
Hybrid Harmony Search algorithm for Global Optimization

M. Ammar, S. Bouaziz, Adel M. Alimi
REsearch Group on Intelligent Machines (REGIM),

University of Sfax, National School of Engineers (ENIS),
BP 1173, Sfax 3038, Tunisia,

marwaa_daoued@gmail.com, souhir.bouaziz@ieee.org,
adel.alimi@ieee.org

Ajith Abraham1,2
1Machine Intelligence Research Labs, WA, USA

2IT4Innovations, VSB-Technical University of Ostrava,
Czech Republic

ajith.abraham@ieee.org

Abstract—This paper proposes two hybrid optimization
methods based on Harmony Search algorithm (HS) and two
different nature-inspired metaheuristic algorithms. In the first
contribution, the combination was between the Improved
Harmony Search (IHS) and the Particle Swarm Optimization
(PSO). The second contribution merged the IHS with the
Differential Evolution (DE) operators. The basic idea of
hybridization was to ameliorate all the harmony memory
vectors by adapting the PSO velocity or the DE operators in
order to increase the convergence speed. The new algorithms
(IHSPSO and IHSDE) have been compared to the IHS, DE,
PSO and some other algorithms like DHS and HSDM. The
DHS and HSDM are two existing algorithms, which use
different hybridization concepts between HS and DE. All of
these algorithms have been evaluated by different test
Benchmark functions. The results demonstrated that the
hybrid algorithm IHSDE have the better convergence speed
into the global optimum than the IHSPSO and the standard
IHS, DE and PSO.

Keywords-component; Harmony Search; Improved Harmony
Search; Differential Evolution; Particle Swarm Optimization;
Benchmark functions.

I. INTRODUCTION
In recent years, several researchers have devoted their

attention to develop new optimization algorithms based on
analogies with natural or behavioral phenomena. The field
of nature-inspired metaheuristic algorithms was principally
constituted by the evolutionary algorithms like Genetic
Algorithm (GA) [7] and Differential Evolution (DE) [14], as
well as the swarm intelligence algorithms like Particle
Swarm Optimization (PSO) [9], Bacterial Foraging
Optimization (BFO) [11], and so on [19-27]. These
algorithms have demonstrated their power in solving global
complex optimization problems among whom learning of
artificial neural networks [1, 2], Optimal Power Flow
problem [16], Power Electronic Circuit Design [18], etc.

In 2001, the field extends to include the mimic
algorithm, Harmony Search (HS), developed by Geem [6].
This new algorithm was inspired from jazz musical
improvisation when a musician (=decision variable) plays
(= generate) a note (= value) to find a perfect state of
harmony (= global optimum)[6].

Since its invention, (HS) has received considerable
attentions. Its effectiveness and advantages have been
demonstrated in a wide range of applications [5], which
directed research to further improve its performance.
Moreover, in order to improve the adjusting characteristic of
HS algorithm, Mahdavi et al. [10] suggested evolving the
parameters instead of being fixed during the iterations. The
Improved Harmony Search algorithm (IHS) was applied in
various standard engineering optimization problems.

Harmony Search (HS) is a phenomenon imitating an
algorithm inspired by the improvisation process of
musicians. The HS algorithm searches the solution area as a
whole to find the optimum vector, which optimizes the
objective function [6]. When the HS algorithm generates a
new vector, it considers all of the existing vectors in the
harmony memory with fewer mathematical requirements.
This feature makes the HS more flexible, the
implementation easier and it is very versatile to combine HS
with other metaheuristic algorithms [17] such as Differential
Evolution algorithm [14] and Particle Swarm Optimization
algorithm [9].

All these factors pushed some researchers like
Chakraborty et al. to propose hybridization between the HS
and the differential evolution algorithm called the improved
harmony search algorithm with differential mutation
operator (DHS) [3]. In addition, Qin and Forbes presented
the Harmony Search with Differential Mutation Based Pitch
Adjustment (HSDM) [12].

In this context, some nature inspired meta-heuristic
optimization algorithms such as PSO, DE and HS are
adopted in this work. In the first phase, a new idea, which
approximates the vectors of IHM to the swarm concept of
PSO algorithm is introduced. In this case, at each iteration, a
new position vector was computed for all individuals of the
swarm to converge it to the global minimum. The IHSPSO
algorithm inherited a new attribute named ‘Velocity’ and
integrated it for the computation of the new vectors of
harmony memory. In the second phase, the Differential
Evolution (DE) algorithm was chosen to implement their
operators (mutation, crossover and selection) in IHS
generation vectors. By applying these instructions, a wide
variety of values were being available to guide the
hybridized algorithm IHSPSO and IHSDE towards the

optimal solutions with more efficiency and speed. This
work considers only the single-objective optimization
problems.

The remaining paper is organized as follows: Section 2
describes the original HS, the improved HS and the observed
weakness of these algorithms. In section 3, the hybrid
method based on the IHS and PSO is presented. The
combination method between the IHS and DE algorithms is
provided in Section 4. The set of some simulation results is
the subject of Section 5. Finally, some concluding remarks
are presented in Section 6.

II. HARMONY SEARCH (HS)
This section contains a description of the basic Harmony

Search algorithm; the improved method and the weakness on
witch based our hybridizations.

A. The Harmony Search algorithm
In order to understand the Harmony Search concept,

some explications of the improvisation process by a skilled
musician are the subject of this section. When a musician
improvises a note usually follows one of the three rules: (1)
playing a note from his memory, (2) playing a note beside a
note from his memory, or (3) playing a note totally random
of the sound and feasible range. Similarly, the improvisation
of harmony (vector) is essentially based on these rules. The
steps in the procedure of harmony search are as follows [6]:

1) Step 1. Formulation of the problem and parameter
settings.
Thus, to apply the HS, the problems should be formulated in
the optimization environment, with the objective function
and the parameters must be defined with certain values. The
HS algorithm parameters are [5, 6]:

• Harmony Memory Consideration Rate (HMCR) :
the rate of randomly selected values from the
memory (0≤HMCR≤1)

• Harmony Memory Size (HMS) (that is, equivalent
to population size),

• Pitch Adjustment Rate (PAR) :	
 the rate of altered
values that was originally taken from the memory
(0≤PAR≤1)

• Number of Improvisations (NI) (that is, the
maximum number of generations).

• FW or BW: the width of the fret or bandwidth

2) Step 2. Initialize randomly the Harmony Memory
(HM).

3) Step 3. Improvise a new harmony.
4) Step 4. Update the harmony memory.
5) Step 5. Repeat step 3 step 4 until the satisfaction of

the termination criterion.

B. The Improved Harmony Search (IHS)
In the Improved Harmony Search (IHS), Mahdavi [10]

suggested that PAR increase linearly and FW decrease
exponentially with iterations. Therefore, mathematic

expressions were adapted into these parameters to follow
the iteration change:

PAR=(PARmax-PARmin)/(MaxItr)
*currentIteration + PARmin (1)

FW=fwmax*exp(coef*currentIteration) (2)

 coef=log(fwmin/fwmax)/MaxItr (3)	

C. The HS weakness
Most of the decision variables in the new harmony are

selected from the other vectors stored in Harmony Memory.
In addition, the new harmony vector may have the
opportunity to take a place in the memory after its fitness
test. Then, this vector might influence the convergence
speed of the HS to the global optimum. In simulation
results, we note that the HM is stable in most of the time:
the memory matrix is changed one time every 75 iterations,
in average. So it does not provide a large variety of values to
the next improvisation. Therefore, the HS has a low
probability of generating a good-quality of the new harmony
vector.

To overcome this limitation in the HS, we have to
incorporate a mechanism to create a wide variety of values
in memory while respecting their allowable ranges. This
mechanism must be dynamic, so that converges and
indirectly guides the global algorithm to find its optimum.
For these reasons, we try to inspire a new hybridization idea
from other nature-inspired metaheuristic algorithms like
Particle Swarm Optimization (PSO) and Differential
Evolution (DE) algorithms. The common idea of these
algorithms is to provide a new population at each iteration
not only completely different but also closer to the
optimum.

The hybridization strategy is to simulate the HM vectors
to the swarm particles performance of PSO and to the
individuals’ evolution of DE. Therefore, we try to apply a
new set of instructions on all vectors in memory to have a
dynamic memory that fly at each iteration towards the
optimal solution. In addition, it improves the population and
generates each time a better range of values for the next
improvisation.

III. THE IHS HYBRIDIZED WITH PSO ALGORITHM
This section contains a description of the Particle Swarm

Optimization algorithm (PSO) and the process of
hybridization between IHS and PSO algorithms.

A. The Particle Swarm Optimization (PSO)
The particle swarm optimization (PSO) is a population-

based metaheuristic algorithm. It was developed by
Kennedy and Eberhart in 1995 [9]. Simulating the behaviors
of bird flocking, the mean idea of PSO is that individuals,
called particles, interact with one another while learning
from their own experience. The system is initialized
randomly with a population of solutions and searches for

optimal solution by updating generations. They share the
global best and gradually they move into better regions of
the problem space [9]. All of particles have positions and
velocities which direct the flying of the particles. They
evaluated by the fitness values which computed by the
optimized function.

The PSO algorithm requires primitive mathematical
operators for updating the particles positions ‘p’ and
velocities ‘v’ as shown below [8]:

vi
t+1 = vi

t + c1 * rand * (pbest i – pi
t)

 + c2 * rand * (gbest i – pi
t) (4)

pi

t+1 = pi
t + vi

t+1 (5)

At each iteration, every particle is updated by following
two "best" values. The first one is the local best and called
‘pbest’. It is the best fitness value achieved by the particle.
The second "best" is the global best and called ‘gbest’. It is
the best fitness value obtained so far by any particle in the
population.

B. The hybridization between IHS and PSO
From the early works on PSO, it is known that PSO

algorithm have fast convergence behavior and characterized
by its ability to perform very well in static and dynamic
environments. The stochastic factors and the dynamic
aspects of particle velocities can guide the system to the
right areas of research in the workspace.

Figure 1. Flowchart of IHSPSO

In this hybridization, we integrate the terminology of the
PSO algorithm in the HS in order to limit the search time for
the optimum. For better results, we choose to apply the
hybridization on the Improved Harmony Search algorithm
instead of the basic version because of its better
performance.

Indeed, we considered the memory vectors of IHS as
particles of the swarm and the new memory values for new
improvisation as the new positions reached by these
particles. We added the ‘velocity’ parameter calculated for
each particle according to the equation (4) announced in the
PSO algorithm. For each iteration, we identified 'pBest' and
'gBest', which correspond to the current particles generation
and calculated the new positions in relation to the calculated
velocities (see Figure 1).

IV. THE IHS HYBRIDIZED WITH DE ALGORITHM
This section presents a general idea about the Differential

Evolution algorithm (DE) and describes the new
hybridization strategy between IHS and DE algorithm.

A. Differential Evolution (DE)
The Differential Evolution algorithm (DE) was proposed

by Price and Storn in 1995 [14]. Its remarkable performance
and effective approach as a global optimization algorithm
on wide variety of fields of engineering has been
extensively explored [1, 2]. It is a simple and
straightforward strategy based on three operators: mutation,
crossover and replacement [4].

• Mutation:

There exist different mutation strategies. In one of the
simplest forms of DE-mutation, for each target vector of the
current population, three distinct vectors are sampled
randomly. Then, the vector difference of randomly sampled
population members is scaled (by the control parameter F in
the range [0.4, 1]) and added to the basis vector to produce a
mutant vector.

• Crossover:

After the mutation, a crossover operation comes into
play. The crossover is applied with certain probability
controlled by the Crossover rate (Cr ∈ [0, 1]). The crossover
is a combination between the mutant vector and the target
vector under consideration to generate a trial vector.

• Selection:

To keep the population size constant for future
generations, the next operation of the algorithm calls
selection. The goal of selection is to keep the best vector for
the next generation.

B. The hybridization between IHS and DE
The Differential Evolution was the second algorithm

hybridized with IHS. It has very limited number of control
parameters (Cr, F, and NP in classical DE). Although it used
simple adaptation formulas for F and Cr without

Step1: Formulation of the problem and
parameter settings

Step2: Initialize randomly the Harmony
Memory (HM)

Condition ?

Step3: Improvise a new harmony

Step4-a: Update the harmony memory

True

False

Stop

Step4-b:
-Determinate gBest and pBest

- Calculate particle velocity according equation (4)
- Update particle position according equation (5)

 Satisfaction of the termination criterion

Step5 :

computational burden, it was a preferment and effective
technique for solving optimization problems.

In order to build an impact solution that covers the
weakness found in the IHS, we applied the operators of
mutation, crossover and selection on all vectors of memory.
In fact, this treatment is designed to be made each iteration
to change memory vectors from one generation to another
and add the dynamic aspect to our algorithm. The vectors
resulting from this treatment form a new range of values
much closer to the global optimum for the future
improvisation (see Figure 2).

Figure 2. Flowchart of IHSDE

The IHS algorithm which is hybridized with DE

(IHSDE) showed a better behavior than the one hybridized
with PSO (IHSPSO) (see table II). As a consequence, the
IHSDE was adapted as the best hybridized algorithm in this
work.

V. EXPERIMENTS
The performance of IHSDE is evaluated and compared to

the IHS, DE, PSO and IHSPSO using 25 tests Benchmark
functions (table I) at 10 runs. The benchmark functions are
the single objective optimization functions published in
CEC 2005 [15].

A. Experimental setup
The parameters of IHS are set as: PARmin=0.0001;

PARmax=1.0; bwmin=0.0001; bwmax=1.0; HMCR=0.9;
HMS=10.
The parameters of DE are: CR=0.7; F=0.8; strategy = 1.
The parameters of PSO are: C1 = 0.5; C2 = 1.5.

TABLE I. list of the Benchmark functions

Benchmark
function F Number F (x*) Dimension Range

Sphère 1 0 2 [-5.12 5.12]

Rosenbrock 2 0 2 [-5 10]

Rastrigin 3 0 2 [-5.12 5.12]

Griewank 4 0 2 [-600 600]

Ackley 5 0 2 [-15 30]

Beale 6 0 2 [-4.5 4.5]

Booth 7 0 2 [-10 10]

Bohachevsky

8 0 2 [-100 100]

9 0 2 [-100 100]

10 0 2 [-100 100]

Dixon & Price 11 0 2 [-10 10]

Matyas 12 0 2 [-10 10]

Sum Squares 13 0 2 [-10 10]

Power Sum 14 0 4 [0 nbv]

Zakharov 15 0 2 [-5 10]

Perm 16 0 2 [-nbv nbv]

Powell 17 0 4 [-4 5]

Hump 18 0 2 [-5 5]

Levy 19 0 2 [-10 10]

Branin 20 0.397887 2 [-5 10;0 15]

Easom 21 -1 2 [-100 100]

Goldstein &
Price

22 3 2 [-2 2]

Hartmann3 23 - 3.86278 3 [0,1]

Michalewics 24 -1.8013 2 [0 pi]

Shubert 25 -186.7309 2 [-10 10]

There are also two stopping criteria are applied:

• The maximum number of function iterations is
reached. Here, it is set to 50000 times.

• The difference of objective function values
between the best solution found so far and the
global optimal solution (i.e., error function value is
smaller than 10-10).

The optimization performance is quantitatively
measured by the mean value and standard deviation of the

Step1: Formulation of the problem and
parameter settings

Step2: Initialize randomly the Harmony
Memory (HM)

Condition ?
: :

Satisfaction of the termination criterion

Step3: Improvise a new harmony

Step4-a: Update the harmony memory

True

False

Stop

Step4-b:
Apply the mutation, crossover and selection

operators of DE on HM vectors

Step5 :

best fitness achieved when an algorithm terminates over 10
runs and the spent time or number of function evaluations.
An optimization algorithm is regarded as successfully
solving the problem once it achieves the closest fitness to
the global optimum faster.

B. Results
To compare the optimization performances of HS, IHS,

DE, PSO, IHSPSO and IHSDE in terms of the mean value
and standard deviation of the best mean as well as the
number of evaluations over 10 runs (TABLE I), 25 test
Benchmark functions were tested.

TABLE II. Performances of IHS, DE, PSO, IHSPSO and

IHSDE in terms of the mean value, evaluation number and
standard deviation over 10 runs with benchmark functions.

For each function, bold fonts in TABLE II, show which

algorithm works more efficient and gives the best results.
In this comparative study, our goal is to minimize the time
to reach the global optimum respecting the given margin of
error. So, we considered the algorithm that is closest to the
global optimum for a minimum number of evaluations as
the best.

The techniques of mutation, crossover and selection of
DE which adapted to IHS, accelerates the convergence of
the algorithm and provides a guided sequence of steps.
Therefore, the new algorithm IHSDE made the minimum
number of evaluations (reduced time) to converge toward
the global optimum in the most of cases (see TABLE II).
The IHSDE usually demonstrates superior performances

F

IHS
Mean
NFEs
STD

DE
Mean
NFEs
STD

PSO
Mean
NFEs
STD

IHSPSO
Mean
NFEs
STD

IHSDE
Mean
NFEs
STD

F1
4.5187e-011

27249
2.2447e-011

3.5647e-011
542

2.5598e-011

3.5471e-017
703

9.5916e-017

4.2766e-011
120

2.2177e-011

5.4639e-011
67

3.2006e-011

F2
7.8262e-011

45282
5226e-011

2.7441e-005
1592

8.6768e-005

1.5155e-012
838

4.1958e-012

6.4911e-011
520

2.6834e-011

4.2957e-011
100

4.1573e-011

F3
3.1741e-011

41472
2.4682e-011

2.3335e-011
1239

1.9295e-011

1.2896e-013
1048

3.4468e-013

2.2750e-011
420

1.9708e-011

2.9425e-011
883

1.3364e-011

F4
0.0064
46790
0.0035

0.0022
2238

0.0036

7.9936e-016
924

2.1335e-015

0.0099
50001

0.00081

0.0059
48134
0.0033

F5
1.0409e-006

50001
6.4476e-007

5.6568e-011
1145

2.7565e-011

6.1688e-012
1227

1.0185e-011

5.1547e-011
290

3.1902e-011

1.2516e-010
109

1.4546e-010

F6
5.0167e-011

41291
2.6516e-011

3.9452e-011
593

3.6209e-011

1.2750e-015
766

2.3848e-015

4.6620e-011
680

3.4312e-011

4.4427e-011
70

3.0559e-011

F7
5.0064e-011

39312
3.1562e-011

3.2402e-011
631

3.2736e-011

5.8775e-016
735

1.0494e-015

4.1209e-011
150

1.1006e-011

6.2687e-011
60

1.9567e-011

F8
4.5735e-011

37803
2.5542e-011

2.3543e-005
836

7.2478e-005

5.5511e-017
1073

1.1992e-016

3.6915e-011
191

1.5552e-011

6.0276e-011
62

2.3376e-011

F9
4.0769e-011

35207
2.5687e-011

2.9646e-011
736

2.2654e-011

2.0428e-015
829

4.9877e-015

4.2349e-011
178

1.8318e-011

3.8629e-011
71

2.9354e-011

F10
7.1071e-011

43423
2.3433e-011

4.2578e-011
748

3.1568e-011

2.7423e-015
743

5.9293e-015

5.3170e-011
210

3.1223e-011

4.6674e-011
78

3.1721e-011

F11
6.5146e-011

40304
2.6147e-011

4.3527e-011
524

2.1346e-011

4.5752e-017
1706

7.6523e-017

4.0455e-011
170

3.1845e-011

6.6922e-011
68

3.1177e-011

F12
5.7484e-011

32023
2.6410e-011

5.1415e-011
538

2.6630e-011

1.9354e-016
833

3.6419e-016

3.8983e-011
138

3.1708e-011

5.5197e-011
63

2.8096e-011

F13
4.4875e-011

25797
3.1514e-011

5.0471e-011
559

2.3580e-011

1.0713e-015
701

3.0459e-015

8.3819e-012
142

8.1335e-012

4.4596e-011
56

2.3300e-011

F14
6.2246e-004

50001
6.0806e-004

0.0231
2015

0.0356

2.2477e-004
6206

1.8162e-004

1.9530e-004
50001

1.7184e-004

9.8412e-011
11383

2.5298e-012

F15
6.2007e-011

30447
2.8584e-011

4.5618e-011
555

2.4838e-011

1.5952e-016
716

3.2267e-016

5.5227e-011
124

2.6648e-011

3.8127e-011
56

3.0953e-011

F16
3.0623e-011

42261
2.1013e-011

3.0072e-011
353

1.8266e-011

6.4035e-013
789

1.9929e-012

3.7746e-011
170

2.2669e-011

5.3011e-011
73

3.2755e-011

F17
1.0506e-006

50001
6.8446e-007

1.0435e-005
1490

3.2996e-005

5.2693e-008
1442

5.7791e-008

9.9395e-011
16350

1.1230e-012

5.9498e-011
150

4.0279e-011

F18
4.6511e-008

50001
1.5773e-012

4.6510e-008
2014

7.0217e-017

4.6510e-008
770

2.5746e-016

4.6510e-008
50001

1.2162e-016

4.6510e-008
50001

1.5392e-014

F19
 4.8289e-011

2319
3.4688e-011

4.9483e-011
519

3.3277e-011

3.7053e-016
642

8.9506e-016

4.3066e-011
128

4.4756e-011

5.5477e-011
62

2.7631e-011

F20
0.3979
1508

2.6631e-005

0.3979
272

3.1654e-005

0.3979
1038

0

0.3979
56

4.4087e-005

0.3979
22

3.5446e-005

F21
-1.0000
26920

3.2156e-011

-1
2013

0

-1
934

3.5108e-016

-1.0000
7228

3.1157e-011

-1.0000
1097

2.9920e-011

F22
3.0000
45880

3.8758e-011

3.0000
637

3.0254e-011

3.0000
860

2.6089e-014

3.0000
3378

7.1556e-012

3.0000
97

1.5357e-011

F23
-3.8628
12572

5.8627e-007

-3.8628
2016

5.9212e-016

-3.8628
 854

1.9918e-014

-3.8628
84

4.7866e-007

-3.8628
63

6.1683e-007

F24
-1.8013

6157
1.0107e-006

-1.8210
2013

3.9165e-016

-1.9988
1714

0.0018

-1.8136
304

0.0057

-1.8013
52

8.7174e-007

F25
-186.7309

13663
2.2569e-006

-186.7309
2014

4.2369e-014

-186.7309
1013

3.2819e-014

-186.7309
138

2.0915e-006

-186.7309
1018

1.6613e-006

compared to IHS, DE, PSO and IHSPSO on test functions
except for few cases.

In the second level, the IHSPSO was given competitive
results at those of IHSDE and even sometimes better.

In the literature, there are other algorithms that have
hybridization between HS and DE like DHS [3] and HSDM
[12]. To evaluate IHSDE, it was compared with these
algorithms with respect to each of 5 tests Benchmark
functions (TABLE I). All of these algorithms run under the
same conditions and parameters values: HMS = 50, HMCR
= 0.98, PAR = 0.3, BW=0.01

TABLE III. Performances of HS, DHS, HSDM and IHSDE in
terms of the mean value and standard deviation over 25 runs
with 5 benchmark functions at 30 Dimension.

Benchmark

function

HS
Mean
STD

DHS
Mean
STD

HSDM
Mean
STD

IHSDE
Mean
STD

Sphère 2.920e-05
5.389e-06

5.650e-02
2.645e-02

8.055e-06
3.508e-05

8.0211e-011
1.5751e-011

Rosenbrock 2.458e+01
1.759e+01

4.460e+01
2.790e+01

2.629e+01
8.400e-01

8.9012e-011
4.1932e-012

Ackley 4.001e-03
2.954e-04

6.169e-02
1.326e-02

4.395e-05
1.552e-04

9.3415e-011
4.3594e-012

Griewank 1.406e-02
1.366e-02

1.205e-01
3.284e-02

7.186e-04
2.078e-03

2.2098e-04
0.0038

Rastrigin 5.391e-03
9.596e-04

3.059e-02
1.298e-02

7.079e-05
2.315e-04

8.7346e-011
9.6772e-012

In this table, the value in bold fonts, which corresponds
to the IHSDE shows that this algorithm reaches the best
result in this comparison. The IHSDE proved its superiority
for all existing algorithms and showed great performances
with the 5 test benchmark functions. These results
emphasize the strategy allowed for hybridization in this
study.

VI. CONCLUSIONS
In this paper, different metaheuristic algorithms have

been studied such as Harmony Search HS, Particle Swarm
Optimization PSO and Differential Evolution DE. A new
hybridization search procedure inspired by evolution
concept and swarm behavior was developed. This
hybridization has combined The Improved HS with PSO to
result IHSPSO and with DE to result IHSDE. These
algorithms are tested by the benchmark functions (CEC
2005) and compared with each other and some other
algorithm from the literature. The experimental results
demonstrate that the hybridized Harmony Search algorithm
IHSDE shows more efficiency and performing to reach the
global optimum more rapidly.

ACKNOWLEDGMENTS
The authors would like to acknowledge the financial support
of this work by grants from General Direction of Scientific
Research (DGRST), Tunisia, under the ARUB program.
This work was also supported in the framework of the IT4
Innovations Centre of Excellence project, reg. no.
CZ.1.05/1.1.00/02.0070 by operational programme
‘Research and Development for Innovations’ funded by the

Structural Funds of the European Union and state budget of
the Czech Republic, EU.

REFERENCES
[1] S. Bouaziz, H. Dhahri, A.M. Alimi, “Evolving Flexible Beta Operator

Neural Trees (FBONT) for Time Series Forecasting”, T. Hung et al.
(Eds.) : 19th International Conference in neural information
Processing (ICONIP’12), Proceedings, Part III, Series: Lecture
Notes in Computer Science, Doha-Qatar, vol. 7665, pp. 17-24, 2012.

[2] S. Bouaziz, H. Dhahri, A.M. Alimi, A. Abraham, “A hybrid learning
algorithm for evolving Flexible Beta Basis Function Neural Tree
Model”, Neurocomputing, In Press-Corrected Proof, 2013.	

[3] P. Chakraborty, G.G. Roy, S. Das, D. Jain, and A. Abraham, “An
improved harmony search algorithm with differential mutation
operator”, Fundamenta Informaticae, vol. 95, pp. 1-26, 2009.

[4] S. Das and P.N. Suganthan, “Differential Evolution: A Survey of the
State-of-the-Art”, IEEE transactions on evolutionary computation,
vol. 15, NO. 1, February 2011.

[5] Z. W. Geem, “Music-Inspired Harmony Search Algorithm:Theory
and Applications”, 1st edition. Springer, 2009.

[6] Z.W. Geem, J.H. Kim and G.V. Loganathan, “A new heuristic
optimization algorithm: Harmony search. Simulation”, Simulation,
76:60-68, 2001.

[7] J.H. Holland, “Adaptation in Natural and Artificial Systems”,
University of Michigan Press, Ann Harbor, 1992.

[8] X. Hu, R. Eberhart and Y. Shi, “Recent advances in particle swarm”,
IEEE Congress on Evolutionary Computation 2004, Portland,
Oregon, USA, 2004

[9] J. Kennedy and R. Eberhart, “Particle Swarm Optimization”, In
Proceedings of the Fourth IEEE International Conference on Neural
Networks, Perth, Australia. IEEE Service Center, pp. 1942- 1948,
1995.

[10] M. Mahdavi, M. Fesanghary and E. Damangir, “An improved
harmony search algorithm for solving optimization problems”,
Applied Mathematics and Computation, vol. 188, No. 2, pp. 1567-
1579, 2007.

[11] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control”, IEEE Control Syst. Mag., vol. 22, no. 3,
pp. 52–67, Jun. 2002.

[12] A. K. Qin and F. Forbes, “Harmony Search with Differential
Mutation Based Pitch Adjustment”, Proc. of the 2011 Genetic and
Evolutionary Computation Conference (GECCO’11), Dublin, Ireland,
July, 2011.

[13] R. Storn, "On the usage of differential evolution for function
optimization ", Biennial Conference of the North American Fuzzy
Information Processing Society (NAFIPS), IEEE, Berkeley, 1996, pp.
519-523, 1996.

[14] R. Storn and K. Price, “Differential Evolution-A Simple and efficient
adaptive scheme for global optimization over continuous spaces”,
Berkeley, CA, Tech. Rep. TR-95-012, 1995.

[15] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A.
Auger and S. Tiwari, “Problem Definitions and Evaluation Criteria
for the CEC 2005 Special Session on Real-Parameter Optimization ”,
May 2005.

[16] K. Vaisakh, L. R. Srinivas, "Genetic evolving ant direction HDE for
OPF with non-smooth cost functions and statistical analysis", Expert
Systems with Applications, vol. 38, no. 3, pp. 2046–2062, Mar. 2011.

[17] X.S. Yang, “Harmony Search as a Metaheuristic Algorithm”, in:
Music-Inspired Harmony Search Algorithm: Theory and
Applications”, (Editor Z. W. Geem), Studies in Computational
Intelligence, Springer Berlin, vol. 191, pp. 1-14, 2009.

[18] J. Zhang, H. Chung, W. L. Lo, and T. Huang, "Extended Ant Colony
Optimization Algorithm for Power Electronic Circuit Design", IEEE
Transactions on Power Electronic. Vol.24, No.1, pp.147-162, 2009.

[19] H. Izakian, A. Abraham, V. Snasel, Comparison of Heuristics for
Scheduling Independent Tasks on Heterogeneous Distributed

Environments, The 2009 IEEE International Workshop on HPC and
Grid Applications (IWHGA2009), China, IEEE Press, USA, ISBN
978-0-7695-3605-7, pp. 8-12, 2009.

[20] S. Das, A. Mukhopadhyay, A. Roy, A. Abraham and Bijaya
Panigrahi, Exploratory Power of the Harmony Search Algorithm:
Analysis and Improvements for Global Numerical Optimization,
IEEE Transactions on Systems Man and Cybernetics - Part B, IEEE
Press, USA, Volume 41, Issue 1, pp. 89-106, 2011.

[21] F. Xhafa, E. Alba, B. Dorronsoro, B. Duran and A. Abraham,
Efficient Batch Job Scheduling in Grids Using Cellular Memetic
Algorithms, Studies in Computational Intelligence, Springer Verlag,
Germany, ISBN: 978-3-540-69260-7, pp. 273-299, 2008.

[22] S. Das, A. Biswas, S. Dasgupta and A. Abraham, Bacterial Foraging
Optimization Algorithm: Theoretical Foundations, Analysis, and
Applications, Foundations of Computational Intelligence Volume 3:
Global Optimization, Studies in Computational Intelligence, Springer
Verlag, Germany, ISBN: 978-3-642-01084-2, pp. 23-55, 2009.

[23] Hongbo Liu, Ajith Abraham and Maurice Clerc, Chaotic Dynamic
Characteristics in Swarm Intelligence, Applied Soft Computing
Journal, Elsevier Science, Volume 7, Issue 3, pp. 1019-1026, 2007.

[24] A. Abraham, Intelligent Systems: Architectures and Perspectives,
Recent Advances in Intelligent Paradigms and Applications, Abraham

A., Jain L. and Kacprzyk J. (Eds.), Studies in Fuzziness and Soft
Computing, Springer Verlag Germany, ISBN 3790815381, Chapter 1,
pp. 1-35, 2002.

[25] F. Xhafa and A. Abraham, Meta-heuristics for Grid Scheduling
Problems, Metaheuristics for Scheduling: Distributed Computing
Environments, Studies in Computational Intelligence, Springer
Verlag, Germany, ISBN: 978-3-540-69260-7, pp. 1-37, 2008.

[26] R. Thangaraj, M. Pant, A. Abraham and P. Bouvry, Particle Swarm
Optimization: Hybridization Perspectives and Experimental
Illustrations, Applied Maths and Computation, Elsevier Science,
Netherlands, Volume 217, No. 1, pp. 5208-5226, 2011.

[27] H. Liu, A. Abraham, O.K. Choi and S.H.Moon, Variable
Neighborhood Particle Swarm Optimization for Multi-objective
Flexible Job-shop Scheduling Problems, The Sixth International
Conference on Simulated Evolution And Learning (SEAL06), China,
Springer Verlag, Germany, Lecture Notes in Computer Science,
T.D.Wang et al. (Eds.): SEAL 2006, LNCS 4247, pp. 197-204, 2006.

