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Abstract—The recent time has seen the rise of consumer
grade massively parallel environments. Powerful GPUs and
multi-core processors became widely available and easy to
use programming APIs such as nVidia CUDA, OpenCL, and
DirectCompute simplify the development of applications that
can utilize them. In this environment, the nature inspired meta-
heuristics can be in suitable cases implemented in parallel
without additional costs. Backed by the power of modern
GPGPUs, the meta-heuristics can be deployed to solve practical
real world problems. In this paper, we compare differential
evolution and genetic algorithms implemented on CUDA when
solving the independent tasks scheduling problem.

Keywords-genetic algorithms, differential evolution, CUDA,
independent task scheduling

I. INTRODUCTION

Modern Graphics Processing Units (GPUs) represent a
budget environment for massively parallel computations.
Hand in hand with the wide availability of the hardware,
there are also APIs and modern development kits that
enable rapid development of parallel applications. Naturally,
many evolutionary algorithms including e.g. the genetic
algorithms, genetic programming, and differential evolution,
were implemented for the GPUs using different tools and
approaches. Such a GPU implementations were shown to
improve the performance of the algorithms dramatically and
the speedup of evolutionary algorithms obtained by the use
of the GPUs can contribute to the usage of evolutionary
computation for practical problems.

In this study we compare the efficiency of genetic al-
gorithms and differential evolution implemented on the
nVidia Compute Unified Device Architecture (CUDA) plat-
form. Both evolutionary algorithms were implemented from
scratch following the same design principles and we have
compared their performance when solving a benchmark
problem. The chosen benchmark problem was the indepen-
dent tasks scheduling problem, a well known combinato-
rial optimization problem that requires creating an efficient
schedule of execution of a set of independent tasks on a set
of resources (computing nodes). The problem was chosen
because it is a real world problem, it was addressed by both,
exact and meta-heuristic algorithms in the past, and there is
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a data set to execute the experiments readily available.

Modern graphics hardware has gained an important role
in the area of parallel computing. Graphic cards have been
used to accelerate gaming and 3D graphics applications, but
recently, they have been used to perform general computa-
tions as well. The area of general purpose GPUs (GPGPUs)
programming has become a hot topic in parallel computa-
tion.

The main advantage of the GPU is its structure. Stan-
dard CPUs (central processing units) contain usually 1-4
complex computational cores, memory registers and large
cache memory. The GPUs contain up to several hundreds
of simplified execution cores grouped into so-called multi-
processors. Every SIMD (Single Instruction Multiple Data)
multiprocessor drives eight arithmetic logic units (ALU)
which process data, thus each ALU of a multiprocessor
executes the same operations on different data, stored in the
registers or device memory. In contrast to standard CPUs
which can re-schedule operations (out-of-order execution),
current GPUs are an example of an in-order architecture.
This drawback is overcome by their massive parallelism
as described by Hager et al. [1]. Current general-purpose
CPUs with clock rates of 3 GHz outperform a single ALU
of the multiprocessors with its rather slow 1.3 GHz. The
huge number of parallel processors on a single GPU chip
compensates this drawback.

The GPGPU programming has offered a new platform
for evolutionary computation [2]. The majority of the evo-
lutionary algorithms including genetic algorithms [3]-[5],
genetic programming [6], [7], and differential evolution [8]-
[10] were implemented on the GPU. Most of the current
implementations of said algorithms have two things in
common: they struggle with random number generation and
they map each candidate solution in the population to one
GPU thread.

The nVidia CUDA-C language is an extension to C that
allows development of GPU routines called kernels. Each
kernel defines instructions that are executed on the GPU by
many threads at the same time following the SIMD model.
The threads can be organized into so called thread groups
that can benefit from GPU features such as fast shared mem-
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ory, atomic data manipulation, and synchronization. The
CUDA runtime takes care of the scheduling and execution of
the thread groups on available hardware. The set of thread
groups requested to execute a kernel is called in CUDA
terminology a grid. A kernel program can use several types
of memory: fast local and shared memory, large but slow
global memory, and fast read-only constant memory and
texture memory.

II. BRIEF INTRODUCTION OF GENETIC ALGORITHMS
AND DIFFERENTIAL EVOLUTION

The genetic algorithms (GA) are based on the software
implementation of genetic evolution [11]. Genetic algo-
rithms evolve a population of chromosomes representing
potential problem solutions encoded into suitable data struc-
tures (chromosomes). Candidate solutions are most often
encoded as binary strings, integer vectors, or real vectors.

Artificial evolution consists of the iterative application of
genetic operators, introducing to the algorithm evolutionary
principles such as inheritance, the survival of the fittest, and
random perturbations. Iteratively, the current population of
candidate solutions is modified with the aim of forming a
new and, it is hoped, better population to be used in the
next generation. The evolution of problem solutions ends
after specified termination criteria have been satisfied. After
the termination of the search process, the evolution winner is
decoded and presented as the most optimal solution found.

The differential evolution (DE) [12] is a population-based
evolutionary optimizer that evolves real encoded vectors
representing candidate solutions to given problem. The DE
starts with an initial population of N real-valued vectors.
During the optimization, DE generates new vectors that are
perturbations of existing population vectors. The algorithm
perturbs vectors with the scaled difference of two (or more)
randomly selected population vectors and adds the scaled
random vector difference to a third randomly selected pop-
ulation vector to produce so called trial vector (hence the
name differential evolution). The trial vector competes with a
member of the current population with the same index. If the
trial vector represents a better solution than the population
vector, it takes its place in the population [12].

Both algorithms are viable evolutionary meta-heuristics.
The differential evolution represents an alternative to the
concept of genetic algorithms. As well as genetic algorithms,
it represents a highly parallel population based stochastic
search meta-heuristic. In contrast to GA, differential evo-
lution uses real encoding of chromosomes and different
operations to evolve the population. It results in different
search strategy and different directions found by DE when
crawling a fitness landscape of the problem domain.

III. RELATED WORK

Ever since its inception, the GPGPUs were recognized
as the devices that can leverage the use of (not only)

evolutionary nature inspired meta-heuristics significantly.
The raw power of up to several hundred cores on a single
device can be utilized to accelerate various evolutionary
algorithms. Usually, the most expensive step in the artificial
evolution is the evaluation of candidate solutions, which
can be in most cases done in parallel. Nevertheless, an
efficient parallelization of the rest of the evolutionary meta-
heuristics is also a key to the optimal use of the resources
on the GPGPU devices. In this section, we provide brief
summary of recent implementations of the GA and DE on
the GPGPUs.

A. Genetic Algorithms on GPUs

The first attempts to run GAs on the GPUs predate
the public availability of GPGPU APIs. At that time, the
GA had to be translated to shader programs and the data
structures to textures. For example, the work of Wong and
Wong [13], [14], introduced a GPU parallelization of a
modified GA extended with the Cauchy mutation operator
used in evolutionary programming. Yu et al. [15] used the
GPU to execute a real encoded parallel GA and discussed the
different data structures mapped to GPU textures (population
texture, fitness texture, random texture).

In [3], Maitre et al. presented an overview of GA imple-
mentation efforts on CUDA and concluded, that the GA is
hard to implement in the SIMD environment. They presentd
a custom language, EASEA, to help implementing the GA in
parallel environments and achieved significant GA speedup
orders of magnitude large.

Tsutsui and Fujimoto [4] developed a parallel GA to solve
the quadratic assignment problem on CUDA and achieved
a 3 - 28 times faster solution when compared to the CPU.
Wong [5] proposed a CUDA implementation of a parallel
multi-objective GA and improved the execution times of the
algorithm 5 - 10 times.

B. Differential Evolution on GPUs

Due to the simplicity of its operations and fixed encoding
of candidate solutions, DE is suitable for parallel imple-
mentation on the GPUs. In DE, each candidate solution is
represented by a vector of real numbers and the population
as a whole can be seen as a real matrix. Moreover, both
mutation and crossover can be in DE implemented easily.

The first implementation of DE on the CUDA platform
was introduced in the early 2010 by de Veronese and
Krohling [9]. The DE algorithm was implemented using the
CUDA-C language and it achieved on a set of benchmarking
functions speedup between 19 and 34 times comparing to the
CPU implementation. The generation of random numbers
was implemented using the Mersenne Twister from the
CUDA SDK and the selection of random trial vectors for
mutation was done on the CPU.

Zhu [8], and Zhu and Li [10] implemented the DE
on CUDA as part of differential evolution-pattern search
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algorithm for bound constrained optimization problems and
as a part of a differential evolutionary Markov chain Monte
Carlo method (DE-MCMC) respectively. In both papers,
performance of the algorithms was demonstrated on a set
of continuous benchmarking functions.

IV. IMPLEMENTATION OF GA AND DE

In this section we introduce the details of the implemen-
tation of GA and DE on the CUDA platform. The goal of
the implementation of both algorithms was achieving high
parallelism while keeping the simplicity of the algorithms.
Also, it is designed to avoid two common properties of up-
to-date GA and DE implementations for CUDA: the candi-
date solution to single thread mapping (we use many threads
to process each candidate solution) and the problems with
random numbers generation (we use cuRAND to generate
pseudorandom numbers on the GPU). The overall goal of
the implementations is to to process each candidate solution
by many threads during both, fitness function evaluation and
evolutionary operations.

The implementations consists of a set of CUDA-C kernels
for generation of initial population, generation of batches of
pseudorandom numbers for decision making, merger of the
old and new populations, the implementation of the opera-
tions specific for each meta-heuristic, and for evaluation of
candidate solutions.

The kernels were implemented using the following prin-
ciples:

i. Each candidate solution is processed by a thread block
(thread group). The number of thread groups is in
CUDA currently limited to (2'® — 1)? and hence the
maximum population size is in this case the same.

ii. Each candidate solution gene (vector coordinate) is
processed by a thread. The limit of threads per block
depends in CUDA on the hardware compute capability
and it is 512 for compute capability 1.x and 1024
for compute capability 2.x [16]. This limit enforces
the maximum vector length. For the first use case
considered in this paper, candidate vectors with length
512 are needed.

iii. Each kernel call aims to process the whole population
in one step, e.g. it asks the CUDA runtime to launch
M blocks with 512 threads in parallel. The runtime
executes the kernel with respect to available resources.

The flowchart of used DE implementation is shown
in Fig. 1 and the flowchart of used GA implementation is
shown in Fig. 1. The DE is rather straightforward, but the
GA contains additional steps such as pre-selection of parents
and optional pre-computation of data for migration. They
are performed on the CPU due its higher complexity. Parent
selection is done on the CPU and for steady-state GA, the
chromosomes to establish new population are selected by
the CPU (pre-compute migration step).

This implementation brings several advantages. First, all
the generic operations can be considered done in parallel and
thus their complexity reduces from M x N (population size
multiplied by vector length) to ¢ (constant, duration of the
operation plus CUDA overhead). Second, this implementa-
tion operates in a highly parallel way also on logical level. A
population of offspring candidate solutions of the same size
as the parent population is created in a single step and later
merged with the parent population. Third, the evaluation of
fitness function is accelerated by the GPU.

CPU GPU
1 thread M blocks x N threads

Start DE

Initialize
parameters

kernel call

kernel return

kernel call

kernel return

¥ Finish DE
| read best il
3 result

kernel call

kernel return
|

kernel call

kernel return

kernel call

kernel return

kernel call

kernel return

Figure 1: The flowchart of the DE implementation on
CUDA.

V. COMPUTATIONAL EXPERIMENTS

In this section we describe computational experiments
conducted in order to find out which algorithm performs
better for a given test problem.

A. Independent task scheduling

Independent task scheduling can be defined as a mapping
of a set of tasks to a set of resources [17], [18]. Efficient
scheduling is required to exploit the different capabilities of
a set of heterogeneous resources but it is an NP-complete
problem [19] and it cannot be solved by exact methods
in reasonable time. Instead, it was a subject to various
heuristic [18], [20], [21] and meta — heuristic [22]-[26]
algorithms.
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Figure 2: The flowchart of the GA implementation on
CUDA.

Let T = {T1,T5,...,T,} denote the set of independent
tasks with no inter-task dependencies that is in a specific
time interval submitted to a resource management system
(RMS). Assume at the time of receiving these tasks by RMS,
m machines M = {M;, Ms,...,M,,} are available and
no preemption is allowed (i.e. the tasks cannot change the
resource they have been assigned to). Scheduling is done
on machine level and it is assumed that each machine uses
First-Come, First-Served (FCFS) method for performing the
received tasks. We assume that each machine can estimate
how much time it requires to perform each task. In [18]
Expected Time to Compute (ETC) matrix is used to estimate
the required time for executing a task in a machine. An ETC
matrix is a n X m matrix in which n is the number of tasks
and m is the number of machines. One row of the ETC
matrix contains the estimated execution time for a given task
on each machine. Similarly one column of the ETC matrix
consists of the estimated execution time of a given machine
for each task. Thus, for an arbitrary task 7} and an arbitrary
machine M; , [ETC];,; is the estimated execution time of
T; on M;. In the ETC model we take the usual assumption
that we know the computing capacity of each resource, an
estimation or prediction of the computational needs of each

job, and the load of prior work of each resource.

The two objectives to optimize during the task mapping
are makespan and flowtime. Optimum makespan (meta-task
execution time) and flowtime of a set of jobs can be defined
as:

makespan = min { max Fj} (1)
SeSched "jeJobs

{> F) @)

jE€Jobs

flowtime = min
SeSched

where Sched is the set of all possible schedules, Jobs stands
for the set of all jobs to be scheduled, and F}; represents the
time in which job j finalizes.

Minimizing makespan aims to execute the whole meta-
task as fast as possible while minimizing flowtime aims to
utilize the computing environment efficiently.

A schedule of n independent tasks executed on m ma-
chines can be naturally expressed as a string of n integers
S = (s1,82,...,5,) that are subject to s; € 1,...,m.
The value at i-the position in .S represents the machine on
which is the i-the job scheduled in schedule S. This schedule
encoding was used for the GA. The DE uses for problem
encoding real vectors so real coordinates must be used
instead of discrete machine numbers. The real-encoded DE
vector is in this work translated to schedule representation by
simple truncation of its coordinates (e.g. 3.6 — 3, 1.2 — 1).

Assume schedule S from the set of all possible schedules
Sched. For the purpose of differential evolution, we define
a fitness function f(S) : Sched — R that evaluates each
schedule:

~ flowtime(S)
m

f(S) = X -makespan(S) + (1 — \) 3)

The function f(S) is a sum of two objectives, the makespan
of schedule S and flowtime of schedule .S divided by number
of machines m to keep both objectives in approximately the
same magnitude. The influence of makespan and flowtime in
f(S) is parameterized by the variable \. The same schedule
evaluation was already used several times, see e.g. [25], [26].

B. Experiments

To evaluate the performance of the GA and DE for
minimizing the makespan and flowtime, we have used the
benchmark proposed in [18]. The simulation model is based
on the ETC matrix for 512 jobs and 16 machines. The
instances of the benchmark are classified into 12 different
types of ETC matrices according to [18]:

o task heterogeneity, i.e. the amount of variance among
the execution times of tasks for a given machine

o machine heterogeneity, i.e. the variation among the
execution times for a given task across all the machines

o consistency. An ETC matrix is said to be consistent
whenever a machine M; executes any task T; faster
than machine Mj; in this case, machine M; executes
all tasks faster than machine M},
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Table I: GA and DE settings

GA DE
paremeter value | parameter value
population size 64 | population size 64
mut. probability 0.01 | F 0.9
cros. probability 08 | C 0.9
selection semi elitary

Table II: Optimization results

ETC matrix GA DE
ThMhCc 2.34994e+07  9.55294e+06
ThMhCi 1.38284e+07  3.17031e+06
ThMhCs 1.45571e+07  4.28296e+06
ThMICc 207687 189457
ThMICi 182313 78844.7
ThMICs 171689 104447
TIMhCc 755855 331510
TIMhCi 468615 104894
TIMhCs 493757 142368
TIMICc 6834.15 6158.24
TIMICi 5731.92 2550.79
TIMICs 5873.45 3391.38

e inconsistency — machine M, may be faster than ma-
chine M, for some tasks and slower for others

GA and DE to solve the independent task scheduling
problem were implemented as outlined in section IV with (3)
with T' = 0.5 as fitness function. The goal of the algorithm
was to minimize the fitness. The parameters of GA and DE
set on the basis of previous experience and after initial
tuning are shown in Table I. The run of each algorithm
was terminated after exactly one minute. The experiment
was performed on a server with 2 dual core AMD Opteron
processors at 2.6GHz and nVidia Tesla C2050 with 448
cores at 1.15GHz.

The average final fitness obtained for each ETC matrix by
the GA and DE is shown in Table II. We can clearly see that
the DE was able to find significantly better schedules within
the given minute. The differencies between final fitness for
the DE and GA are also illustrated in Fig. 3. Indeed this is an
interesting results that can be attributed to several reasons:

« the DE is a meta-heuristic that solves the independent
task scheduling problem better than the GA. The no free
lunch theorem [27] explains why some algorithms are
better at solving certain problems and wors at solving
another problems.

« the many-threaded implementation suits better to the
DE than GA. However, we note that more GA opera-
tions have been performed on the CPU because their
parallelization was impractical(e.g. the parent selec-
tion).

100000000.00 u DE

10000000.00 uGA

1000000.00

100000.00
10000.00
1000.00
100.
10.
1.00

ThMhCi ThMICc ThMICs TIMhCi TIMICc TIMICs
ThMhCs ThMICi TIMhCc

Fitness (log scale)

8 8

ThMhCc TIMhCs TIMICi
Figure 3: The flowchart of the GA implementation on
CUDA.

VI. CONCLUSIONS

In this paper, we have compared a many-threaded imple-
mentation of two nature inspired meta-heuristics, the GA
and the DE. In contrast to previous GPU implementations
of the GA and DE, the presented implementation processes
each candidate solution with many threads and generates the
random numbers on the GPU. This approach seeks to utilize
the resources of the GPGPU as much as possible.

The CUDA implementation of the DE was easier because
the variant of the algorithm that was implemented can be
almost entirely expressed using matrix vector operations.
The parallelization of the GA was not so straightforward
because some parts of the algorithm (parent selection,
transition from one population to another) are not suitable
for parallelization in a SIMD environment such as the
CUDA. We have performed a direct comparison of the two
algorithms on the same problem and the DE was clear
winner in terms of finding better schedules than the GA.
In the future, we will study whether the many-threaded GA
implementation performs poorly also on other problems,
which would mean that either our parallel model or its
implementation is unsatisfactory.
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