arXiv:1406.3433v1 [cs.ET] 13 Jun 2014

A Model for Variation- and Fault-Tolerant Digital
Logic using Self-Assembled Nanowire Architectures

Alireza Goudarzi, Matthew R. Lakin, and Darko Stefanovic

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131, USA
Email: alirezag@cs.unm.edu

Abstract—Reconfiguration has been used for both defect- and
fault-tolerant nanoscale architectures with regular structure.
Recent advances in self-assembled nanowires have opened doors
to a new class of electronic devices with irregular structure.
For such devices, reservoir computing has been shown to be
a viable approach to implement computation. This approach
exploits the dynamical properties of a system rather than specifics
of its structure. Here, we extend a model of reservoir computing,
called the echo state network, to reflect more realistic aspects
of self-assembled nanowire networks. As a proof of concept, we
use echo state networks to implement basic building blocks of
digital computing: AND, OR, and XOR gates, and 2-bit adder
and multiplier circuits. We show that the system can operate
perfectly in the presence of variations five orders of magnitude
higher than ITRS’s 2005 target, 6%, and achieves success rates
6 times higher than related approaches at half the cost. We also
describe an adaptive algorithm that can detect faults in the system
and reconfigure it to resume perfect operational condition.

I. INTRODUCTION

In view of approaching physical limits of silicon-based
electronics, advances in materials science and nanotechnology
suggest that unconventional computer architectures could be
viable alternatives to current architectures. Some proposed
alternative architectures are based on molecular switches and
memristive crossbars [|1] that possess highly regular structures.
Another emerging approach is the self-assembly of nanowires
and memristive networks [2[], which results in irregular struc-
tures. Here, we use a modification to a recent paradigm called
reservoir computing (RC) to use the dynamics of current in a
disordered system to compute digital functions. In contrast to
standard approaches, our version of RC uses highly contractive
dynamics to implement combinational logic perfectly, even in
the presence of faults and temporal variations.

Major obstacles to using such architectures are design
variations, defects, faults, and a susceptibility to environmental
factors, such as thermal noise and radiation [3]. Currently,
common solutions assume knowledge of the underlying archi-
tecture and rely on reconfiguration and redundancy to achieve
programming and fault tolerance [4]], [5]. There have been
two recent proposals on how to use such devices without
knowledge of the underlying system [6]], [7]. Both proposals
are based on a model called a randomly assembled computer
(RAC). In this model, a network of randomly and sparsely
interconnected nodes with diode-like behavior is assumed.

Christof Teuscher
Department of Electrical
and Computer Engineering
Portland State University
Portland, OR 97201, USA

Three types of terminals connect the networks to the outside
world: inputs, outputs, and controls. Internally, the terminals
are connected to randomly chosen nodes. Using adaptive
strategies one finds suitable control signals such that for a
given input signal, the system produces a desired output.
Computation in this approach is sensitive to the initial state of
the network and therefore it is not readily applicable to time-
dependent input signals. In addition, the control signals are
calculated for a desired target, making the approach suitable
for a single-purpose device only.

A new paradigm that is gaining popularity in the unconven-
tional computer architecture community is reservoir computing
[8]. In this approach, computation takes place in the transient
dynamics of an excitable system, called a reservoir. The
reservoir is perturbed by an external signal; the signal leaves
an imprint in the dynamics of the system that can be translated
into a desired output. The translation is performed by a linear
readout layer, which can be trained efficiently using closed-
form regression. The computational power of the reservoir is
attributed to a short-term memory created by the reservoir
and the ability to preserve the temporal information from
distinct signals over time [8]]. This property is known to be
optimal in the critical dynamical regime of the reservoir—a
regime in which perturbations to the system’s trajectory in its
phase space neither spread nor die out. It has been suggested
that the reservoir dynamics acts like a spatiotemporal kernel,
projecting the input signal onto a high-dimensional feature
space [9]].

In simulation, reservoir computing has been shown to be a
viable approach for analog computation using self-assembled
memristive networks [10]], [11]], and recently, a physical im-
plementation using self-assembled nanowires has also been
demonstrated [[12].

Here, we use a theoretical model of reservoir computing
called the echo state network (ESN) to show that reservoir
computing can be employed to implement reliable and ro-
bust digital signal processing with self-assembled nanowire
networks. We extend the classical ESN with variable transfer
functions and weight assignment to achieve a more realistic
model of self-assembled networks. Compared to the RAC, our
system achieves 10 times higher success rate in implementing
basic logic circuits and 2-bit adder and multiplier circuits.



II. ATOMIC SWITCH NETWORKS

Atomic switch networks (ASN) are a nanoscale technol-
ogy based on silver nanowires developed by Terabe et al.
[13] aimed at reducing the cost and energy consumption
of electronic devices. They can achieve a memory density
of 2.5Gbitcm™2 without any optimization, and a switching
frequency of 1GHz. Recently, Sillin et al. [12] combined
bottom-up self-assembly and top-down patterning to self-
assemble ASN. These networks are formed by electroless
deposition of silver on pre-patterned copper seeds. Silver
nanowires extended from the copper seeds form a three-
dimensional structure that contains cross-bar-like junctions.
When exposed to Sulfur gas, these junctions are transformed
into metal-insulator-metal (MIM) interfaces and turned into
atomic switches in the presence of external bias voltage. A
silver filament forms to bridge the MIM interface, which
increases the conductance across the switch, and is dissolved
when the voltage is removed. The morphology of this self-
assembled network can be directed by the pitch and the size of
the copper seeds, which control the density and wire lengths,
respectively. There are two types of variations among the
switches: (1) the length of the MIM interface wy, and (2)
the growth rate of the filament in the presence of bias voltage
a. Both variations are modeled using a normal distribution
with standard deviation up to 40% [12]. The I-V curve across
each switch resembles that of a resistive switch, a saturated
linear or semi-linear function. Self-assembled ASNs have been
experimentally demonstrated for computing analog functions
[12]. We use ASN as a model for physical RC implementation.

III. MODELS AND METHODS
A. Reservoir Computing Model

We use a well studied reservoir computing model called the
echo state network (ESN) [14]. It consists of an input-driven
recurrent neural network, which acts as the reservoir, and a
readout layer that reads the reservoir states and produces the
output. Unlike a classical recurrent neural network, where all
the nodes are interconnected and their weights are determined
during a training process, in an ESN the nodes are intercon-
nected using random weights and random sparse connectivity
between the nodes. The input and reservoir connections are
initialized and fixed, with no further adaptation.

Figure [] shows a schematic of an ESN. The readout layer
computes a linear combination of reservoir states. The readout
weights are determined using supervised learning techniques,
where the network is driven by a teacher input and its output
is compared with a corresponding teacher output to estimate
the error; the weights can be calculated using any closed-
form regression technique [14] to minimize this error. We
augmented the ESN with a teacher unit and auxiliary input
and output to detect defects and retrain the network (see
Section [[II-F). Mathematically, the input-driven reservoir is
defined as follows. Let N be the size of the reservoir. We
represent the time-dependent inputs as a column vector u(z),
the reservoir state as a column vector x(), and the output

as a column vector y(¢). Rodan and Tifo [15] showed that
the reservoir weight pattern does not affect the performance
of the ESN. Here, we modify the classical ESN to model an
ASN more closely. The input connectivity is represented by
the matrix W™ where each element is assigned the weight
v with signs chosen according to Bernoulli distributions. A
white noise with standard deviation 1 is added to the input
weights to increase their variability. The reservoir connectivity
is represented by an N x N weight matrix W™*. A fraction
O of all possible connections are chosen to have weight
one and the rest of the connections are assigned zero. The
trade-off between nonlinearity and memory capacity of the
reservoir is determined by the dynamics of the reservoir and
can be adjusted by scaling the reservoir weight matrix as
W7es — AW [ M4 where A™ is the spectral radius of W'
and A is the desired spectral radius 0 < A < 1; this range is
necessary for the reservoir to adhere to the so-called echo state
property, a condition that ensures that the long-term reservoir
dynamics depends on the input signal and not on the initial
state of the system. The time evolution of the reservoir is given
by:

x(t+1) = f (W -x(1) + W"-u(0)). (1)

where f is the transfer function of the reservoir nodes that is
applied element-wise to its operand. The output is generated
by the multiplication of an output weight matrix W of length
N+1 and the reservoir state vector x(r) extended by a constant
1 represented by x'(¢):

y(t) = W .X'(t — 7). 2)

Here 7 is output delay, the number of time steps to wait
for the expected output to be ready. For brevity we omit
writing 7 in the subscript and explicitly mention it only when
necessary. For training, we calculate the output weights to
minimize the squared output error E = (||y(t) —¥()||*) given
the target output y(¢). Here, || -|| is the L, norm and () the
time average. The output weights are calculated using ordinary
linear regression as:

W = (X'X - PT) " XY, 3)

where each row ¢ in the matrix X corresponds to the aug-
mented state vector X’ (), vis a regulgrization factor, I is
the identity matrix of order N+ 1, and Y is the target output
matrix, whose rows correspond to target output vectors 37([)
We use I, U, and N to refer to identical, uniformly distributed,
and normally distributed reservoir weights, and we use 7' and
L to refer to tanh or saturated linear transfer function given
by:

1, ifx>1,
f)=<x if —l<x<l, “)
-1, ifx<—1.

b

To study the sensitivity of the results to variations to the
transfer functions, for each node we multiply the operand by a
random variable with uniform distribution in the range [0,2].
We label such transfer functions with TV and LV for variable



reservoir state x(¢)

Win wout

IAUX INPUT

update weights

teacher

Fig. 1. Schematic of our augmented ESN. A dynamical core called a reservoir
is driven by input signal u(z). The states of the reservoir x(r) are extended
by a constant bias » = 1 and combined linearly to produce the output y(¢) To
model self-assembled systems, the connectivity in the reservoir, between the
inputs and the reservoir, and between the reservoir and the outputs is assigned
randomly and sparsely. An auxiliary input and output is used to detect faults
in the reservoir. The teacher unit contains stored data input-output pairs for
all the input and output terminals. During the operation, the teacher feeds the
auxiliary input with data and monitors the output with the matching target
output. If the auxiliary output does not match the expected output, a failure
has occurred in the reservoir. The teacher disconnects the reservoir from the
external world and retrains the output weights, then reconnects the inputs and
outputs to external signals.

tanh or variable saturated linear function respectively. For
example, a system with normally distributed reservoir weights
and variable saturated linear function is denoted by ESNy rv.

B. Implementing a Universal Basis for Binary Logic

We implement digital logic using reservoir computing by
training the system as described above. Later, during the
testing, we will threshold the output values at 6 = 0.5 to
obtain a digital signal. To demonstrate the viability of reservoir
computing for implementing general-purpose digital logic, we
must show that any circuit can be implemented using reservoir
computing components. To apply reservoir computing we have
to pose our computations as a learning problem and in this
setting some learning problems become more difficult to solve
than in conventional top-down designed systems. An example
is XOR, which is a linearly inseparable problem and cannot
be learned easily. Yet, implementing XOR is necessary for
many logic building blocks, such as parity-check and full-
adder. One solution would be to implement a universal, but
linearly separable logic function. Such a design raises two
issues:

1) How many inputs can a reservoir of a given size process?

2) Can reservoir computing be used for non-stationary

signals?
The performance of reservoir computing depends on the
dynamics of the reservoir, which is influenced by the statistical
properties of the input signal, such as its mean and standard
deviation. Our intuition tells us that increasing the number
of input signals will saturate the dynamics of the system to a

point that it cannot be used by the output layer to construct the
desired output. Moreover, we cannot guarantee that the signal
statistics will remain constant over time during operation. To
avoid this problem we use highly convergent reservoirs with
low A so the only significant influence on the dynamics is from
the most recent input. Through extensive simulation, we found
that indeed in this regime the implemented logic is robust to
changes in the input statistics. We can therefore avoid iterative
algorithms and use regular training. Additionally, this helps us
to implement more complex logic from simpler ones, such as
NAND, using a single reservoir by feeding back the output of
the reservoir to itself. Ordinarily, the resulting system would
require complicated training algorithms; however, insensitivity
to signal statistics lets us treat the feedback connections as
extra inputs. Currently, we do not have any analytical method
to study the maximum number of inputs that can be processed
with a reservoir of size N. We will show some computational
results regarding this question in Section

C. Variation and Fault Models

Self-assembled nanoscale systems are known to be sensi-
tive to environmental factors. They affect the structure of a
nanoscale system in two ways: temporal and spatial variations
in component properties and faults [16]. To use reservoir
computing for implementing logic functions, both problems
must be addressed. To model temporal variation we add a
white noise term, with standard deviation o, to n randomly
chosen non-zero entries of W' at each time step . Noise is
added to the initial reservoir weight matrix at time ¢ and the
noisy weight matrix is used to calculate the reservoir states for
time 7+ 1. This models variations in the electrical properties
of nanowire networks due to radiation or thermal noise. The
normal distribution is known to be suitable to model variations
in nanoscale devices [16]. To study the effect of permanent
failure, we randomly pick m nodes and disconnect them from
the network by setting the weights for all of their incoming and
outgoing connections to zero. A similar approach was used in
[l6]], [17]. In Section we will show how such a permanent
effect can be detected and treated.

D. Design Space and Parameter Optimization

For ESNs to work properly, there are numerous parameters
that need to be optimized. Furthermore, our particular ESN
model introduces more parameters to model self-assembled
systems. This makes exhaustive exploration of the design
space computationally prohibitive. For the purpose of demon-
stration, we used many preliminary experiments to develop
heuristics and fix some of the parameters. We trained ESNs
to compute 2-input to 10-input AND, NAND, OR, NOR,
XOR, and XNOR gates. We are mostly interested in the
implementation of NAND gates because of their universality,
and the implementation of XOR gates for the complexity. We
found that a reservoir size of N = 100 nodes can compute
5-input NAND and XOR gates reliably. We use a training
sequence of length 7= 1000 to train and to test ESNs. The
choice of the parameter ¥ depends on the statistics of X'X.



The regularization factor Y= 0.015 gives the best result across
different tasks and network sizes, which we used for the
rest of the study. Throughout this paper, the training and
testing sequences were generated by sampling a binomial
distribution with success probability of p = 0.5. We studied
the learning probability with respect to: (1) tanh and saturated
linear transfer functions, with or without variation; (2) identi-
cal, uniformly distributed, and normally distributed reservoir
weight patterns; (3) input coefficient 0.1 < v < 1.0 and spectral
radius 0.1 < A < 1.0; and, (4) input sparsity &;, reservoir
sparsity Og, and output sparsity Jp in the range [0.1,1]. We
found that the optimal input coefficient and spectral radius
across all the systems is v=1.0 and A = 0.1, regardless of
the transfer functions, reservoir weight patterns, and sparsity of
inputs, outputs, and the reservoir. Unless explicitly mentioned,
we used n =1 and o = 0.1 to induce temporal variations in
the networks.

E. Reliability and Yield

Self-assembly of nano-scale systems is an inherently
stochastic process. Systems built using exactly the same pro-
cess and parameters may differ structurally. Each fabricated
system is a sample from a class of systems defined by the
process parameters. Analogously, each instantiation of our
model of RC, echo state networks, is a sample from a class
defined by the combination of the parameters used. To argue
that RC is a viable choice for building logic components
using nanoscale systems, we have to show that ESN can
implement digital logic reliably, i.e., with 100% accuracy,
and that it can implement digital logic reliably with a high
yield, i.e., the probability that a given instance can achieve
100% accuracy must be high. We can quantify this using the
learning probability LP, the probability of perfect general-
ization given perfect training [18]. We first calculate train-
ing and generalization accuracy tr = + Y7 (vi(t) — 5 (1)%
gr=+Yr, (yg,(t)—yg,(t))z, where T is the length of the
input signal that drives the reservoir. We then define training
and generalization probabilities 7P and GP as the probability
of perfect training and generalization accuracies:

TP=Pitr=1]= |#r;| and ®)

N

M= IS

GP=Plgr=1]= Y lsril. ©)

Here .4 is the number of trials. The learning probability is
given by LP = P[gr = 1|tr = 1] = TP x GP. This is justified
because the input streams used in training and in testing are
generated from independent distributions.

F. Fault Detection and Retraining

Self-assembled nanoscale systems are known to be sus-
ceptible to faults. Typically, a discovery and reconfiguration
technique is used to find defective parts and to route commu-
nication around them to connect to all the functioning compo-
nents. In the case of self-assembled nanowires, the components

are simple switches and therefore reconfiguration techniques
cannot be used. In RC, we only rely on the dynamics of the
reservoir and adapt the output layer to interpret it properly. As
long as the reservoir has dynamics, it can be used for signal
processing. However, RC’s reliance on dynamics means that
any change in the structure of the reservoir that affects the
dynamical regime of the reservoir may have a catastrophic
effect on the performance of the system. But since output
weights can be calculated efficiently, we can design a teacher
circuit that monitors the performance of the system and detects
when the system becomes faulty. The teacher can then retrain
the output layer. However, this means the teacher should have
access, or at least should be able to compute, the correct output
for any given input stream. But this begs the question. Our
solution is to provide the reservoir with a pair of auxiliary
input and output that can be used to detect a defective reservoir
(Figure[T). The teacher can feed a stored input pattern through
the auxiliary input signal and compare the auxiliary output
with the corresponding stored target output. The auxiliary
output is trained to produce the stored target output. A fault
in the reservoir will cause a global disruption of the reservoir
dynamics, almost certainly resulting in detectable erroneous
output values for the auxiliary output. The teacher can then
disconnect the main inputs and outputs from the external world
and retrain the output layer by feeding stored input streams for
each input signal and recalculating the output weights using
the matching stored target output according to Equation [3]

IV. RESULTS

We first demonstrate the insensitivity of optimal v and A to
reservoir weight patterns and transfer functions. Unless other-
wise mentioned, the results here are for N = 100, 7 = 1,000,
and T = 1. We specify the connectivity patterns when neces-
sary. Figure 2] shows the learning probability of 5-input NAND
function for reservoirs with tanh and saturated linear functions
and weight assignment of identical, uniformly distributed, and
normally distributed. For this example, the reservoir is fully
connected, and input and outputs are only connected to 75%
of the reservoir nodes. The figure also shows results of the
experiments with variable saturated linear function (LV) and
variable tanh functions (TV). We also performed the same
experiment for 5-input XOR and reservoirs with variable input,
output, and reservoir sparsity. In all the cases the optimal
parameters are v = 1.0 and A = 0.1. For the rest of the
experiments we use reservoirs with saturated linear functions
and normally distributed weights, i.e., ESNn ..

We then fix the v and A to optimal values and study the
effect of the input, output, and reservoir sparsity. Figure [3]
shows the LP for 5-input NAND as a function of & and o
for fully connected reservoirs and reservoirs with connection
fraction 0g = 0.1. To achieve high learning probability LP >
0.5, we need at least 6,00 > 0.4. We use & = 0.5 for the rest
of the study. We also see that the reservoir connection fraction
does not affect the LP.

An important question with a reservoir of fixed size: how
does the performance of the system change as we increase



1.0
00 0095 v

A0 50008 10 405
(b) ESNy L

(c) ESNn L

1.0 1.0

058 @ 08 §
06 06
1.0 o 10 o
02 0070005 02 0570005 ¥
(e) ESNyr (f) ESNN 1

1.0

/

- 0.8
- 06
/ To 1.0 -
02 070,005 ¥ 02 570005 v 02 070,005
(g) ESNi1v (h) ESNy,Lv (i) ESNn,Lv
1.0 1.0 1.0 ‘
08 08 08
0.6 0.6 0.6
1.0 To 1.0 o 1.0 "
2% 0670005 ¥ 202 0070005 ¥ 0% 0670005 v
() ESNy1v (k) ESNy v (1) ESNNn TV

Fig. 2. Learning probability LP of 5-input NAND as a function of A and
v for ESN with different transfer functions and reservoir weights. Here I,
U, and N refer to identical, uniformly distributed, and normally distributed
weights, and L and T refer to saturated linear and tanh functions, and LV and
TV refer to variable satured linear and variable tanh function. In all cases,
optimal parameters are v = 1.0 and A = 0.1. The same result hold for XOR,
and for reservoirs with variable functions.

the number of inputs? Figure [ shows the learning probability
as a function of §p and the number of inputs. The task is to
correctly implement a desired function, such as NAND and
XOR, of all inputs. We observe that with a reservoir of N =
100 nodes we can only compute NAND and XOR of up to
5 inputs with LP =1 and LP = 0.95, respectively, even with
dense output layer (5o = 1). Because of the nonlinearity of the
XOR task, its performance degrades more quickly than NAND
as the number of inputs increases. This can be compensated, to
a degree, by the fact that we can produce all possible functions
of 5 input at the same time. In fact, in all of our experiments
we have used 6 outputs to compute OR, AND, XOR, and
their negation in parallel. This demonstrates the ability of RC
to compute multiple functions at the same time.

To compare our implementation to the RAC model, we use
a ESNn 1 with N = 100 nodes to implement a 2-bit adder
and a 2-bit multiplier. In [6], networks of N = 100 nodes and
40 control signals were used to implement these tasks; they
achieved the learning probability LP = 0.1. In our experiments,
we achieved LP = 0.6, calculated over 500 trials, using output
sparsity as low as 0p = & = 0.5. Moreover, we computed

both the adder and the multiplier in parallel using a single
system; this uses half as many nodes compared with the
RAC implementation. Finally, to demonstrate the ability to
detect and recover from permanent failure, we use ESNy 1, of
N =100 nodes, and 4 inputs. We use 2 inputs as the main
inputs and train the main output to compute their NAND. The
other two inputs are used as auxiliary inputs. For simplicity,
the auxiliary output is trained to compute the NAND of the
two auxiliary inputs. We train the network with a stream of
length T = 1,000. During testing, at time step ¢ = 700 we pick
m nodes and disconnect them from the network as described
in Section [IIZCl The teacher detects this failure and retrains
the output layer. We repeat this experiment 20 times for each
m to study the effectiveness of our detect-and-retrain strategy.
Figure [5] shows the result of this experiment. We measure the
learning probability of the main NAND after the system has
been retrained. We also see that for all 5 < 0.05 the system
regains complete performance in all of the experiments. All
failure instances were detected in our experiments. This is
an indication such a strategy works. We suspect that one
must be careful in designing the function for the auxiliary
output; choosing a simplistic function may not be effective
for detecting the failures in the network.

V. DISCUSSION

In this paper, we explored reservoir computing as an ap-
proach to computing with self-assembled nanoscale systems.
Similar to Nanocell [17] and RAC [6], the question we
are addressing is: “How can we use a disordered unreliable
nanoscale system to compute reliably?” Compared with the
Nanocell and the RAC, our approach does not require task
dependent adaptation in the microstructure of the underlying
system, nor does it require control signals to program the
system. Because programming does not affect the underlying
system, each new output can be trained independently. This
avoids the exponential increase in training time as the number
of outputs grows. Additionally, we are able to use the same
system to implement multiple tasks in parallel. Our system
achieves learning rates 6 times higher than the RAC, under

(@) o =1.0

(b) g =0.1

Fig. 3. Learning probability LP of 5-input NAND with optimal v and A as
a function of & and Jp for fully connected reservoirs (a) and reservoirs with
connectivity fraction 6g = 0.1 (b). The reservoir sparsity does not affect the
LP.



08 / —2IN 08 /—:ﬂ IN
—-31IN —--3IN
/ ——4IN ‘ ——41IN
0.6 / 5IN| 0.6 5IN
/ 61N —~6IN
0.4 7 7IN 0.4 7IN
/ —8IN ——38IN
0.2 0.2
P
% 0.5 % 05
do 00
(a) NAND (b) XOR

up self-assembled nanowires. This approach outperforms pre-
viously proposed models, and is more feasible since it does not
require task specific modification to the system. We leave the
complete characterization of the design space and device-level
simulation using physically accurate models to future work.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grants 1028238 and 1028378.
M.R.L. gratefully acknowledges support from the New Mex-
ico Cancer Nanoscience and Microsystems Training Center
(NIH/NCI grant 5SR25CA153825).

Fig. 4. Learning probability LP of NAND as a function of 8y and number of
inputs(a). Learning probability LP of XOR as a function of §p and number
of inputs(b). In both cases we used reservoir size of N = 100 with optimal v
and A, g =1 and & =0.5.

1tooocg

0.8’ \
A, 0.67 ,
=

0.4r '

0.2r N
0 ‘ ‘ ©-- 4 :
0 005 0.1 0.15 0.2 0.25 0.3
fraction of nodes failed (m/N)

Fig. 5. Learning probability of main NAND after the failure recovery.

variations five orders of magnitude higher than ITRS’s pro-
jected target [16].

We demonstrated a retraining mechanism that can detect
faults in the system and retrain the output layer to resume
perfect operation. One limitation of this approach is that during
retraining the system is offline, therefore, system level fault-
tolerance must be achieved using redundancy. Additionally,
to achieve robustness to high variation, we must use a large
system size. This can be compensated partially by training the
system to have multiple outputs. The teacher circuit used for
fault detection and retraining needs to have enough memory to
store the input-output teacher data and to compute an inverse
matrix, which is an 0(N3) operation. Furthermore, we have
assumed that the teacher can operate reliably.

VI. CONCLUSION

We used a model for reservoir computing to implement
digital logic components and showed that the system can
produce the desired logic with high probability, which trans-
lates to high yields in a fabrication process. However, our
success comes at a price; compared with conventional top-
down designed circuits, we used five times more switches
to implement 5-input NAND logic. Our results indicates that
reservoir computing is a viable approach for building digital
systems that are tolerant to variations and faults using bottom-

(1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

REFERENCES

G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, vol. 80, pp. 1165-1172, 2005.

A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono,
and J. K. Gimzewski, “Emergent criticality in complex Turing B-type
atomic switch networks,” Advanced Materials, vol. 24, no. 2, pp. 286—
293, 2012.

Semiconductor Industry Association, “International technology roadmap
for semiconductors (ITRS), http://www.itrs.net/Links/201 1 ITRS/,” 2011.
A. Schmid and Y. Leblebici, “A modular approach for reliable nanoelec-
tronic and very-deep submicron circuit design based on analog neural
network principles,” in Proc. IEEE-NANO, Aug 2003, pp. 647-650.

A. H. Tran, S. Yanushkevich, S. Lyshevski, and V. Shmerko, “Design
of neuromorphic logic networks and fault-tolerant computing,” in Proc.
IEEE-NANO, Aug 2011, pp. 457-462.

J. W. Lawson and D. H. Wolpert, “Adaptive programming of unconven-
tional nano-architectures,” Journal of Computational and Theoretical
Nanoscience, vol. 3, no. 2, pp. 272-279, 2006.

M. Anghel, C. Teuscher, and H.-L. Wang, “Adaptive learning in random
linear nanoscale networks,” in Proc. IEEE-NANO, Aug 2011, pp. 445-
450.

M. Lukosevicius, H. Jaeger, and B. Schrauwen, “Reservoir computing
trends,” KI - Kiinstliche Intelligenz, vol. 26, no. 4, pp. 365-371, 2012.
M. Hermans and B. Schrauwen, “Recurrent kernel machines: Computing
with infinite echo state networks,” Neural Computation, vol. 24, no. 1,
pp. 104-133, 2011.

M. Kulkarni and C. Teuscher, “Memristor-based reservoir computing,”
in Nanoscale Architectures (NANOARCH), IEEE/ACM International
Symposium on, 2012, pp. 226-232.

J. Burger and C. Teuscher, “Variation-tolerant computing with memris-
tive reservoirs,” in Nanoscale Architectures (NANOARCH), IEEE/ACM
International Symposium on, 2013, pp. 1-6.

H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis, M. Aono,
A. Z. Stieg, and J. K. Gimzewski, “A theoretical and experimental
study of neuromorphic atomic switch networks for reservoir computing,”
Nanotechnology, vol. 24, no. 38, p. 384004, 2013.

K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, “Quantized
conductance atomic switch,” Nature, vol. 433, no. 7021, pp. 47 — 50,
2005.

H. Jaeger, “Adaptive nonlinear system identification with echo state
networks,” in NIPS, 2002, pp. 593-600.

A. Rodan and P. Tifio, “Minimum complexity echo state network,”
Neural Networks, IEEE Transactions on, vol. 22, pp. 131-144, Jan.
2011.

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and
J. Torrellas, “Varius: A model of process variation and resulting timing
errors for microarchitects,” Semiconductor Manufacturing, IEEE Trans-
actions on, vol. 21, no. 1, pp. 3-13, Feb 2008.

J. Tour, W. Van Zandt, C. Husband, S. Husband, L. Wilson, P. Franzon,
and D. Nackashi, “Nanocell logic gates for molecular computing,”
Nanotechnology, IEEE Transactions on, vol. 1, no. 2, pp. 100-109, 2002.
A. Patarnello and P. Carnevali, “Learning networks of neurons with
Boolean logic,” Europhys Lett., vol. 4, no. 4, pp. 503-508, 1987.


http://www.itrs.net/Links/2011ITRS/

	I Introduction
	II Atomic Switch Networks
	III Models and Methods
	III-A Reservoir Computing Model
	III-B Implementing a Universal Basis for Binary Logic
	III-C Variation and Fault Models
	III-D Design Space and Parameter Optimization
	III-E Reliability and Yield
	III-F Fault Detection and Retraining

	IV Results
	V Discussion
	VI Conclusion
	References

