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Abstract— We present an original methodology to design hybrid 10 —r . r - r 11
neuron circuits (CMOS + non volatile resistive memory) with Reset | — . r_
stochastic firing behaviour. In order to implement stochasic firing, 10°°F :O W i
we exploit unavoidable intrinsic variability occurring in emerging I e
non-volatile resistive memory technologies. In particulg we use the 8 v !
variability on the ‘time-to-set’ (t ser) and ‘off-state resistance’ (Rot) z 07T A 7
of Ag/GeS; based Conductive Bridge (CBRAM) memory devices. — 1
We propose a circuit and a novel self-programming techniqueor 10-10- ,' 4
using CBRAM devices inside standard Integrate and Fire neuons. Set|
Our proposed solution is extremely compact with an additioml 12 /_/,_//J
area overhead of 1R-3T. The additional energy consumptionat 10 '\\"J 7
implement stochasticity in Integrate and Fire neurons is dminat_ed 07 dl (I) . Ol.l . 012 . OI.3 .
by the CBRAM set-process. These results highlight the benédi of V_[V]
novel non memory technologies, whose impact may go far beydn ¢
traditional memory markets. Fig. 1. Quasi-static |-V curve for the CBRAM device showirge tswitching
from high (reset) to low resistive states (set). TEM imagthefCBRAM resistor
|. INTRODUCTION element [23]. The GeSlayer has a thickness &0 nm.

Neuroinspired (or ‘neuromorphic’) hardware research has

gained a lot of importance in recent years due to iescribe an original circuit and methodology to design ameu
promising low-power, fault-tolerant, and ultra-adaptattom- with stochastic firing behavior exploiting certain physiefiects
puting paradigms [1], [2], [3], [4], [5]. Neuromorphic comfing  of emerging non-volatile resistive memory technology desi
is usually accomplished with deterministic devices anduits. such as Conductive Bridge memory (CBRAM). There are
However, literature in the fields of neural networks [6], [7kignificant advantages of our approach because of the sasine
and of biology [8] suggests that in many situations, acyualbf fabrication in the Back-End-Of-Line (BEOL), CMOS com-
providing a certain degree of stochastic, noisy or proletul patibility [17], predicted scalability to suBdnm [18] and low
behavior in their building blocks may enhance the capabiliprogramming voltages of CBRAM memory devices [19].
and stability of neuroinspired systems. Some kind of neuralThe remainder of this paper is organized as follows: in
networks even fundamentally rely on stochastic neuroks, lisection I1, we describe the structure and the working ppieci
Boltzmann machines [9], [10]. Finally, stochastic neuramsy of our CBRAM devices, and the stochastic effects which we
perform signal processing in extremely noisy environmenggploit for designing the non-deterministic firing neur@ec-
using a phenomenon known as ‘stochastic resonance’ [14], [1tjon 111, describes the basic concept and an example of simpl
In neuromorphic hardware, providing stochastic behavifrcuit for obtaining a stochastic neuron. Section IV disses

to neurons using pseudo-random number generators will legghsient simulations that we performed on a basic ciretitch
to significant overheads. This explains interest in devepp validates our concept.

silicon neurons with an intrinsic stochastic behavior, Which

may be controlled. In previous works, different techniqtes [I. CBRAM TECHNOLOGY
implement controlled stochasticity in hardware neuralvoeks
have proposed. It is possible to exploit the thermal noisthén
CMOS but this may lead to silicon overheads and unwantedFig. 1 shows a TEM image of the CBRAM device struc-
correlations [6]. Other techniques exploit CMOS circuitghw ture used in this work. A Tungsten (W) plug, typically used
using noise but have significant area overhead [13], or the interconnect between two metal levels, is used as bottom
noise of photons with photodetectors [14] or even specialectrode for the CBRAM. The solid electrolyte consists of a
kinds of ‘noisy transistors’ [15]. Finally it was proposed t 30nm thick GeS layer deposited by radio frequency physical
use fundamentally probabilistic nanodevices like singgeteon vapour deposition (RF-PVD). Anm Ag layer is dissolved into
transistors [16], but which might suffer from poor CMOShe Ge$ using the photo-diffusion process [20]. Then ¥ 2
compatibility and room temperature operation. In this papwe layer of Ag is deposited to act as top electrode.

A. Structure and working principle
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Integration
Block

. S : ; .- Fig. 3. (a) Schematic image shown the basic concept of arattegind Fire
CBRAM working principle relies on the reversible formatio euron [26]. (b) Schematic showing the basic concept of oypgsed Stochastic

of a conductive filament (CF) through a solid electrolytet thantegrate-Fire neuron (S-IF).

results in transition to low and high resistance, respebtiv

which are referred to as set and reset processes (Fig. 1) [21]

During the set process a positive voltage is applied to tioétse; first the distribution ofi was calculated using [24], [25]:
anode which oxidizes, generating Adons. The latters, under

the influence of the electric field, migrate by hopping to the Roi = ponh + pott (L — 1) (1)
W cathode where they are reduced and nucleate, building-up mr

an Ag-rich CF. Upon reversal of voltage polarity, besides amherepon is the resistivity of the Ag-rich nanofilamentys is
electronic current flowing in the CF, an electrochemicatent the resistivity of the Ge§ L is the chalcogenide thickness and
gives rise to Ag ions, inducing a collapse of the filament radiug is the conductive filament radius, theg;using:

resetting the system to the high resistance state [22]. L—h

hastic eff tset= (2)
B. Sochastic effects VR €XP (;BE;) sinh (aq \;cB_TA)
By cycling many times our devices a statistical distribatio

of the high resistive state @g) was obtained. Dispersion in wheregq is the elementary charge, is a fitting parameter for
Roi may be interpreted in terms of stochastic breaking dtfie vertical evolution velocityFa is the activation energys
the filament during the reset process, due to the unavoidaisiéghe Boltzmann constar, is the temperature3(0 K), « and
defects close to the filament which act as preferential sités are fitting parameters to take into account vertical electri
for dissolution. In previous work [23] we showed, with thdield dependency and the overpotential that controls thetkin
help of modeling, that a distribution indg leads to a spread of the cathodic reaction respectively (Table I). In the duling

in others physical quantities like the left-over filamenighe section we show how the spread i tan be used to make the
(h) and the $e In this work we push further the analysis byfiring of an Integrate and Fire neuron non-deterministic.
matching the modeledg; distribution with experimental data.
In particular, we characterized the kinetic of the set of@na
by pulse measurements. Fig. 2 inset shows an example of fhelntegrate and Fire Neuron

oscilloscope trace for the evolution of voltage drop aciibes  The complexity of a neuron circuit depends on the overall
cell (V¢) during a set pulse. Initially, the cell is in the highfunctionality of the neural network and of the chosen biddaty
resistive state (B ~ 10°Q) and most of the applied voltage
drops on the cell. Then at timgstan abrupt decrease of:V

Ill. STOCHASTIC NEURONDESIGN

is observed, revealing a sudden drop of the cell resistance PARAMETERS UST:::_NETIHE SIMULATIONS
corresponding to the switching from high to low resistivatst Paramoter Value Barametor Value
Starting from some of the measured values ef RFig. 2(a)) " mys oA 0356V
we collected the spread iRt when the applied pulses were on 23 %10 °59m ot 03 am
Va=3V and puse=5 ps (Fig. 2(b)). The dotted line in Fig. 2(b), - 0.08 A 15V

shows the simulated values gf:t To obtain the simulated curve . 5o C 300m
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Fig. 4. (a)-(d) Schematic of output neuron firing patternsdifferent example
test cases. consecutive output spikes. It is a possible representation
neuron inter-spike intervals for a random sequenceg.o¥alues

models. For our purpose of concept validation, we chose off@t can be obtained by cycling the CBRAM device multiple
of the simplest, the Integrate and Fire neuron model. Fig) 3{IMes.

shows the concept of a simple Integrate and Fire neuron’he circuit equivalent of the Stochastic-Integrate ance Fir
model. It constantly sums (integrates) the incoming syinaptneuron concept shown in Fig. 3(b) is presented in Fig. 5. It
inputs or currents (excitatory and inhibitory) inside theuron consists of a current-source to simulate input currentsimgm
integration block using a capacitor. More advanced desigfi@m synapses and pre-neurons, a capacitasm@o integrate
also work with this principle [26]. This integration leads an the current and build up the neuron membrane-voltaggmV
increase in the membrane potential of the neurga,YWhen @ NMOS transistor M1 to perform set operation, two nMOS
the membrane potential reaches a certain threshold vajye Wansistors M2 and M3 to perform the reset operation, a com-
the neuron generates an output spike (electrical signdter A Parator block, a spike-generation block, a delay-elenderand

the neuron has fired the membrane potential goes back t& £BRAM device. The delay element is used to perform the
resting value (initial state), through discharging of tia@acitor reset operation of the CBRAM device at the end of each neuron
Cmem Usually, the output firing activity of a Integrate and FiréPike.

neuron is deterministic because the neuron fires every fime t In Fig. 5, initially the CBRAM is in high-resistive state. As

membrane potential reaches a defined threshold value. incoming pre-synaptic current is accumulated iRes Vmem
) i L o would constantly build up at the anode of the CBRAM. During
B. Stochastic-Integrate and Fire principle and dircuit this time M1, M2 and M3 are off. When the neuron spikes,

To introduce non-deterministic or stochastic behaviomited the spike-generation block will generate an output-spikd a
grate and Fire neuron, we propose to connect a CBRAM deviggo additional pulsed-signals (S1, S2) going to M1 afd
to the capacitor fem such that Gem could only discharge respectively. S1 acts as a gating signal to turn on MenV
through the CBRAM device by switching it to the low-resistiv build-up and switching on of M1 will enable set-operation of
state (Fig. 3(b)). The anode of the CBRAM and thgeM net the CBRAM since a positive voltage drop is established betwe
of the capacitor should be connected. The duration for whighe anode and the cathode. However during the set-operation
current can flow through the low-resistive CBRAM device cam2 and M3 are not turned on, ast delays the signal S2.
be controlled using a transistor. In such a configuratiom, th
spread on theg$; of the CBRAM would translate to a spread
on the discharge-time ) of the capacitor. For consecutive
neuron spikes, this would lead different initial state gficf 1
thus making the firing of the neuron stochastic. Fig. 4 itiats vag s2 M2
conceptually the impact of four different values gf tkeeping o 120/160nm ,
constant pre-synaptic weights), on the inter-spike irterin J_[";;ﬁf;“g;‘g L '

case (a), & is very long thus the capacitor has a very weak ¥ mem ||f‘
Cmemlepﬁ

discharge. As a consequence just few additional incomieg pr

neuron spikes are required to charge back thgMo the level o
= M3

of Vi, thus leading to an output pattern with the shortest inter- -
. . V gate M1 120/260nm
spike interval. In case (b)sd Was the shortest, and hence the 190/2600m =
capacitor discharged the most. St
Thus for this case, more incoming pre-neuron spikes are
needed to recharge ¥m Case (c) represents a deterministic

Integrate and_Fire SitL_JatiO_n With_ full {Mm discharge_. Fina"y' Fig. 6. Circuit used to demonstrate the concept of a S-IFceffehen the
case (d) depicts a situation with different;tdurations for CBRAM is in the set state.
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IV. RESULTS AND DISCUSSION

A. Set- and reset- operation

We performed SPICE transient simulation, with Eldo simu-
lator, to validate the proposed concept using a simplifiecldi
shown in Fig. 6. Transistors and capacitors sizing were not
optimized with respect to a real implementation, but to give
a simple proof-of-concept. Fig. 7(a) shows a simulatedntrai

At the end of the set-operation, the signal S2 will turn oof incoming pulses (excitatory currents) and the corredpuan
M2 and M3 thus building up the voltage at the cathode w@volution of the \hem (Fig. 7(b)) between two consecutive
switch the CBRAM to the off-state (reset). Thus, before thetn neuron spike-cycles. When,¥mreaches a threshold voltage,V
consecutive neuron spikes the CBRAM device is automayica(Vy ~ 3.5V in our simulation), the CBRAM device undergoes
reset and reprogrammed to a different initiahsRstate. Note set-operation, and fem begins to discharge. Fig. 7(b) shows the
that the flow of current through the CBRAM, during the setdischarging and re-charging of{em for four different simulated
operation, leads to a discharge of the capacitar,Cthus values of { (in the range300ns - 600ns). Fig. 7(c), shows
decreasing the membrane voltagg.¥. The amount of decreasethe expected output of the neuron. Note that different numbe
in Vmem can be estimated by calculating the total duratigg)(t of incoming pulses are required to reach the neuron firing
for which current flows through the switched CBRAMsdtis threshold again, since the initiak¥ny, value is dominated by the
the difference of the pulse-width of the signal S1 and the tstochasticity inde;. Five additional incoming pulses are needed
(inset of Fig. 2). Depending on the value gf;every time the to reach the threshold for the shortest value @f G300 ns).
neuron spikes, different amount of.&y, discharge will occur. Fig. 8 shows the zoomed version of,&, discharging for the
Thus, in between any two firing cycles, the neuron may requitiee different simulations shown in Fig. 7. Note that the lestg
different amount of incoming current to charggh to the level ts; (600 ns) corresponds to the least amount g discharge,

Fig. 7. Full evolution of \lem Simulating the circuit shown in Fig. 6. (a) Pre-
neuron incoming pulses are used to build upeM. (b) Initially Vmem builds
up as consequence of incoming currents (charging phasepp®@eation lead
to different discharge of Gem (tgsc). During the recharging phase a different
number of incoming pulses will raiseném till V 1. (c) Expected different inter-
spike intervals depending on thet

of Vih.
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Lower tet leads to lower residual membrane voltaggeV.

and vice-versa. To simulate the reset operation, a puldé of
with an amplitude of3V was applied at M2 and M3, while
keeping M1 off. Such high voltage on M3 is required to build
up a voltage on Vamode Fig. 9 shows the time evolution of
V cathode@Nd Vinem When the initial value of W, was generated
by a tet of 300ns for two different width of M3. The actual
voltage drop on the CBRAM can be increased increasing the
size of the nMOS as shown in Fig. 9. Moreover, during the
reset, an additional discharge of.M, is possible depending on
the size of M3, since M2, that is directly connected tge), is
turned on by S2 (Fig. 10(a)).

B. Parameter constraints

Due to the intrinsic physics of CBRAM device, some con-
straints in implementing the proposed circuit should be-con
sidered. In particular,  has to be greater than the minimum
value of the voltage-drop required to set the CBRAM deviae fo
a given pulse-width. The amplitude of S1 should be sufficient
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B — V mem (tset=300ns) concept on a simple Integrate and Fire neuron. The concept
S 151 v e could be extended to more complex neuron designs like [26]
) 1; — Vmem (tset=600ns) | and [28], paving the way for the fabrication of complex neuro
% morphic networks. Other emerging memory technologies migh
> 0.5 E be used for the same purpose provided a certain range of
0’ 2 stochasticity in et as reported in [29] and [30]. These results
highlight the benefits of novel non memory technologies, seho
Eg; ‘ ‘ vame s impact may go beyond traditional memory markets.
g2; - .
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Fig. 10. (a) Time-evolution of Mem during the reset operation fogetin  the CBRAM devices for this study.
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