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Abstract— Body sensor networks (BSNs) and WiFi networks
have been widely investigated due to the availability of sensor
motes and WiFi devices, but they are commonly deployed
separately. In this paper we propose to optimize the total com-
munication energy consumption of BSN and WiFi (BSN-WiFi)
networks using joint data rate adaptation. More specifically, we
first elaborate the BSN-WiFi network system in four consecutive
phases. Then based on the system, we analyze the communication
energy consumption, throughput and time delay, and provide
a signal-to-noise ratio and packet delivery ratio (SNR-PDR)
mappings of BSN and WiFi networks. Next, we build an energy
optimization model with constraints of SNR-PDR mappings,
throughput, and time delay to minimize the total communication
energy consumption in BSN-WiFi networks. With the input of
SNR values, we solve this model by cvx to obtain the output of
optimal data rates associated with SNR values, which are then
tabulated for online data rate adaptation. Finally, we collect
20-minute traces from a specific BSN-WiFi network system for
performance evaluation, and the results demonstrate that our
optimal data rate solution achieves up to 86% energy savings
comparing with the solutions using fixed data rates.

I. INTRODUCTION

Wireless networks are becoming more and more important
for human daily life by providing a wide range of applications,
such as reliable fall detection for elderly [1], personal health
care monitoring [2], smartphone uploading and downloading,
and video game console Wii. In all of these applications,
the rapid battery depletion of the devices is a common
issue. For example, in personal health care system, energy
constrained motes collecting and transmitting data rapidly
deplete the battery and smartphone connecting to the Internet
through WiFi for downloading can not last long. As an energy
efficient approach, variable data rate can reduce not only
communication energy consumption, but also time delay and
congestion. More specifically, data rate adaptation is the pro-
cess of dynamically switching data rate to match the channel
conditions, with the goal of selecting the rate that will provide
the optimum throughput for the given channel conditions,
thereby optimizing communication energy consumption [3].
Therefore, data rate adaptation pursuing energy efficiency in
wireless networks is increasingly attractive.

Wireless sensor networks (WSNs) especially body sensor

networks (BSNs) and WiFi networks are two types of popular
wireless networks that have been widely studied and deployed.
We build a BSN and WiFi (BSN-WiFi) network system to
investigate the approaches that pursue energy efficiency, which
is obviously composed of a BSN and a WiFi network. A
BSN consists of a collection of small and low power sensing
motes, such as EKG, pulse oximeter and temperature, and
a resource-rich data aggregation device (aggregator), such as
a smartphone connected with a sink mote [4][5]. Normally,
motes are attached on human body to sense the physiological
readings or activities while the aggregator is used to store
or forward the sensed data. BSNs have been deployed in a
wide range of applications, such as physical fitness assessment
[6], context awareness [7], assisted living [8] and emergency
response [9]. On the other hand, a WiFi network is generally
composed of an aggregator that is the same in BSN and an
access point (AP) connected to the Internet through cables.
A common application of WiFi networks is that people use
smartphone to browse web sites or send/receive emails [5].
The BSN-WiFi network system can be deployed for many
application scenarios such as real-time patient health care and
battle field monitoring. For the scenario of the system, data
transfer over BSN-WiFi networks starts from the aggregator.
With current channel condition, the aggregator first broadcasts
a polling message carrying the destination mote ID and an
optimal data rate. Then the destination mote responds to
the aggregator with a BSN data packet using specified data
rate. After receiving a fixed number of BSN data packets,
the aggregator combines them into a WiFi data packet and
then delivers it with optimal data rate to the AP over WiFi
networks.

There are a large number of existing works investigating
data rate adaptation in WSNs or WiFi networks, but not
both. For WSNs, the authors in [10] present an addition
to the 802.15.4 specification adding 500kbps, 1000kbps and
2000kbps data rates to the existing 250kbps with a minimum
of hardware changes. This approach provides us variable data
rates in BSN. Some data rate adaptation algorithms are pro-
posed to pursue energy efficiency [11][12]. Other approaches
[13][14] propose link adaptation strategies that increase data



rates if SNR is large. For WiFi networks, some statistics
based algorithms [15][16][17] attempt to reduce probing
overhead by choosing adaptive success/failure threshold for
rate increase/decrease. Other statistics based algorithms are
provided [18][19][20]. Some PHY-metric based algorithms
are proposed as well [3][21][22][23][24]. There are some
works considering the coexistence of BSN-WiFi networks
[25][26][27], but not for energy efficiency. The authors of
[28] propose an energy optimization solution for BSN-WiFi
networks through adjustable packet sizes, but we adopt data
rate adaptation to optimize energy consumption.

Different from the aforementioned works, we attempt to op-
timize the total communication energy consumption in BSN-
WiFi networks. Data rate adaptation is an effective approach
for energy efficiency [3][20][22][29], and we use SNR that
directly characterizes the channel quality to assist the data
rate adaptation. If SNR value increases, a higher data rate is
adopted; If SNR value reduces, a lower data rate is needed.
Therefore, we are able to optimize the energy consumption of
BSN-WiFi networks by joint data rate adaptation.

In this paper, we aim to use joint data rate adaptation
to optimize the total communication energy consumption in
BSN-WiFi networks. More specifically, we first illustrate a
BSN-WiFi network system that is composed of a BSN and a
WiFi network and then we divide the system communication
into four consecutive phases to explain how the data is
transmitted from motes to the AP. Next, we analyze the energy
consumption, throughput, time delay, and SNR-PDR map-
pings in both the BSN and the WiFi networks, respectively.
Based on the analysis, we build an energy optimization model
with constraints of SNR-PDR mappings, throughput and time
delay, which is further demonstrated to be a GP problem.
With the input of SNR values, we solve this model by cvx
and obtain the output of optimal data rates associated with
SNR values. Then, we tabulate SNR values and associated
data rate values for online data rate adaptation according to
the current channel condition. For performance evaluation, we
collect 20-minute traces from a specific BSN-WiFi network
system. We demonstrate that our optimal data rate solution
can save up to 86% energy, comparing with the solutions that
use fixed data rates.

The main contributions of this work can be summarized as:
• We present the joint data rate adaptation approach to

optimize the total communication energy consumption in
BSN-WiFi networks.
• We analyze the communication energy consumption,

throughput, time delay, and SNR-PDR mappings of BSN
and WiFi networks, respectively, and then build an energy
optimization model with constraints of SNR-PDR mappings,
throughput, and time delay. We solve this model by cvx and
then tabulate the results for online usage.
• We collect 20-minute traces for performance evaluation

and our results demonstrate that the optimal data rate solution
can achieve up to 86% energy savings comparing with the
solutions using fixed data rates.

The rest of this paper is organized as follows: Section II

presents related work. Section III describes the BSN-WiFi
network system in detail and based on the system, Section
IV provides the total communication energy consumption,
analyzes the throughput and time delay, and presents SNR-
PDR mappings. Then, we build an energy optimization model
with constraints of SNR-PDR mappings, throughput and time
delay for the BSN-WiFi network system in Section V. In
Section VI, we evaluate the energy optimization solution and
present conclusions in Section VII.

II. RELATED WORK

A large number of methods performing rate adaptation in
WSNs or WiFi networks have been studied. In the following,
we broadly categorize these approaches into rate adaptation
in WSNs, in WiFi networks, and coexistence of BSN-WiFi
networks.

A. Rate Adaptation in WSNs

Rate adaptation methods in WSNs can be classified into
energy-efficiency based algorithms, and PHY-metric based
algorithms, where the data rate is selected in accordance with
PHY layer metrics, such as SNR, SINR, RSSI, etc.

Energy-efficiency based algorithm. The authors of [10]
propose DRACER (Dynamic Rate Adaptation and Control for
Energy Reduction), which is an addition to the IEEE 802.15.4
specification along with a media access layer extension to
select the appropriate data rate. In [11], the authors present
an adaptive-CSMA/CA protocol, which accounts for varying
channel and load conditions at a node by influencing the selec-
tion of either low energy or low delay transmission option. The
work of [12] addresses the throughput optimization problem
for a rate-adaptive energy harvesting node that chooses its rate
from a set of discrete rates and adjusts its power depending
on its channel gain and battery state.

PHY-metric based algorithm. In [13], the authors propose
a novel LA (Link Adaptation) strategy, where nodes select
the modulation scheme according to the experienced channel
quality and level of interference. For example, if both the
SNR is large and the signal-to-interference ratio (SINR) is low,
nodes increase the bit rate, in order to decrease the time that
the channel is occupied and the collision probability. Based
on [13], the authors propose to use the LA in wireless body
area network scenario, with the aim of reducing packet losses
in [14], where nodes increase the bit rate, if the SNR is large,
regardless of the actual interference.

However, the aforementioned works only focus on rate
adaptation in wireless sensor networks but not in heteroge-
neous networks, such as BSN-WiFi networks.

B. Rate Adaptation in WiFi networks

Rate adaptation approaches in WiFi networks can be cat-
egorized into statistics based algorithms, where the data rate
is adapted according to the packet retransmission history, and
PHY-metric based algorithms.

Statistics based algorithm. In [15], the authors are among
the first to present ARF (Automatic Rate Fallback) addressing



Fig. 1: The BSN-WiFi network system

rate adaptation, where the data rate is increased after ten
consecutive packets are successfully delivered and decreased
when suffering two successive transmission failures. Then,
two extensions are provided: AARF (Adaptive ARF) scheme
[16], which provides both short-term and long-term adapta-
tion, and FRLA (Fast-Responsive Link Adaptation) scheme
[17], which adjusts the probing interval dynamically to the
wireless channel variation. In [18], the authors present the
SampleRate bit rate selection algorithm, that switches current
bit rate to a different bit rate if the throughput estimate
based on recorded loss rate with the other bit rate is higher
than the throughput with the current bit rate. The authors
of [19] propose CARA (Collision-Aware Rate Adaptation)
scheme, where the transmitter station adaptively combines
the RTS/CTS exchange with the clear channel assessment
(CCA) functionality to differentiate frame collisions from
frame transmission failures caused by channel errors. In [20],
the authors present RAF (Rate-Adaptive Framing) that jointly
controls the channel rate and frame size according to the
observed interference patterns and noise level at the receiver.

PHY-metric based algorithm. The authors of [3] propose
RBAR (Receiver-Based AutoRate), which adopts RTS/CTS to
obtain SNR and then selects data rates through a predefined
SNR data rate lookup table. In [21], the authors develop
CHARM (CHannel-Aware Rate adaptation algorithM), which
uses signal strength measurements collected by the wireless
cards to help select the transmission rate. The authors in
[22] present a practical SGRA (SNR-Guided Rate Adapta-
tion) scheme: if the channel is in interference-free state, it
aggressively exploits the SNR value to predict the optimal
rate; if the channel is interfered, it uses SNR as a guideline
to select a set of candidate rates, but relies on probing to
obtain the optimal selection. In [23], the authors present
SoftRate, a wireless bit rate adaptation protocol that uses
confidence information to estimate the prevailing channel bit
error rate (BER). The confidence information is calculated by
the physical layer and then is exported to higher layers via
the SoftPHY interface. The authors of [24] adopt an online
measurement of FPR(Frame Delivery Ratio)-RSSI mapping to
choose bit rate based on the joint consideration of RSSI and
transmission power.

Nevertheless, these approaches mainly emphasize rate adap-

tation in WiFi networks with the aim of maximizing through-
put, while we lie on it in both BSN and WiFi networks
with the goal of optimizing the total communication energy
consumption.

C. Coexistence in BSN-WiFi networks

There are some works on coexistence of BSN-WiFi net-
works: the authors of [25] provide a coexistence scheme of
BSN and WiFi networks by using multiple radio channels, and
in [26] authors present a WISE protocol that enables ZigBee
links to achieve assured performance in the presence of heavy
WiFi interference. In [27], the authors design BuzzBuzz to
mitigate WiFi interference through header and payload re-
dundancy in low power ZigBee networks. However, they only
focus on the interference between BSN and WiFi networks,
ignoring energy efficiency. The authors of [28] propose an
energy optimization solution for BSN-WiFi networks through
adjustable packet sizes, but we are different in optimizing
energy consumption using joint data rate adaptation.

III. BSN-WIFI NETWORK SYSTEM

In this section, we illustrate the BSN-WiFi network system
with data flow diagram as shown in Figure 1. As depicted in
Figure 1, the BSN-WiFi network system consists of a BSN,
which is composed of a group of motes and an aggregator,
and a WiFi network, which is constituted of the aggregator, an
AP, and possibly other clients not shown here. In particular,
we use a smartphone connected with a sink mote via USB
as an aggregator [30]. On the aggregator, the sink mote is
used to communicate with all the motes and then it transfers
data to the smartphone, while the smartphone is used for
transmitting data to the AP. In order to fully analyze the
BSN-WiFi network system, we divide the data flow into four
consecutive phases: Data Generation, BSN Transmission, Data
Aggregation, and WiFi Transmission.

A. Data Generation

In this phase, all the motes generate data to transmit. For
mote n(n ∈ {1, 2, ..., N}), we use bn to denote its data
generation rate. Then, the data generation rate of all the
motes is

∑N
n=1 bn and the average data generation rate is∑N

n=1 bn/N . Therefore, the expected time required for one
mote to generate one bit data is N/

∑N
n=1 bn.



B. BSN Transmission

In the BSN, all the motes attempt to transmit the generated
data to the aggregator. It begins with the aggregator broadcast-
ing a polling message to all the motes and then the assigned
mote responds with a BSN data packet to the aggregator. The
polling message is used to notify all the motes about what
mote is selected to transmit BSN packets and what data rate
is required according to the current SNR. We use lm to denote
the length of a BSN data packet, hm to indicate header length
for both polling message and BSN data packet, and rm to
represent the data rate in BSN. Furthermore, we use lp to
indicate the length of a polling message, which is composed
of header with length of hm , 1 byte mote ID information and
2 bytes data rate information. Thus, the time required by the
aggregator to broadcast a polling message to all the motes is
lp/rm and the time needed by the mote to send back a BSN
data packet to the aggregator is lm/rm. In addition, we use
prm to denote the PDR of data transmission between all the
motes and the aggregator in both directions when using data
rate rm. As we designed, packets transmission between motes
and the aggregator is one polling message for one BSN data
packet. For this reason, the transmission failure of either a
polling message itself or the corresponding BSN data packet
will trigger the retransmission of the polling message, while
the failed delivery of a BSN data packet will only cause
the retransmission of the same BSN data packet. Hence, the
expected retransmission number of a successful delivery of
a polling message is 1/p2rm and the expected retransmission
number for a successful delivery of the corresponding BSN
data packet is 1/prm . Therefore, the expected time delay of
a successful transmission of a BSN data packet from the
assigned mote to an aggregator is lp

rm
× 1

p2
rm

+ lm
rm

× 1
prm

.

C. Data Aggregation

In this phase, the aggregator needs to wait for multiple BSN
data packets coming from motes, removes the headers of these
packets that received, and then aggregates these payloads into
a WiFi data packet with a new header. Assuming that we
use la and ha to denote the total length and header length
of a WiFi data packet, a WiFi data packet is composed of
the total payloads of la−ha

lm−hm
BSN data packets. Since the

transmission in BSN and the data aggregation in WiFi network
are in parallel, the actual delay in aggregation is the waiting
time for the remaining la−ha

lm−hm
−1 BSN data packets after the

arrival of the earliest BSN data packet. Therefore, the time
delay in data aggregation phase is lm−hm∑N

n=1 bn
× ( la−ha

lm−hm
− 1).

D. WiFi Transmission

In the WiFi network, the aggregator transmits the aggre-
gated WiFi data packets to the AP following IEEE 802.11
standard [31]. The WiFi transmission starts with the aggrega-
tor carrier sensing the channel condition and then it sends out
a WiFi data packet to the AP when the channel is clear. After
receiving the packet, the AP replies an ACK to the aggregator
when the channel is clear.

First of all, we briefly introduce the CSMA protocol used
in current WiFi devices. According to the default setting in
commercial WiFi devices, we turn off the RTS-CTS exchange
in CSMA protocol. In this CSMA protocol, the aggregator
first carrier senses the wireless channel condition. If the
channel is idle, it sends out the WiFi data packet immediately.
Otherwise, it randomly selects a time interval within [0, cw] as
a backoff time counter before transmission, where cw denotes
the backoff time. The backoff time counter decrements as long
as the channel is sensed idle, stops when a transmission is
detected on the channel, and reactivates when the channel is
sensed idle again. The aggregator transmits WiFi data packets
when the backoff counter reaches zero and the channel is
clear. Otherwise, it backs off again. Therefore, the expected
backoff time period for a packet transmission is tcw =
cw/2×min{M − 1/2, R} [32], where M−1 is the number of
potential contenders sharing the same AP with the aggregator
and R is the maximum number of backoff retries.

Then, with ra representing the data rate in WiFi network,
the time required by the aggregator to transmit a WiFi data
packet to the AP when the channel is clear is la/ra . Since
the ACK message is tiny compared with the WiFi data packet,
we assume that there is no ACK failure. If we use pra to
denote the PDR of data transmission from the aggregator to
the AP when using data rate ra, the expected retransmission
number of a successful delivery of a WiFi data packet is
1/pra . Therefore, the expected time delay of a successful
transmission of a WiFi data packet from the aggregator to
the AP is (tcw + la

ra
× 1

pra
).

IV. SYSTEM MODELING

In this section, based on BSN-WiFi network system, we
first present the communication energy consumption in detail,
then analyze the constraints of throughput and time delay, and
finally propose the SNR-PDR mappings.

A. Energy Consumption

Energy efficiency is a critical issue in energy constrained
wireless devices. Communication consumes major battery
energy in wireless communications, therefore, in this paper,
we only focus on communication energy consumption in
BSN and WiFi networks. In this section, we formulate the
communication energy consumption problems of BSN and
WiFi networks, respectively.

1) BSN Energy Consumption: In the BSN, energy is con-
sumed by motes to transmit BSN data packets and receive
polling messages, and by the aggregator to broadcast polling
messages and receive BSN data packets. With EBSN denoting
the total energy consumed by all the motes and the aggregator
over any time period t, we get:

EBSN = e11 + e12 (1)

where e11 represents the energy consumed by motes and e12
indicates the energy consumption of the aggregator.

The total energy consumed by N motes to receive polling
messages from the aggregator and to transmit BSN data



packets to the aggregator, including retransmissions of polling
messages and packets, over any time period t is formulated
as:

e11 = (N× lp
rm

× 1

p2rm
×Pmr+

lm
rm

× 1

prm
×Pmt)×

∑N
n=1 bn × t

lm − hm

(2)
where Pmr and Pmt represent the power needed by the
mote to receive polling messages and to transmit BSN data
packets, respectively. Furthermore, lp

rm
× 1

p2
rm

indicates the
expected time needed for one mote to successfully receive
a polling message, while lm

rm
× 1

prm
represents the expected

time required by one mote to successfully transmit a BSN data
packet. As we mentioned, a successful delivery of a packet
from the mote to the aggregator consists of the successful de-
livery of both polling message and the corresponding packet.
Hence, the sum of energy consumption of both reception and
transmission in the parentheses is the energy consumption of
successful delivery of a BSN data packet. In addition, with
the definition that lm − hm denotes the payload length of a
BSN data packet,

∑N
n=1 bn×t

lm−hm
means how many packets are

generated by the N motes over time t, or how many packets
should be transmitted.

On the other hand, the total energy consumed by the
aggregator to broadcast polling messages to all the motes and
receive BSN data packets from the assigned mote, including
the retransmission, over any time t, is calculated as:

e12 = (
lp
rm

× 1

p2rm
×Pmt+

lm
rm

× 1

prm
×Pmr)×

∑N
n=1 bn × t

lm − hm

(3)
where Pmt and Pmr indicate the power of the sink mote on
the aggregator to broadcast polling messages and to receive
BSN data packets, respectively. Here, we use the sink mote to
broadcast and receive instead of the smartphone, since motes
are unable to directly communicate with the smartphone. For
this reason, we connect a sink mote with a smartphone via
USB [30] as the aggregator.

2) WiFi Energy Consumption: According to IEEE 802.11,
after the AP receives a WiFi data packet, it will reply an
ACK to the aggregator. Since the ACK is tiny compared with
a WiFi data packet, we assume that the aggregator does not
consume energy to receive it. Therefore, in the WiFi network,
energy is spent by the aggregator carrier sensing the channel
condition and then transmitting WiFi data packets to the AP.
With retransmission, the payload in BSN data packets finally
received by the aggregator should be

∑N
n=1 bn × t, which is

then delivered to the AP in the form of WiFi data packets.
Assuming that we use EWiFi to represent the total energy
consumption of the aggregator to transmit WiFi data packets
to the AP, we obtain:

EWiFi = e21 + e22 (4)

where e21 and e22 denote the energy consumption for carrier
sensing and for transmitting WiFi data packets, respectively.

At the beginning of every packet transmission, the aggre-
gator carrier senses the channel condition for an expected

time period tcw. Thus, the energy spent for carrier sensing,
including the situation of WiFi packet transmission failure,
over any time period t, is expressed as:

e21 = tcw × 1

pra
× Pas ×

∑N
n=1 bn × t

la − ha
(5)

where Pas denotes the power of the aggregator for carrier
sensing. Furthermore, tcw × 1

Pra
means the expected carrier

sensing time for a successful transmission of a WiFi data
packet and la−ha is the payload length of a WiFi data packet.

When the transmission channel is clear, the aggregator
transmits a WiFi data packet immediately. Thus, the energy
spent by the aggregator, including retransmission, over any
time period t, is calculated as:

e22 =
la
ra

× 1

pra
× Pat ×

∑N
n=1 bn × t

la − ha
(6)

where Pat denotes the power of the aggregator to transmit
WiFi data packets. In addition, la

ra
× 1

Pra
is the expected time

for a successful delivery of a WiFi data packet.

B. Throughput Constraint
Since we use data rate adaptation in BSN-WiFi network

communication, we need to make sure that the data throughput
is less than or equal to the optimal data rate [33]. We analyze
the throughput of BSN (θBSN ) and WiFi network (θWiFi),
respectively, in the following:

1) BSN Throughput Constraint: Within a unit time period
(e.g., 1 second), data is transmitted as polling messages and
BSN data packets in the BSN, hence, the throughput constraint
of BSN is expressed as:

lp×
∑N

n=1 bn
lm − hm

× 1

p2rm
+

N∑
n=1

bn×
lm

lm − hm
× 1

prm
<= rm (7)

where
∑N

n=1 bn
lm−hm

denotes the number of polling messages

transmitted from the aggregator, and lp ×
∑N

n=1 bn
lm−hm

means the
total amount of data in polling messages, and

∑N
n=1 bn ×

lm
lm−hm

represents the total amount of data in BSN data
packets, including the header data of each packet. Taking
the retransmission of polling message and BSN data packets
into account, the total amount of data transmitted per unit
time should be less than or equal to the current data rate rm,
namely, θBSN <= rm.

2) WiFi Throughput Constraint: Within a unit time period
(e.g., 1 second), data is delivered as WiFi data packets in the
WiFi networks, therefore, the throughput constraint of WiFi
network is formulated as:

N∑
n=1

bn × la
la − ha

× 1

pra
<= ra (8)

where
∑N

n=1 bn × la
la−ha

denotes the amount of data in WiFi
data packet. Considering retransmissions of WiFi data packets,
the total amount data delivered per unit time should be less
than or equal to the current data rate ra, namely, θWiFi <=
ra.



C. Time Delay Constraint

For real time applications, the time delay is a rigorous
requirement, such as Voice over IP (VoIP). Thus, the time
delay requirement of BSN-WiFi networks is formulated as:

lm − hm∑N
n=1 bn/N

+
lp
rm

× 1

p2rm
+

lm
rm

× 1

prm
+

lm − hm∑N
n=1 bn

× (
la − ha

lm − hm
− 1) + (tcw +

la
ra

)× 1

pra
<= D

(9)

where D denotes the required time delay by real time ap-
plication. With the analysis in Section III, we explain the
total time delay in BSN-WiFi networks (τBSN−WiFi) as
a pipelined data flow: (i) First, all the motes spend time
on generating packets, hence, the average time delay for
generating a BSN data packet is lm−hm∑N

n=1 bn/N
. (ii) Then, the

BSN data packet is transmitted to the aggregator with the
time delay lp

rm
× 1

p2
rm

+ lm
rm

× 1
prm

under data rate rm. (iii)

Next, the aggregator waits for la−ha

lm−hm
− 1 BSN data packets

coming from motes and then composes a WiFi data packet
with the received BSN data packet, which takes the time of
lm−hm∑N

n=1 bn
× ( la−ha

lm−hm
−1). (iv) Finally, the aggregator transmits

the WiFi data packet to the AP with time (tcw + la
ra
)× 1

pra
.

D. SNR-PDR Mappings

An unsolved problem in above subsections is how to obtain
prm and pra , which are the PDRs under the data rates
rm and ra, in BSN and WiFi networks, respectively. It is
known that exploiting PHY layer information that directly
characterizes the channel quality will give a better guideline
for data rate adaptation, since many schemes have been
proposed to use SNR to assist the data rate adaptation, such as
RBAR (Receiver-Based AutoRate) [3], RAF (Rate-Adaptive
Framing) [20], SGRA (SNR-Guided Rate Adaptation) [22]
and OAR (Opportunistic Auto Rate) [29]. In addition, SNR
is an efficient metric for estimating the optimal data rate as
well. Therefore, to address the problem, we are challenged to
find the map of one SNR for one optimal data rate through
building BSN SNR-PDR model in Section IV-D.1 and WiFi
SNR-PDR model in Section IV-D.2.

1) BSN SNR-PDR mapping: As mentioned in [10], they
add 500kbps, 1000kbps and 2000kbps data rates to the ex-
isting data rate 250kbps in IEEE 802.15.4 specification [34]
with a minimum of hardware changes. That makes variable
data rate adaptation feasible for this work. Therefore, we
define that the data rate rm in BSN is valued in the set
rBSN : {250kbps, 500kbps, 1000kbps, 2000kbps}, namely,
rm ∈ rBSN . Based on the analysis in [10], we obtain the
map of SNR to PDR under the data rate rm in BSN:

prm =

(
1− 2k − 1

2
× exp

(
−

√(
u× Srm

2

)))v

(10)

where Srm denotes the current SNR under the data rate rm
and prm represents the current PDR under the data rate rm.
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Fig. 2: SNR-PDR mapping of BSN

The exponent v is the length of BSN data packet in symbols.
k and u are parameters in coding scheme, which means that
k bits are encoded together into a u chip signal. For easy
denotation, we define SNR-PDR model in BSN as prm =
f(Srm). Since we do not focus on the coding scheme, we
just list the parameters used in Equation 10 under different
data rates in Table I.

TABLE I: Parameters for SNR-PDR Model in BSN

k(bit) u(chip) rm(kbps)
4 32 250
4 16 500
4 8 1000
1 1 2000

The values of SNR in BSN normally range in [1dB, 30dB]
[10][35], therefore, based on Equation 10 and Table I, we
plot Figure 2 to show the correlation between SNR and PDR
under rBSN . As illustrated in Figure 2, the PDRs of all the
data rates rise when SNR increases, hence, we can deduce that
prm = f(Srm) is a monotonic increasing function. Then, a
further observation is that a lower data rate grows faster than
a higher one as SNR increases. The reason is that when the
link quality is poor, namely, low PDR or small SNR, lower
data rate is preferred, while when it is good, higher data rate
has priority. In addition, we can also see that for a specific
SNR value, there are |rBSN | = 4 PDR values associated with
|rBSN | = 4 data rates.

2) WiFi SNR-PDR mapping: Since IEEE 802.11 standard
[31] has defined multiple data rates, the available values
of data rate ra in WiFi networks lie in the set rWiFi :
{6Mbps, 12Mbps, 18Mbps, 24Mbps, 35Mbps, 48Mbps,
54Mbps} [22][36], namely, ra ∈ rWiFi. The values of SNR
in WiFi networks usually lie in [1dB, 40dB] and according to
the data values in Figure 5 of [36], we replot a color Figure 3
to demonstrate the correlation between SNR and PDR under
rWiFi. We define the PDR-SNR mapping of WiFi networks
as a function of pra = f(Sra). As depicted in Figure 3,
obviously, the PDRs for all the data rates increase as SNR
grows. Thus, pra = f(Sra) is a monotonic increasing function
as well. A further observation is that with the increase of SNR,
the PDR values of lower data rates grow faster than that of
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higher ones. Moveover, there are |rWiFi| = 7 PDR values
associated with |rWiFi| = 7 data rates for each SNR value as
well.

3) SNR measurements: For SNR measurement in BSN, we
refer to the measurement method in [35]: since each mote is
equipped with an IEEE 802.15.4 compliant Chipcon CC2420
radio, the received signal strength indicator (RSSI) of CC2420
at the aggregator contains the measurement of signal power
Psm in dBm and if there are no incoming packets, the RSSI
value is the signal power of environmental noise Pnm in dBm.
Therefore, the SNR in BSN can be computed as: SBSN =
Psm−Pnm

Pnm
.

On the other hand, for SNR measurement in WiFi networks,
we refer to the approach provided in [37]: RSSI values
reported by network interface cards (NICs) give an estimate
of the signal power denoted as Psa in dBm for each received
packets and the signal power of environmental noise expressed
as Pna in dBm if there are no incoming packets. Thus,
the SNR in WiFi networks can be calculated as: SWiFi =
Psa−Pna

Pna
.

Before entering into Section V, we discuss the combinations
of SNRs as well as data rates in BSN and WiFi network,
respectively. Since Srm lies in the range [1dB, 30dB] and
Sra falls in [1dB, 40dB], there are 30 × 40 combinations of
(Srm , Sra). On the other hand, as defined, rm falls in the set
rBSN with 4 elements while ra lies in the set rWiFi with
7 elements. Therefore, for each combination of (Srm , Sra),
there are 4 × 7 combinations of (rm, ra) associated with it.
Next, we attempt to obtain one out of 28 combinations of (rm,
ra) for each SNR combination (Srm , Sra) through building
a communication energy optimization model with constraints
of SNR-PDR mappings, throughput, and time delay.

V. ENERGY OPTIMIZATION

Energy efficiency is a critical issue in energy-constrained
BSN and WiFi networks. As described in IV-A, the major
energy consumption in BSN and WiFi network is on data
communication. In this section, we aim to optimize the total
communication energy in BSN-WiFi networks using joint
data rate adaptation. In the model, we aim to input the SNR
values (Srm , Sra ) and output the corresponding optimal data

rates (rm, ra). More specifically, we first build the energy
optimization model for BSN-WiFi networks with constraints
of SNR-PDR mappings, throughput, and time delay. Then, we
solve this model with cvx and tabulate the offline solution for
online usage.

A. Energy Optimization modeling
In this section, we build the energy optimization model

with constraints of SNR-PDR mappings, throughput, and time
delay for BSN-WiFi networks. With the input of SNR values
and the output of optimal data rates through solving the model,
we attempt to obtain a map between SNR values (Srm , Sra)
and optimal data rates (rm, ra), meanwhile minimizing the
total energy consumption.

Minimize E = EBSN + EWiFi (11)
Subject to
prm = f(Srm) (12)
pra = f(Sra) (13)
θBSN <= rm (14)
θWiFi <= ra (15)
τBSN−WiFi <= D (16)
rm ∈ rBSN , ra ∈ rWiFi (17)

where Equation 11 is the objective function, and Equations 12-
17 are constraint functions. θBSN in Equation 14 and θWiFi in
Equation 15 denote the throughput of BSN and WiFi network,
respectively. τBSN−WiFi in Equation 16 represents the total
time delay of BSN-WiFi networks and D is the maximum
allowable time delay between the point at which data is
generated on motes and the point when data is successfully
delivered to the AP required by the applications.

For objective function (Equation 11), with the goal of
minimizing the total energy consumption, the input is one
SNR combination (Srm , Sra) associated with 28 combinations
of (rm, ra) and the output is the optimal data rates (rm, ra)
exactly associated with the (Srm , Sra).

For constraint functions, Equation 12 is the map between
SNR Srm associated with data rate rm and PDRs prm in BSN,
while Equation 13 is the map between SNR Sra associated
with data rate ra and PDRs pra in WiFi networks. Then,
Inequatlities 14 and 15 are the constraints of throughput in
BSN and WiFi networks, respectively. Next, Inequality 16 is
the time delay required by the application, where τBSN−WiFi

denotes the total time period from when data is generated
to when a WiFi data packet is delivered to the AP. Finally,
Inequality 17 indicates that the data rates rm and ra are
discrete values in the sets of rBSN and rWiFi, respectively.

B. Offline Solution and Online Usage
In this section, we first setup the parameters used in the

energy optimization model, then solve it by cvx, and finally
tabulate the offline solution for online dynamical data rate
adaptation.

Based on BSN-WiFi network system, suppose that we use
three TelosB motes with MSP430F1611 micro controller and



CC2420 ratio as the motes [38], utilize a Sprint HTC Hero
smartphone with Android 3.1 connected with a sink mote via
USB as an aggregator, and employ a router connected to the
Internet through cables as an AP. The parameters in the system
for optimizing energy consumption are presented in Table II.
Note that the parameters in the table are just a specific setup
for the energy optimization model, however, the model is not
confined to these parameters.

TABLE II: Parameter setup

N 3 Pmt 35mW
M 5 Pmr 38mW
R 5 Pat 1.65W
t 1s Pas 1.15W
lp 23B cw 640µs
lm 133B D 177ms
la 272B b1 4kbps
hm 20B b2 5kbps
ha 46B b3 5kbps

From the table, lp consists of hm bytes header, 1 byte mote
ID information, and 2 bytes data rate information. We set the
WiFi data packet payload length as la − ha = 226 bytes,
which is in multiple of the BSN data packet payload length
lm−hm = 133 bytes. We assign the time delay D = 177ms,
according to the requirement of VoIP.

Next, we solve the energy optimization model with the
above parameters. Referring to [39], if the model with stan-
dard form of Geometric Programming (GP) problem satisfies
the two conditions: the coefficients of the functions are any
positive numbers and the exponents are any real numbers,
then it is a GP problem. Obviously, the energy optimization
satisfies the two conditions and is a GP problem. An effi-
cient solution for a GP problem is cvx [40], which can be
implemented in Matlab. By solving this energy optimization
model, we can obtain the offline solutions of optimal data
rate rm for motes in the BSN and ra for the aggregator in
the WiFi networks for all the combinations of (Srm , Sra). For
the convenience of analysis, we plot Figure 4 to illustrate the
optimal data rates of rm and ra with all the SNR combinations
of (Srm , Sra ). Obviously, the data rates increase as both SNRs
increase. More specifically, as depicted in Figure 4(a), the
optimal data rate rm in the BSN increases when SNR Srm

increases. The reason is that when SNR Srm increases, which
means the PDR prm is increasing as well, a higher data rate is
adapted, which needs less power. However, one exception is
that when Srm is extremely low, the data rate is the highest one
2000kbps. This is because the mote tries its best to transmit
the data out in the extreme communication condition. On the
other hand, as illustrated in Figure 4(b), the optimal data rate
ra in the WiFi networks increases when SNR Sra rises. Also,
when Sra is extremely low, the data rate is the highest one
64Mbps.

Therefore, based on results in Figure 4, we can tabulate the
offline optimal solutions with 4 columns and 30×40 rows. The
columns consist of Srm , Sra , rm, and ra while the rows are
corresponding to the combinations of Srm and Sra . Then, the
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Fig. 4: The Optimal Data Rate Solution

offline optimal solution table can be loaded on the aggregator
for online data rate adaptation. Specifically, the aggregator
assigns the data rate for the motes in the BSN through polling
messages and specifies the data rate for itself in the WiFi
network, according to the current received SNR value.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the evaluation setup for
collecting traces. Then we evaluate the energy consumption
solution in BSN-WiFi networks and compare our optimal data
rate solution with solutions that use fixed data rates.

A. Evaluation Setup

A BSN-WiFi network system is presented to mimic a
typical assisted living facility, where the BSN is used for
monitoring physiological readings of a patient at home and
transmitting these generated data to a wireless device (such as
a smartphone), the WiFi network is used for transmitting these
data to the AP, and finally the AP delivers the data to a data
center in a hospital. Since the AP is usually connected to the
Internet via cables, we do not consider this part in this paper.
In the experiment, we use one TelosB mote instead of three
motes, a laptop connected with a TelosB mote via USB as an
aggregator, and an AP connected with Internet through cables,
which are the same experimental devices and settings as in
[28]. We collect about 20-minute PDR traces with settings
that the aggregator transmits polling message every 20ms and
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rm ra Mean (E) Energy
(kbps) (Mbps) (mJ) Savings
250 6 39.1 42%
250 24 35.4 36%
250 54 34.6 35%
500 18 57.7 61%
500 54 56.6 60%
1000 12 34.2 34%
1000 48 32.4 30%
2000 54 171.6 86%
Optimal Data Rate 22.6 N/A

TABLE III: Performance Comparison

calculates the PDR values every 5 seconds. Then based on the
SNR-PDR mappings, we convert PDR traces into SNR traces
for performance evaluation of optimal data rate solution.

B. Energy Savings

In order to show the energy savings of the data rate
adaptation solution, we compare our optimal solution with
the fixed data rate solutions. Our optimal solution works
through the aggregator selecting optimal data rates from the
loaded table according to the SNR traces for motes and itself.
However, the fixed data rate solutions operate by the mote
and aggregator transmitting packets with prefixed data rates
without considering the current SNR values. In particular, for
the fixed data rate solutions, we directly use collected PDR
traces. In this way, we guarantee that all the solutions are
based on the same trace data.

Since available data rates in the BSN are rBSN :
{250kbps, 500kbps, 1000kbps, 2000kbps} and in the WiFi
network are rWiFi : {6Mbps, 12Mbps, 18Mbps, 24Mbps,
35Mbps, 48Mbps, 54Mbps}, we randomly choose 250kbps
for the BSN and 24Mbps for the WiFi network and 1000kbps
and 54Mbps as two fixed data rate solutions for energy
consumption comparison. We plot the energy consumption of
optimal data rate solution and the two fixed data rate solutions
based on the SNR traces. As illustrated in Figure 5, the op-
timal data rate solution consumes the least energy comparing
with the two fixed data rate solutions. Moreover, the fixed data
rate combination (250kbps, 24Mbps) consume more energy
than the combination (1000kbps, 54Mbps). Compared with
fixed data rates I and II in Figure 5, the optimal data rate
solution saves 35% and 30% energy, respectively.

Furthermore, we compare the optimal data rate solution
with more fixed data rate solutions in terms of the mean energy
consumption and energy savings. The results are tabulated as
shown in Table III, with columns representing data rates rm in
BSN, ra in WiFi networks, the Mean(E) energy consumption
and Energy Savings. The energy savings in each row are
calculated as the energy that the optimal data rate solution
saves over the energy that the corresponding fixed data rate
solution consumes. As shown in Table III, overall, the optimal
data rate solution consumes the least energy 22.6mJ and
achieves up to 86% energy savings comparing with all the

fixed data rate solutions. An interesting observation is that for
the same rm value, the fixed data rate solution with higher ra
value consumes less energy and the energy savings of optimal
data rate solution decreases with the increase of ra. For
example, the mean energy consumption and energy savings in
the first three data rows gradually decrease with the increase
of ra. The reason is that the same amount of data transmitted
from motes consume less energy if ra is higher. Another
observation is that for the same ra value, the fixed data rate
solution with higher rm value consumes more energy and the
energy savings of optimal data rate solution increases with the
increase of rm. For instance, the mean energy consumption
and energy savings in the third, fifth and eighth rows increase
with the increase of rm. This is because more data generated
by higher data rate rm consumes more energy to transmit
packets. Therefore, we obtain the conclusion that the optimal
data rate solution saves energy by dynamically adjusting the
joint data rates of BSN and WiFi networks to current SNR
values.

VII. CONCLUSION

In this paper, we present the total communication energy
consumption optimization for both BSN and WiFi networks
through the joint data rate adaptation. More specifically,
we first propose the BSN-WiFi network system in four
consecutive phases in detail. With this system, we analyze
the communication energy consumption, throughput and time
delay, and SNR-PDR mappings for BSN and WiFi networks,
respectively. Then, based on the analysis, we build an energy
optimization model with constraints of SNR-PDR mappings,
throughput, and time delay to minimize the total energy
consumption in BSN-WiFi networks. We demonstrate that
the model is a GP problem and can be solved by cvx. With
the input of SNR values, by solving this model, we obtain
the output of optimal data rates associated with SNR values,
which are then tabulated for online data rate adaptation.
Finally, we collect 20-minute traces from the specific BSN-
WiFi network system for performance evaluation, and the
results demonstrate that our optimal data rate solution achieves
up to 86% energy savings comparing with the solutions using
fixed data rates.
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