiemed to
the sister client in its group, and will soon app#aboth
clients of the previously worst group — hence thistein
some sense, more exploitation of newly discovereddg

chromosomes in model 2.
Master

Figure 3. Model 3 topology for 16 clients.

In model 3 (T3), illustrated in Fig. 3., we base thpology
and interactions on the model of Alba et al [7]which a
master controls two overall groups, but each grbap a
number of overlapping subgroups based on a culmagp.

TABLE I. FUNCTIONS USED IN EXPERIMENTS TARGET FITNESSES
Function Shifted Not Shifted
Sphere 0 0
Rosenbrock 3.5 0
Schwefel 5E10 0
Rastrigin 0 0
Griewangk 0 0
Ackley 0 0

We tested each model (T1, T2 and T3) by running 20
independent trials on each of these 12 test fumstiand
doing this for each of an 8-population and 16-pafoh
case. We first indicate the raw results in terrhsuzcess
rates — i.e. the number of times that each setOofubs
resulted in finding a globally optimal chromosom&lote
that there is no particular prior expectation tthag will be
large (or even above 0) in many cases, however the
dynamics of parallel search, in conjunction withe th
operators chosen from [7], can be highly effective.



TABLE II. SUCCESS RATEROUT OF20) FOR8-POPULATION VERSIONS
(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WIH
EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED

FUNCTIONS

Function 1-client T1 T2 T3

Sphere 18 (20) 19 (18) 18 (20) 18 (20)
Rosenbrock 10 (14) 18 (20) 18 (20) 18 (18)
Rastrigin 20 (12) 20 (18) 20 (17) 20 (18)
Schwefel 14 (10) 11 (17) 18 (17) 11 (17)
Griewangk 20 (14) 18 (18) 20 (20) 18 (17)
Ackley 20 (16) 20 (19) 20 (20) 18 (18)

Table Il shows the success rates for both noneghiénd
shifted versions of the functions for the 8-popolat
versions of each of the models tested in this paper
example, on the Rastrigin function, model T1 achitthe
target fitness on the non-shifted case in 11 rurtsob 20,
and achieved target fitness in the shifted caskrinuns out

of 20. All models perform well in comparison with a

standard single-population EA (which otherwise ufies
same operators and overall population size). Tiiat
surprising, although it is important to confirm. €h
performance advantage over the serial model (theliéht”
column) is more pronounced when we consider thieshi
versions of the functions. In terms of successsrathe
relative performances of T1, T2 and T3 are vense&ldut
perhaps T2 seems to have the advantage.

TABLE 1. SUCCESS RATE{OUT OF20) FOR16-POPULATION
VERSIONS(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WIH
EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED

In table IV we can see the mean execution timethef
runs that were successful in reaching target ftnBew we
can see a much clearer advantage for T2, which séem
outperform T1 and T3 in each case.

TABLE IV. MEAN EXECUTION TIMES(MS) OF SUCCESSFUL RUNS
(AVERAGED OVER ALL SUCCESSFUL RUNBFOR8-POPULATION VERSIONS
(1-CLIENT INDICATES SINGLE POPULATION SERIAL METHOD WIH
EQUIVALENT OVERALL POPULATION SIZE): NON-SHIFTED AND SHIFTED

FUNCTIONS
Function 1-client T1 T2 T3
72515 2261 1565 1802
Sphere (5.14e6) | (138503) | (112712) | (137969)
375703 246484 193983 313005
Rosenbrock (1.01e7) (1.76€6) (1.40e6) (1.80e6)
35197 2162 1562 2172
Rastrigin (1.44€6) (153054) | (114120) | (132423)
1.96e6 34059 25316 49369
Schwefel (1.59e7) | (528545) | (426094) | (713984)
77949 2233 1542 1856
Griewangk (1.35e6) | (165531) | (143793) | (163831)
75139 2031 2000 2359
Ackley (1.30e6) (141634) | (132812) | (146466)

In tables V and VI, we can see the speedup frastion
all cases. These simply divide the mean execufioe bf
successful runs in the serial case by the mearut@aadime
in the parallel model case. The tables provideetuzda for
each function, and the best speedup for each mds
given in bold. The final line provides an indica&iVmean
speedup” over all functions.

FUNCTIONS
Function 1-client T1 T2 T3
Sphere 18 (20) 20 (20) 20 (20) 20 (20) TABLE V. SPEEDUPS OF THEPARALLEL ARCHITECTURESCOMPARED
WITH SERIAL EA —8-POPULATION MODELS
Rosenbrock 10 (14) 20 (20) 20 (20) 20 (20)
Rastrigin 20(12) | 20@18) | 20(20) | 20(20) Function Not Shifted Shifted
Schwefel 14 (10) 16 (17) 17 (18) 15 (18) T1 T2 T3 T1 T2 T3
Griewangk 20 (14) 20 (20) 20 (20) | 20 (20) Sphere 32 46 40 37 46 37
Ackley 20 (16) 20 (20) 20 (20) | 20 (20)
Rosenbrock 2 2 1 6 7 6
Rastrigin 23 23 16 9 13 11
Table 1l shows us the results for the 16-poputat — s 8 20 o >3 "
versions of these models. Generally the performancEl, chwete
T2 and T3 are all a little improved, with T2 perba Griewangk 35 51 42 8 9 8
maintaining a slight advantage, but with no sttt o 9 10 9
significance based on these data alone. The “bitli cxey 37 | 38 32
column is repeated here for convenience, but rsflée Mean 30.65| 46.76 | 32.55 | 14.72 | 17.99 | 14.13

same benchmark comparison experiment reportedbia ta



TABLE VI. SPEEDUPS OF THEPARALLEL ARCHITECTURESCOMPARED

WITH SERIAL EA — 16-POPULATION MODELS

Not Shifted Shifted
Function
T1 T2 T3 T1 T2 T3

Sphere 87.55 | 93.21 89.78 100.40 | 110.91 | 103.19
Rosenbrock | 9.38 10.07 7.28 13.48 18.36 14.09
Rastrigin 48.23 51.20 42.18 25.63 32.72 25.89
Schwefel 11.61 | 22.93 15.99 15.59 16.40 11.30
Griewangk 90.70 | 111.04 | 103.09 33.01 45.30 23.06
Ackley 92.86 | 111.05 93.55 28.64 41.97 25.03
Mean 57.23 | 66.58 58.64 36.13 44.28 33.76

It is clear that model T2 is the most successfiéims of
speed of finding global optima in each case.

[V. CONCLUDING DISCUSSION

We have argued that distributed evolutionary atigors
(dEAS) are of ever-increasing interest and impadafor a
variety of reasons. It is well known that parafeti
optimization can provide more advantages than sirspéed

of execution; meanwhile the design of a distributed 4]
to opportunities fo

asynchronous architecture leads
managing exploration and exploitation in ways thiatply

cannot be done in serial, and these can lead terlyesults
for the same overall number of function evaluatio&ven

that parallel hardware resources are becoming garemon

and everyday, it is therefore clear that we neashtlerstand
how to design dEAs to optimal effect.

So far, however, there has been relatively littleéerms
of exploration of the vast number of potential desttures
and migration strategies (for example) in the brspace of
possible dEAs. In this paper we have compared simgle

dEA topologies and interaction schemes. One was

straightforward case of dividing the population oini
subpopulations, where a master process distrilgadbest
chromosomes to the current worst subpopulation esen
a new best was found. The second was a slightticarian
the first, in which the individual populations weeach

groups of two subpopulations, which communicateeirth

best chromosomes regularly to each other, with'ltlest to
worst” strategy operating at the level above theases of
populations. The third model was based on Alte'stcube
topology [7] and also used the a similar migrascheme.
Interestingly, we found that the simple variatiaivizeen
model 1 and model 2 led to a significant differerine

performance, which was clearly seen in the average
speedups, in both the 8-population and 16-populatases.
Model 2 appeared more successful than Model-3jredjpy
Alba et al's GD-RGCA, on the functions tested.

One possible conclusion is that GD-RCGA (and pesha
other current models, might be enhanced by adoptipgcts
of the interaction strategy and topology used indehd?.
This is one idea that we expect to examine in &utuork.
Also in future work we will more systematically dape the
design and parameter settings of model 2, to d@termhat
seems to lead to its outperformance of model 1 eWect it
will be interesting to explore this, for examplsy, toacking
the generation and behaviour of niches in the dine
landscape as they emerge and are shared betwass§ucs.
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