
Clifford Gate Optimisation and T Gate Scheduling:
Using Queueing Models for Topological Assemblies

Alexandru Paler
Linz Institute of Technology

Johannes Kepler University, Linz, Austria
alexandrupaler@gmail.com

Robert Basmadjian
Chair of Sensor Technology

University of Passau, Passau, Germany
robert.basmadjian@uni-passau.de

Abstract—Clifford gates play a role in the optimisation of
Clifford+T circuits. Reducing the count and the depth of Clifford
gates, as well as the optimal scheduling of T gates, influence the
hardware and the time costs of executing quantum circuits. This
work focuses on circuits protected by the surface quantum error-
correcting code. The result of compiling a quantum circuit for
the surface code is called a topological assembly. We use queuing
theory to model a part of the compiled assemblies, evaluate the
models, and make the empiric observation that at least for certain
Clifford+T circuits (e.g. adders), the assembly’s execution time
does not increase when the available hardware is restricted. This
is an interesting property, because it shows that T gate scheduling
and Clifford gate optimisation have the potential to save both
hardware and execution time.

Index Terms—quantum computing, surface code, topological
assembly

I. INTRODUCTION

The efficient design of error-corrected quantum circuits is an
open problem, because there is a trade-off between hardware
cost and execution time that needs to be accounted for. Very
often, for Clifford+T circuits, the goal is to optimise T-count
and/or T-depth. However, compiling and optimising error-
corrected quantum circuits focuses on more than just the T
gates. This work presents preliminary evidence supporting
the goal of Clifford gate optimisation. We show that such
optimisation methods can have a significant influence on the
overheads of error-corrected quantum circuit execution.

A. Surface Code Assembly Volume

The surface quantum error-correcting code (QECC) is at the
foundation of the most promising quantum computer architec-
tures. The code tolerates high hardware error rates, and has
straightforward architectural requirements [1]. A topological
assembly (e.g. Fig. 1) is the result of compiling a quantum
circuit to surface QECC elements. Compilation requires the
circuit being transformed into Clifford+T gates. The surface
code operates at a so-called logical layer, and the physical
layer can be for example a topological cluster state (3D
variant of the code), or a lattice of physical qubits arranged
according to well defined 2D nearest neighbour interactions
(planar surface code).

There are different surface code techniques (e.g. braiding,
lattice surgery [2]). The discussion herein, and the accom-
panying figures, are based on the assumption that the code is

Fig. 1. 3D view of a topological assembly with two layers. (a) A region is
for distillations (magenta), data patches are in columns (red), ancilla patches
(yellow) are between the data patches. (b) Patches were placed in two layers.
The ancilla are not used, and the distillation procedure is being executed.
Execution time flows from image background to foreground.

implemented through lattice surgery. Nevertheless, our work is
valid for the braided version of the code, too. In lattice surgery,
logical qubits are encoded into code patches (e.g. squares in
Fig. 2), which have two boundary types (opposite boundaries
are of the same type). A quantum computation is executed by
choosing on which boundary to interact patches (merged and
split). Patch dimensions are dictated by the distance of the
surface code.

The overheads (costs) of applying the surface code (in
fact any QECC) is quantified by the utilised number of
physical qubits, and the generated time overhead. The goal
of fault-tolerant quantum circuit optimisation is to reduce the
overheads (hardware and time) without sacrificing the strength
of the error-correction. The overhead of a circuit’s assembly
can be abstracted through a 3D spacetime volume (qubits ×
time). In 3D, one of the dimensions is abstracted time. For
the lattice surgery planar code, space (hardware, cf. Fig. 2) is
the two-dimensional area necessary for storing all the logical
qubit patches.

B. Distillation

The Clifford gates can be implemented fault-tolerantly in
the surface code, but the T gates require the support of high
fidelity T states. Such states need to be distilled first. A
distillation procedure is a sub-circuit which takes multiple low-
fidelity instances of the same state and outputs probabilistically
a higher-fidelity state – a distilled state. The complexity of
implementing surface QECCs originates from the necessary
distillation procedures [1]. Executing a T gate comes at the
additional cost of executing a distillation, which in turn is a
computation with relatively high assembly volume. It is an
open question how to design low volume distillations [3].

Copyright ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:1

90
6.

06
40

0v
1

 [
qu

an
t-

ph
]

 1
4

Ju
n

20
19

Fig. 2. Assembly layer. Distillery region is magenta. The yellow region
stores distilled states (e.g. capacity 4). Clifford+T computation is executed
using buffered T states in the red region (e.g. 12 logical qubits). Considering
magenta and red regions of fixed sizes, the number of physical qubits is
reduced by decreasing the size of the yellow region.

Each distillation has a known duration in time, which is
assumed to be equal to a multiple of the code distance. The
manipulation of patches in time is represented by a cube, and
a distillation is a large cuboid whose volume equals multiple
cubic volume units (e.g. in Fig. 1 the magenta cubes are
volume units of a single distillation that was executed for two
time steps, and will finish after additional steps, which are not
illustrated).

Fig. 3. The considered circuits are n-qubit carry ripple adders. Due to how
gates are decomposed into Clifford+T, the resulting circuits include 4n T
gates. All the T gates appear in the first half of the circuit. However, due to
the carry ripple structure, some T gates can be delayed without delaying the
overall computation.

C. Worst-Case: T-count equals T-depth

The current generation of quantum machines (almost certain
the next generation, too) are resource restricted, and will
support only sequential distillations (parallel would require too
many physical qubits). This effectively calls for the adaptation
of the Clifford+T circuits: the initially parallel T gates (e.g.
Fig. 3) have to be scheduled such that their sequential execu-
tion introduces a minimal time overhead into the assemblies.

In hardware restricted scenarios it is assumed that the worst
case execution time of a circuit is bounded by the T-count
(when all T gates are executed sequentially T-depth equals
T-count). In general, an assembly’s depth (time, cf. circuit
depth) is a function of the number of Clifford+T gates in the
circuit. Worst-case estimations of assembly volumes use, as
an indication for depth, the circuits’ T-count (the number of
T gates in the circuit) [4].

D. Problem Statement

The following definitions are used to state the problem.
Considering Fig. 1, a layer (e.g. Fig. 2) is a slice of the
assembly made at a given time coordinate. A distillery is the
assembly region (cf. magenta in Fig. 2) where distillations are

executed. T gates are executed when a distillation succeeded,
and a distilled T state was obtained. It is reasonable to store
distilled states into a buffer. Buffering distilled T states has the
potential of shortening the depth of the topological assembly,
because T gates would be parallelised. However, this comes
at the expense of hardware overheads (buffer sizes).

Patches (red or yellow) are interacted by manipulating
their boundaries (merges and splits). In Fig. 1, red patches
represent logical qubits, and yellow patches are ancillae (used
to intermediate between red patches). This work focuses
on distilled states, and we consider that the yellow patches
represent distilled T states, and that computational ancillae
are red. This graphical simplification (cf. Figs. 1 and 2) does
not affect the generality and conclusion of the analysis. Thus,
the yellow region is a visualisation of the buffer. The number
of yellow patches in the region indicates the buffer size.

How can the trade-off between hardware and time be
explained through the layout of the topological assembly?
Does the buffer size influence the execution time? The same
question can be reformulated as: Is T-depth always the worst
case? This work will provide evidence that for some circuits
the assembly depth is larger than T-depth.

II. METHODS

We present a methodology based on a straightforward
queuing model of the distilled states buffer. The methodology
is general and applicable to any Clifford+T quantum circuit.
We use quantum adders to collect empirical evidence that
scheduling T gates, as well as smart distillery control mech-
anisms lead to computational resource savings. The analysis
will show that buffers are not necessary as long as T gates are
perfectly scheduled (on average, one T gate per distillation
execution). If perfect scheduling is not possible, then the
proposed methodology is applicable to:
• determine an optimal buffer size;
• compute the optimal point in time to turn off a distillery,

and use the extra available space to perform the Clifford
gate optimisation.

The later application implies that the distillery can be
stopped before the buffer reaches full capacity, and the avail-
able space (yellow patches) is used to speed-up the Clifford
part, such that the next T gate will be executed sooner. Thus,
the queue based methodology offers quantitative insights into
the necessity of future work on Clifford gate optimisation and
T gate scheduling.

A. Related work

Although not explicitly stated, the need for Clifford gate
optimisation was observed in [5]. The therein analysed cir-
cuits were Clifford dominated, and the T-count was not the
upper bound of the worst case resource estimation. Clifford
dominated circuits appeared in [6], too. Because of their
structure, efficient scheduling of T gates became a necessity:
distribute (commute where possible) T gates, such that there
is no need for buffering distilled T states – the buffers would
have occupied hardware resources. T gate scheduling implied

Fig. 4. An example of a single and multiple servers queuing systems.

packing Clifford gates between the sequentially executed T
gates (see worst case above).

The need for T gate scheduling resulted in the need of
controlling distilleries, and the first investigations have been
presented in [7]. Therein, the buffer had a fixed size, and
could store seven distilled states. Once the buffer was full, the
distillery was stopped (no distillations were started until the
first buffered state was not consumed by a T gate). Otherwise,
the buffer would have overflown. In that work a simplistic
look-ahead strategy for calculating the number of next T gates,
and necessary distilled T states, was presented. That strategy
was used to predict when the buffer would be full.

Nevertheless, previous work has not answered the following
questions: 1) are T state buffers always needed? In case
they are, what will be the optimal buffer size? How can
the buffer size be computed? Can the need for buffering be
circumvented? In [7], once the buffer capacity was capped, the
distillery control did not generate additional time overheads in
the resulting assemblies.

B. Distillery and Buffer

We introduce an analogy, based on queuing theory, for
capturing how the management of distillation procedures influ-
ences the arrangement of patches in the assembly. The analogy
will help answer the trade-off question by looking at buffer
occupancy.

In the case of queuing systems, jobs (also known as re-
quests, customers, or calls) are stored temporarily in a buffer
(also known as queue) until the server finishes executing the
current job. Thus, a server can execute one job at a time.
Buffers can be classified based on their capacity: finite or
infinite. Unlike infinite buffer capacity, the finite one has a
limited buffer size.

A server is a job processing unit. Upon finishing the
execution of a job, a server retrieves the next job from the
buffer based on a given strategy (e.g. FCFS – first come,
first serve), and executes the job. Parallel job execution is
achieved through multiple servers queuing system. Thus, a
queuing system consists of one buffer and at least a single
server. Figure 4 illustrates a graphical presentation of queuing
systems consisting of a single and multiple servers. This work
considers simple systems with one buffer and one server (e.g.
single server queuing system).

In the case of topological assemblies, the job analogue is
the distilled T state. The buffer’s analogue is the buffer region.
The capacity is the number of distilled states that fit into the
buffer. Thus, infinite capacities are not realistic. The equivalent
of the server is the region that consumes distilled T states.

0 1 2 3

P00

P01

P10

P11

P12

P21

P23

P32

P22 P33

Fig. 5. DTMC for distillery buffer capacity.

Whenever the buffer reaches its full capacity (e.g. overflow),
then either the new arriving job is lost or the job producer (e.g.
distillery) is notified about not to send new jobs until there
is enough available capacity. In this paper, if such a buffer
overflow happens, we consider the second option of stopping
the production of new jobs by the distillery.

We propose the following methodology to identify the
optimal buffer size for a given circuit: 1) the yellow region is
modelled as an infinite buffer; 2) the behaviour of the distillery
is emulated with maximum one distillation at a time; 2a) buffer
occupancy increases by maximum one at a time, because of the
sequential distillation process; 2b) buffer occupancy decreases
by maximum one at a time, because circuit gates are not
parallel (in this work).

The methodological steps are based on Markov chains,
where each state is the number of jobs in the system (the ones
kept in the buffer, and the one used for T gate). This adoption
is valid since our problem satisfies the memory-less property:
future depends only on the current state and not: (1) on the
history of states, and (2) how much time is spent in the current
state. The topological assembly has a discrete structure along
the time axis, and this leads to the formulation of Discrete
Time Markov Chains (DTMC, cf. Fig. 5): the state-space (e.g.
0, 1, 2, . . . , n jobs) and the time-space (e.g. 1, 2, . . . , n time
instance) are discrete.

The resulting DTMCs are ergodic because (1) these have
a finite number of states N , (2) their states are pairwise
reachable, (3) the chain is aperiodic (e.g. no periodicity of a
certain state exist). The ergodicity of a given DTMC ensures
the fact that there exists a unique steady-state probability.

C. Buffer Size, Number of Transitions

Quantum hardware is not an abundant resource, and we
analyse the trade-off between optimal buffer capacity, denoted
by B, and the time overhead. This is an iterative process
(cf. Fig. 6) in which circuit execution is re-emulated for
values in the range b ∈ [0, B), which will lead to different
number of transitions and different transition probabilities
(incorporating the resulting time overheads, e.g. increased
assembly depth). The worst-case execution time is obtained
for the most hardware efficient setting when b = 0 (e.g there
is no buffer).

The values of transition probabilities Pi,j (in matrix form)
are obtained through a process which we call (re)-emulation
(straightforward, linear procedure in which the usage of the
buffer is simulated, as distilled states are produced, stored
and used). Emulation is not quantum circuit execution or
simulation. The methodology iterates the emulation of the
corresponding circuit for different number of qubits for infinite
and fixed (e.g. 7, see next Section) buffer capacities.

Fig. 6. The process of determining optimal buffer size.

TABLE I
RESULTS FOR INFINITE AND SIZE-7 BUFFERS.

Qubit Mean # of Jobs Total # of Utilisation Number of
Size-7 Infinite States (Infinite) Transitions

16 2.80 2.96 9 69% 270
32 3.85 6.51 19 73% 558
64 4.35 13.61 37 76% 1134
128 4.59 27.83 73 77% 2286
256 4.71 56.28 147 77% 4590
512 4.77 113.17 293 78% 9198

1024 4.80 226.94 585 78% 18414
1536 4.80 340.72 878 78% 27630
2048 4.82 454.5 1171 78% 36846

The Pi,j transition probabilities are used to compute the
unique steady-state probabilities, based on the classic system
of equations ~ν = ~νP , such that

∑
∀i νi = 1 ([8, p. 41]). The

transition probability Pi,j denotes the probability of reaching
state j from state i.

Once those steady-state probabilities are calculated [9], [10],
it is possible to compute among other the following metrics,
which are at the foundation of evaluating the performance of
a queuing system:

1) the probability of the system being idle v0 or full vn,
2) mean number of jobs in the system K̄ =

∑∞
i=1 k · vi,

where k denotes the current state,
3) the average utilisation of the whole system Ū = 1− v0,

where v0 is the steady-state probability of an idle system.

III. RESULT: BUFFERING DOES NOT SHORTEN DEPTH

The influence of the buffer size on practical and commonly
used quantum addition circuits [11] is presented in Table I.
It should be noted that, as mentioned in the caption of
Fig. 3, the distribution of T gates in the original adder is
not perfect. The circuits we analysed in this work have been
previously partially optimised by hand with respect to their T
gate scheduling. Nevertheless, it was not obvious from their
structure what the optimal buffer capacity will be, or what
their maximum assembly depth is.

To evaluate and analyse the impact of buffer sizes, we setup
two configurations for the queuing system: finite buffer size of
7, and infinite capacity. The raw information about distillation
behaviour and buffer usage were calculated using SurfBraid1,
and a customised Python tool2 to compute the steady states
and the average buffer sizes.

Both cases (finite and infinite) have the same total number
of transitions as well as utilisation rate. Regarding the number

1https://alexandrupaler.github.io/quantjs/
2https://github.com/alexandrupaler/distilleryqueue

of transitions: it almost doubles with each doubling of qubit
numbers. As circuits get larger, these include more gates. The
surprising observation is that irrespective of the buffer size,
the execution time of the adders stays the same for the same
number of qubits – no delays by executing sequential T gates.
This same doubling behaviour is also evident for the total
number of states in the case of infinite buffer capacity. Note
that for the case of finite buffer size, this is not happening
because the maximum number of states equals buffer capacity
plus one (from 0 to 8).

Regarding utilisation, it is almost constant and ranging
between 70% and 78% both for finite and infinite buffer size
independent of the qubits. This indicates that the buffer is on
average empty for around 20% of the time. Furthermore, the
probability that the buffer is full (e.g. vn) never passed 0.05
(e.g. for 16 qubit adder). This denotes that the system never
reached to a buffer overflow situation.

By further investigating the mean number of jobs, which
is calculated based on steady-state probabilities (omitted from
Table I), the obtained results show that for a finite buffer size
of 7, the average was almost constant for all circuit sizes (e.g.
ranging from 2.8 till 4.8) for any number of considered qubit.
This further motivates the fact that for the considered circuit
there is no need to allocate large buffer sizes.

Using the methodology from Fig. 6, we reached the con-
clusion that, for the investigated adders, no buffer is in fact
necessary because: a) no buffer overflows were recorded while
re-emulation the circuit, b) the assembly depth did not increase
even for capacity zero buffers. Consequently, the hardware
requirements from buffer perspective can be reduced and
optimised adequately.

IV. CONCLUSION

The analysed adder has the property that the sequential
execution of T gates does not influence the depth of the
resulting assembly (execution time). We conjecture that this
property is because of the advantageous scheduling of the T
gates inside the adders: the distillery produces states faster
than the main computation is consuming them.

Another interesting property of the adder is that its depth
is not dominated by the T-count. The assembly depth is
larger than the one computed by looking at the T-count.
Thus, Clifford gate optimisation is a realistic option for circuit
optimisation. Future work directions are:

1) Optimal scheduling methods for T gates;
2) Optimisation of the Clifford part (reduce average number

of Clifford gates between two subsequent T gates ≡
adapt to distillery speed);

3) Queuing-based models to assist in the automatic design
and analysis of the resulting assemblies.

ACKNOWLEDGEMENTS

AP acknowledges support from the Linz Institute of Tech-
nology project CHARON, and a Google Faculty Research
Award.

REFERENCES

[1] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N
Cleland. Surface codes: Towards practical large-scale quantum compu-
tation. Physical Review A, 86(3):032324, 2012.

[2] Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter.
Surface code quantum computing by lattice surgery. New Journal of
Physics, 14(12):123011, 2012.

[3] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin,
Margaret Martonosi, and Frederic Chong. Magic-state functional units:
Mapping and scheduling multi-level distillation circuits for fault-tolerant
quantum architectures. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 828–840. IEEE, 2018.

[4] Craig Gidney and Austin G Fowler. Efficient magic state factories
with a catalyzed |CCZ > to 2 |T > transformation. arXiv preprint
arXiv:1812.01238, 2018.

[5] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex
Parent, and John Schanck. Estimating the cost of generic quantum
pre-image attacks on sha-2 and sha-3. In International Conference on
Selected Areas in Cryptography, pages 317–337. Springer, 2016.

[6] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod
McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. En-

coding electronic spectra in quantum circuits with linear T complexity.
Physical Review X, 8(4):041015, 2018.

[7] Alexandru Paler. Controlling distilleries in fault-tolerant quantum
circuits: problem statement and analysis towards a solution. In
2018 IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), pages 1–6. IEEE, 2018.

[8] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.
Queueing Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications. WileyBlackwell, 2nd
edition edition, May 2006.

[9] Robert Basmadjian, Florian Niedermeier, and Hermann de Meer. Mod-
elling performance and power consumption of utilisation-based dvfs
using m/m/1 queues. In Proceedings of the Seventh International
Conference on Future Energy Systems, e-Energy ’16, pages 14:1–14:11,
New York, NY, USA, 2016. ACM.

[10] Robert Basmadjian and Hermann de Meer. Modelling and analysing
conservative governor of dvfs-enabled processors. In Proceedings of
the Ninth International Conference on Future Energy Systems, e-Energy
’18, pages 519–525, New York, NY, USA, 2018. ACM.

[11] Craig Gidney. Halving the cost of quantum addition. Quantum Journal,
2, 2018.

	I Introduction
	I-A Surface Code Assembly Volume
	I-B Distillation
	I-C Worst-Case: T-count equals T-depth
	I-D Problem Statement

	II Methods
	II-A Related work
	II-B Distillery and Buffer
	II-C Buffer Size, Number of Transitions

	III Result: Buffering does not shorten depth
	IV Conclusion
	References

